Harmful Algal Species Fact Sheet: Amphidomataceae

Total Page:16

File Type:pdf, Size:1020Kb

Harmful Algal Species Fact Sheet: Amphidomataceae AMPHIDOMATACEAE 04/16/2018 16:53:19 Page 575 16 Harmful Algal Species Fact Sheets 575 Amphidomataceae Figure 1 LM micrographs of Azadinium spinosum (a), Az. poporum (b), Az. dexteroporum (c) and Amphidoma languida (d). Scale bars = 2 μm. Figure 2 Global records of the four species of Amphidomataceae known to produce azaspiracids (AZA). Table 1 Members of Amphidomataceae and status as AZA producers. AZA producer no AZA found not analysed yet Azadinium spinosum Azadinium obesum Azadinium caudatum var. caudatum Azadinium poporum Azadinium polongum Azadinium luciferelloides Azadinium dexteroporum Azadinium caudatum var. margalefii Amphidoma nucula Amphidoma languida Azadinium dalianense Amphidoma acuminata Azadinium trinitatum Amphidoma curtata Azadinium cuneatum Amphidoma depressa Azadinium concinnum Amphidoma elongata Azadinium zhuanum Amphidoma laticincta Amphidoma parvula Amphidoma obtusa Amphidoma steinii AMPHIDOMATACEAE 04/16/2018 16:53:19 Page 576 576 Harmful Algal Blooms: A Compendium Desk Reference Amphidomataceae General: Azaspiraids (AZA) are a group of lipophilic by a cover plate. Plate details important for species polyether toxins first detected and described in the identification include the presence/absence and/or late 1990s. With the description of Azadinium spi­ location of a single antapical spine and primarily the nosum in 2009, the first source organism has been position of a ventral pore. Morphology, and in identified. Currently, there are four out of 22 species particular the plate tabulation with five different of the genera Azadinium and Amphidoma (merged rows of plates, undoubtedly classified the family in the family Amphidomataceae) that have been Amphidomataceae as a member of the dinophy­ shown to produce AZA. However, it has to be kept in cean subclass Peridiniphycidae (Tillmann et al., mind that there is only a limited number of cultured 2009). The relation to one of the two orders of the strains available, and it is thus not clear if and to what subclass (i.e. Gonyaulacales and Peridiniales), extent AZA production is a species-specific stable however, is less clear as some morphological traits phaenotypic trait. imply affinity to Peridinales and others to General Morphology: All AZA-producing species of Gonyaulacales. Using a concatenated alignment of Azadinium and Amphidoma languida are small LSU and SSU, the Amphidomataceae have been (size of about 10–16 μm) and ovoid to elliptical in placed on the peridinean branch remote from the shape with a hemispherical hyposome. In all these Gonyaulacales, but the true relation to Peridi­ fi species, the episome is larger than the hyposome, niales could not be identi ed reliably (Tillmann with slightly convex sides ending in a distinctly et al., 2014). It thus remains to be determined pointed apex. The cingulum is deep and wide, whether they are part of the Peridiniales or rep­ accounting for roughly 1/5 to 1/4 of the cell length. resent a distinct lineage that would deserve the A central or more posteriorly located large nucleus recognition at a higher taxonomic level. is visible, which generally is round to elliptical but Known Distribution: Although the first species of maybecomedistinctlyelongatedinshapecloseto Azadinium were initially described from the North cell division. All species are photosynthetic and Sea, there is increasing evidence that AZA-pro­ possess a presumably single chloroplast, which is ducing species have a wide geographical distribu­ parietally arranged, lobed, and normally extends tion. Nevertheless, knowledge on the biogeography into both the epi- and hyposome. For all of the of the genus or of certain species currently is rather AZA-producing species, stalked pyrenoid(s) are limited and patchy. It is based on the troublesome visibleinthelightmicroscopebecauseofadistinct procedure of isolating, cultivating and fully char­ starch cup. Azadinium spp. and Amphidoma acterizing local strains; on a very few records of languida have delicate thecal plates difficult to species detected by scanning plankton samples by detect in light microscopy (LM), so that live electron microscopy; or on positive signals using cells are sometimes difficult to differentiate from species-specific molecular detection methods. small athecate gymnodinoid species. Plate pattern Cysts: Knowledge on the life cycle of Azadinium and/ and thecal plate details are important for deter­ or Amphidoma is quite incomplete. Successful iso­ mination of the genus and species, but require lation of Az. poporum by incubating sediment scanning electron microscopy (SEM). Species of samples (Potvin et al., 2012; Gu et al., 2013) made the Azadinium are characterised by the Kofoidean ´ ´´ ´´´ presence of cysts quite likely for that species, and that plate pattern of Po, cp, X, 3–4 ,2–3a, 6 , C6, 5S, 6 , fi ´´´´ has been con rmed by Gu et al. (2013): in one out of 2 , whereas Amphidoma languida has six apical 25 cultured strains, they observed the presence of a plates and no anterior intercalary plates. A very few distinct cysts. These cysts are ellipsoid, around characteristic feature among the AZA-relevant 15 μm long and 10 μm wide, and are filled with pale species is the prominent apical pore complex visible granules and a yellow accumulation body. Likewise, in LM, which is composed of an X-plate and a pore the species Az. polongum (a non-AZA producer) plate with a central round pore covered has been described to produce cysts in culture, Author: Urban Tillmann AMPHIDOMATACEAE 04/16/2018 16:53:20 Page 577 16 Harmful Algal Species Fact Sheets 577 Amphidomataceae round cells of 10–16 μm in diameter and with pale known yet. An increasing number of new AZA are white inclusion. No cyst-like cells have been discovered in the Amphidomatacean cultures. Initial reported for other species, including Az. spinosum, mass spectral data (Krock et al., 2012) as well as Az. dexteroporum and Am. languida. Clearly, more structural elucidation by nuclear magnetic reso­ data and observations are needed to clarify the whole nance (NMR) spectroscopy (Kilcoyne et al., 2014b; life cycle of Amphidomataceae. Krock et al., 2015) showed that some of the new fl Toxin: Species of Amphidomataceae are the source AZAdiscoveredindino agellates are structurally of azaspiracids (AZA), a class of polyether toxins unique from previously reported analogues by hav­ fi discovered almost 20 years ago. Azaspiracids are ing a modi cation of the nitrogen-containing I-ring polyketides with a highly hydroxylated carbon of the molecule, which consists of either a missing chain that is cyclised by ether bridges, and they methyl group at C39 or an additional double bond. contain a six-membered cyclic secondary amino All four described European strains of Az. spino­ ring. To date more than 50 AZA analogs are sum have the same toxin profile consisting of known. These include about 20 of dinoflagellate AZA-1, -2, and -33 (Tillmann et al., 2012b), and a origin, and the others are thought to be produced few minor compounds have additionally been by bioconversion in shellfish (Hess et al., 2014). found in the Scottish strain (Kilcoyne et al., Azaspiracids are known to be responsible for 2014b). For Az. poporum, a larger number of gastrointestinal disorders with the consumption of strains from different areas around the globe have AZA-contaminated shellfish, with symptoms been described, and this is reflected by a considera­ quite similar to those of DSP, such as nausea, ble diversity within this species in terms of toxin vomiting, diarrhea and stomach cramps. Prelim­ profiles. Whereas all three available North Sea inary studies of AZA suggested that these com­ strains produce AZA-37, Az. poporum from the pounds are highly toxic with multi-organ damage in Asiatic Pacific region produces more complex mice and teratogenic potential to developing fish, AZA profiles, including AZA-2, -11, -36, -40, -41 along with a wide array of cellular-level effects, in different combinations, and also strains without ranging from cytotoxicity to apoptosis and to effects any known AZA have been described. on the hERG potassium channel (reviewed by Twiner Azaspiracid-2 (AZA-2) is the major AZA produced et al., 2014). Minimal lethal doses (i.p. mice) for the by Az. poporum from Argentina and by a strain most dominant AZA in mussels have been deter­ from the Mediterranean, whereas strains from the μ mined as 200, 110, and 140 g/kg for AZA-1, -2, and Pacific coast of Chile produce AZA-11. Most -3, respectively (Satake et al., 1998; Ofuji et al., 1999). recently, the new AZA-59 was identified from Az. μ Consequently, a regulatory limit of 160 g/kg mussel poporum strains isolated from Puget Sound, WA meat for AZA-1 to AZA-3 was implemented in 2002 (Kim et al., 2017). A feature that is shared among into the EU biotoxin legislation. More recent studies some Asian Pacific and Argentinean strains of Az. yielded similar results for mouse toxicity for AZA-2 poporum is the production of minor amounts of and AZA-3, but a distinctly lower dose (higher tox­ AZA-related compounds with higher molecular μ icity) of 74 g/kg for AZA-1 (Kilcoyne et al., 2014a). masses. For the Argentinean strains, one of these Oral mouse studies indicated no additive or syner­ compounds has been identified as AZA-2 phos­ gistic effects when AZA was administered in com­ phate, which is the first report of a phosphated bination with okadaic acid or yessotoxin (Kilcoyne marine algal toxin (Tillmann et al., 2016). et al., 2014a). The presence of AZA has also been unambigu­ Around 20 AZA analogs are currently ously described for the Mediterranean strain of fl described to be of dino agellate origin. Among Az. dexteroporum (Percopo et al., 2013), and fi the dominant AZA found in shell sh, AZA-1 detailed LC-MS analysis confirmed the andAZA-2areproducedbyAzadinium, presense of six novel AZA and AZA-35 whereas no planktonic source of AZA-3 is (Rossi et al., 2017). A new strain of Az.
Recommended publications
  • Ultrastructure and Molecular Phylogenetic Position of a New Marine Sand-Dwelling Dinoflagellate from British Columbia, Canada: Pseudadenoides Polypyrenoides Sp
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: http://www.tandfonline.com/loi/tejp20 Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae) Mona Hoppenrath, Naoji Yubuki, Rowena Stern & Brian S. Leander To cite this article: Mona Hoppenrath, Naoji Yubuki, Rowena Stern & Brian S. Leander (2017) Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae), European Journal of Phycology, 52:2, 208-224, DOI: 10.1080/09670262.2016.1274788 To link to this article: http://dx.doi.org/10.1080/09670262.2016.1274788 View supplementary material Published online: 03 Mar 2017. Submit your article to this journal Article views: 25 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Download by: [The University of British Columbia] Date: 13 April 2017, At: 11:37 EUROPEAN JOURNAL OF PHYCOLOGY, 2017 VOL. 52, NO. 2, 208–224 http://dx.doi.org/10.1080/09670262.2016.1274788 Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae) Mona Hoppenratha,b, Naoji Yubukia,c, Rowena Sterna,d and Brian S. Leandera aDepartments of Botany and Zoology,
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • A Parasite of Marine Rotifers: a New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae)
    Hindawi Publishing Corporation Journal of Marine Biology Volume 2015, Article ID 614609, 5 pages http://dx.doi.org/10.1155/2015/614609 Research Article A Parasite of Marine Rotifers: A New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae) Fernando Gómez1 and Alf Skovgaard2 1 Laboratory of Plankton Systems, Oceanographic Institute, University of Sao˜ Paulo, Prac¸a do Oceanografico´ 191, Cidade Universitaria,´ 05508-900 Butanta,˜ SP, Brazil 2Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 7, 1870 Frederiksberg C, Denmark Correspondence should be addressed to Fernando Gomez;´ [email protected] Received 11 July 2015; Accepted 27 August 2015 Academic Editor: Gerardo R. Vasta Copyright © 2015 F. Gomez´ and A. Skovgaard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association between a dinoflagellate parasite and a rotifer host, tentatively Synchaeta sp. (Rotifera), collected from the port of Valencia, NW Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches amongthe dinokaryotic dinoflagellates. 1. Introduction form independent lineages with no evident relation to other dinoflagellates [12]. In this study, we describe a new lineage of The alveolates (or Alveolata) are a major lineage of protists an undescribed parasitic dinoflagellate that largely diverged divided into three main phyla: ciliates, apicomplexans, and from other known dinoflagellates.
    [Show full text]
  • Multifunctional Polyketide Synthase Genes Identified by Genomic Survey of the Symbiotic Dinoflagellate, Symbiodinium Minutum
    Beedessee et al. BMC Genomics (2015) 16:941 DOI 10.1186/s12864-015-2195-8 RESEARCH ARTICLE Open Access Multifunctional polyketide synthase genes identified by genomic survey of the symbiotic dinoflagellate, Symbiodinium minutum Girish Beedessee1*, Kanako Hisata1, Michael C. Roy2, Noriyuki Satoh1 and Eiichi Shoguchi1* Abstract Background: Dinoflagellates are unicellular marine and freshwater eukaryotes. They possess large nuclear genomes (1.5–245 gigabases) and produce structurally unique and biologically active polyketide secondary metabolites. Although polyketide biosynthesis is well studied in terrestrial and freshwater organisms, only recently have dinoflagellate polyketides been investigated. Transcriptomic analyses have characterized dinoflagellate polyketide synthase genes having single domains. The Genus Symbiodinium, with a comparatively small genome, is a group of major coral symbionts, and the S. minutum nuclear genome has been decoded. Results: The present survey investigated the assembled S. minutum genome and identified 25 candidate polyketide synthase (PKS) genes that encode proteins with mono- and multifunctional domains. Predicted proteins retain functionally important amino acids in the catalytic ketosynthase (KS) domain. Molecular phylogenetic analyses of KS domains form a clade in which S. minutum domains cluster within the protist Type I PKS clade with those of other dinoflagellates and other eukaryotes. Single-domain PKS genes are likely expanded in dinoflagellate lineage. Two PKS genes of bacterial origin are found in the S. minutum genome. Interestingly, the largest enzyme is likely expressed as a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly of 10,601 amino acids, containing NRPS and PKS modules and a thioesterase (TE) domain. We also found intron-rich genes with the minimal set of catalytic domains needed to produce polyketides.
    [Show full text]
  • Redalyc.A New Record of Azadinium Spinosum (Dinoflagellata) from The
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Hernández-Becerril, David U.; Barón-Campis, Sofía A.; Escobar-Morales, Sergio A new record of Azadinium spinosum (Dinoflagellata) from the tropical Mexican Pacific Revista de Biología Marina y Oceanografía, vol. 47, núm. 3, diciembre, 2012, pp. 553-557 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47925145016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía Vol. 47, Nº3: 553-557, diciembre 2012 Research Note A new record of Azadinium spinosum (Dinoflagellata) from the tropical Mexican Pacific Un nuevo registro de Azadinium spinosum (Dinoflagellata) en el Pacífico tropical Mexicano David U. Hernández-Becerril1, Sofía A. Barón-Campis2 and Sergio Escobar-Morales3,4 1Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. postal 70-305, México, D.F. 04510 México. [email protected] 2Instituto Nacional de Pesca, SAGARPA, Pitágoras 1320, México, D.F. 03310, México 3Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México D.F., México 4Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán (CICY), Cancún, Q.R. 77500, México Abstract.- The species Azadinium spinosum, a small thecate dinoflagellate, originally and recently described from the North Sea, was found for the first time in the tropical Pacific coast of Mexico.
    [Show full text]
  • VII EUROPEAN CONGRESS of PROTISTOLOGY in Partnership with the INTERNATIONAL SOCIETY of PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283484592 FINAL PROGRAMME AND ABSTRACTS BOOK - VII EUROPEAN CONGRESS OF PROTISTOLOGY in partnership with THE INTERNATIONAL SOCIETY OF PROTISTOLOGISTS (VII ECOP - ISOP Joint Meeting) Conference Paper · September 2015 CITATIONS READS 0 620 1 author: Aurelio Serrano Institute of Plant Biochemistry and Photosynthesis, Joint Center CSIC-Univ. of Seville, Spain 157 PUBLICATIONS 1,824 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Use Tetrahymena as a model stress study View project Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica View project All content following this page was uploaded by Aurelio Serrano on 04 November 2015. The user has requested enhancement of the downloaded file. VII ECOP - ISOP Joint Meeting / 1 Content VII ECOP - ISOP Joint Meeting ORGANIZING COMMITTEES / 3 WELCOME ADDRESS / 4 CONGRESS USEFUL / 5 INFORMATION SOCIAL PROGRAMME / 12 CITY OF SEVILLE / 14 PROGRAMME OVERVIEW / 18 CONGRESS PROGRAMME / 19 Opening Ceremony / 19 Plenary Lectures / 19 Symposia and Workshops / 20 Special Sessions - Oral Presentations / 35 by PhD Students and Young Postdocts General Oral Sessions / 37 Poster Sessions / 42 ABSTRACTS / 57 Plenary Lectures / 57 Oral Presentations / 66 Posters / 231 AUTHOR INDEX / 423 ACKNOWLEDGMENTS-CREDITS / 429 President of the Organizing Committee Secretary of the Organizing Committee Dr. Aurelio Serrano
    [Show full text]
  • Scrippsiella Trochoidea (F.Stein) A.R.Loebl
    MOLECULAR DIVERSITY AND PHYLOGENY OF THE CALCAREOUS DINOPHYTES (THORACOSPHAERACEAE, PERIDINIALES) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie der Ludwig-Maximilians-Universität München zur Begutachtung vorgelegt von Sylvia Söhner München, im Februar 2013 Erster Gutachter: PD Dr. Marc Gottschling Zweiter Gutachter: Prof. Dr. Susanne Renner Tag der mündlichen Prüfung: 06. Juni 2013 “IF THERE IS LIFE ON MARS, IT MAY BE DISAPPOINTINGLY ORDINARY COMPARED TO SOME BIZARRE EARTHLINGS.” Geoff McFadden 1999, NATURE 1 !"#$%&'(&)'*!%*!+! +"!,-"!'-.&/%)$"-"!0'* 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 2& ")3*'4$%/5%6%*!+1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 7! 8,#$0)"!0'*+&9&6"*,+)-08!+ 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 :! 5%*%-"$&0*!-'/,)!0'* 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 ;! "#$!%"&'(!)*+&,!-!"#$!'./+,#(0$1$!2! './+,#(0$1$!-!3+*,#+4+).014!1/'!3+4$0&41*!041%%.5.01".+/! 67! './+,#(0$1$!-!/&"*.".+/!1/'!4.5$%"(4$! 68! ./!5+0&%!-!"#$!"#+*10+%,#1$*10$1$! 69! "#+*10+%,#1$*10$1$!-!5+%%.4!1/'!$:"1/"!'.;$*%."(! 6<! 3+4$0&41*!,#(4+)$/(!-!0#144$/)$!1/'!0#1/0$! 6=! 1.3%!+5!"#$!"#$%.%! 62! /0+),++0'* 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<=!
    [Show full text]
  • Toxigenic Algae and Associated Phycotoxins in Two Coastal
    Harmful Algae 55 (2016) 191–201 Contents lists available at ScienceDirect Harmful Algae jo urnal homepage: www.elsevier.com/locate/hal Toxigenic algae and associated phycotoxins in two coastal embayments in the Ebro Delta (NW Mediterranean) a,b, c c c Julia A. Busch *, Karl B. Andree , Jorge Dioge`ne , Margarita Ferna´ndez-Tejedor , b b b b b Kerstin Toebe , Uwe John , Bernd Krock , Urban Tillmann , Allan D. Cembella a University of Oldenburg, Institute for Chemistry and Biology of the Marine Environment, 26111 Oldenburg, Germany b Alfred-Wegener-Institut, Helmholtz-Zentrum fu¨r Polar- und Meeresforschung, 27570 Bremerhaven, Germany c IRTA, Ctra Poble Nou km 5,5, 43540 Sant Carles de la Rapita, Tarragona, Spain A R T I C L E I N F O A B S T R A C T Article history: Harmful Algal Bloom (HAB) surveillance is complicated by high diversity of species and associated Received 21 August 2015 phycotoxins. Such species-level information on taxonomic affiliations and on cell abundance and toxin Received in revised form 24 February 2016 content is, however, crucial for effective monitoring, especially of aquaculture and fisheries areas. The Accepted 29 February 2016 aim addressed in this study was to determine putative HAB taxa and related phycotoxins in plankton from aquaculture sites in the Ebro Delta, NW Mediterranean. The comparative geographical distribution Keywords: of potentially harmful plankton taxa was established by weekly field sampling throughout the water HAB surveillance column during late spring–early summer over two years at key stations in Alfacs and Fangar Semi-enclosed embayment embayments within the Ebro Delta.
    [Show full text]
  • Reference Database for the 18S Rrna Gene
    Received: 3 November 2017 | Revised: 15 February 2018 | Accepted: 24 February 2018 DOI: 10.1111/1755-0998.12781 RESOURCE ARTICLE DINOREF: A curated dinoflagellate (Dinophyceae) reference database for the 18S rRNA gene Solenn Mordret1 | Roberta Piredda1 | Daniel Vaulot2 | Marina Montresor1 | Wiebe H. C. F. Kooistra1 | Diana Sarno1 1Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy Abstract 2Sorbonne Universite, CNRS, UMR Dinoflagellates are a heterogeneous group of protists present in all aquatic ecosys- Adaptation et Diversite en Milieu Marin, tems where they occupy various ecological niches. They play a major role as primary Station Biologique, Roscoff, France producers, but many species are mixotrophic or heterotrophic. Environmental Correspondence metabarcoding based on high-throughput sequencing is increasingly applied to Diana Sarno, Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, assess diversity and abundance of planktonic organisms, and reference databases Italy. are definitely needed to taxonomically assign the huge number of sequences. We Email: [email protected] provide an updated 18S rRNA reference database of dinoflagellates: DINOREF. Funding information Sequences were downloaded from GENBANK and filtered based on stringent quality Italian Ministry of Education, University and Research criteria. All sequences were taxonomically curated, classified taking into account classical morphotaxonomic studies and molecular phylogenies, and linked to a series of metadata. DINOREF includes 1,671 sequences representing 149 genera and 422 species. The taxonomic assignation of 468 sequences was revised. The largest num- ber of sequences belongs to Gonyaulacales and Suessiales that include toxic and symbiotic species. DINOREF provides an opportunity to test the level of taxonomic resolution of different 18S barcode markers based on a large number of sequences and species.
    [Show full text]
  • Omics Analysis for Dinoflagellates Biology Research
    microorganisms Review Omics Analysis for Dinoflagellates Biology Research Yali Bi 1,2,3, Fangzhong Wang 4,* and Weiwen Zhang 1,2,3,4,* 1 Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China 2 Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China 3 Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China 4 Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China * Correspondence: [email protected] (F.W.); [email protected] (W.Z.); Tel.: +86-22-2740-6394; Fax: +86-22-2740-6364 Received: 9 July 2019; Accepted: 21 August 2019; Published: 23 August 2019 Abstract: Dinoflagellates are important primary producers for marine ecosystems and are also responsible for certain essential components in human foods. However, they are also notorious for their ability to form harmful algal blooms, and cause shellfish poisoning. Although much work has been devoted to dinoflagellates in recent decades, our understanding of them at a molecular level is still limited owing to some of their challenging biological properties, such as large genome size, permanently condensed liquid-crystalline chromosomes, and the 10-fold lower ratio of protein to DNA than other eukaryotic species. In recent years, omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, have been applied to the study of marine dinoflagellates and have uncovered many new physiological and metabolic characteristics of dinoflagellates. In this article, we review recent application of omics technologies in revealing some of the unusual features of dinoflagellate genomes and molecular mechanisms relevant to their biology, including the mechanism of harmful algal bloom formations, toxin biosynthesis, symbiosis, lipid biosynthesis, as well as species identification and evolution.
    [Show full text]
  • Azadinium Poporum (Dinophyceae) in the Southeast Pacific: Morphology, Molecular Phylogeny, and Azaspiracid Profile Characterization
    Journal of Plankton Research academic.oup.com/plankt J. Plankton Res. (2017) 39(2): 350–367. First published online January 20, 2017 doi:10.1093/plankt/fbw099 Downloaded from https://academic.oup.com/plankt/article/39/2/350/2929416 by guest on 12 October 2020 Identification of Azadinium poporum (Dinophyceae) in the Southeast Pacific: morphology, molecular phylogeny, and azaspiracid profile characterization URBAN TILLMANN1*, NICOLE TREFAULT2, BERND KROCK1, GÉNESIS PARADA-POZO2, RODRIGO DE LA IGLESIA3 AND MÓNICA VÁSQUEZ3 ALFRED WEGENER INSTITUTE, HELMHOLTZ CENTRE FOR POLAR AND MARINE RESEARCH, AM HANDELSHAFEN , D- BREMERHAVEN, GERMANY, CENTER FOR GENOMICS AND BIOINFORMATICS, FACULTY OF SCIENCES, UNIVERSIDAD MAYOR, CAMINO LA PIRÁMIDE , HUECHURABA, SANTIAGO, CHILE AND DEPARTMENT OF MOLECULAR GENETICS AND MICROBIOLOGY, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE, AV. LIBERTADOR BERNARDO O´HIGGINS , SANTIAGO, CHILE *CORRESPONDING AUTHOR: [email protected] Received November 7, 2016; editorial decision December 21, 2016; accepted December 24, 2016 Corresponding Editor: John Dolan Azaspiracids (AZA), a group of lipophilic phycotoxins, are produced by some species of the marine dinophycean genus Azadinium. AZA have recently been detected in shellfish from the Southeast Pacific, however, AZA-producing species have not been recorded yet from the area. This study is the first record of the genus Azadinium and of the species Azadinium poporum from the Pacific side of South America. Three strains of A. poporum from Chañaral (Northern Chile) comply to the type description of A. poporum by the presence of multiple pyrenoids, in thecal plate details, and in the position of the ventral pore located on the left side of the pore plate. Molecular phylogeny, based on internal transcribed spacer and large subunit ribosomal DNA sequences, revealed that Chilean strains fall in the same ribotype clade as European and strains from New Zealand.
    [Show full text]
  • Azadinium (Amphidomataceae, Dinophyceae) in the Southwest Atlantic: in Situ and Satellite Observations
    Revista de Biología Marina y Oceanografía Vol. 49, Nº3: 511-526, diciembre 2014 DOI 10.4067/S0718-19572014000300008 ARTICLE Azadinium (Amphidomataceae, Dinophyceae) in the Southwest Atlantic: In situ and satellite observations Azadinium (Amphidomataceae, Dinophyceae) en el Atlántico Sudoccidental: Observaciones in situ y satelitales Rut Akselman1, Rubén M. Negri1 and Ezequiel Cozzolino1 1Instituto Nacional de Investigación y Desarrollo Pesquero, INIDEP, V. Ocampo 1, Escollera Norte, B7602HSA-Mar del Plata, Argentina. [email protected] Resumen.- Los azaspirácidos (AZAs) son toxinas identificadas en invertebrados marinos y tienen amplia distribución geográfica, no reportadas aún en Argentina ni Uruguay. Aunque el primer agente causal identificado es el dinoflagelado fotosintético Azadinium spinosum, diversos estudios indican que otras especies sintetizan asimismo AZAs. Recientemente se ha detectado la presencia de A. cf. spinosum en el Atlántico Sudoccidental y la generación de dos extensas floraciones como nuevos eventos a escala global. En este estudio se analiza la distribución geográfica regional y desarrollo temporal de Azadinium así como las condiciones ecológicas de una tercera floración de A. cf. spinosum y su registro satelital. Azadinium presentó una amplia distribución que abarcó el norte de la plataforma de Argentina y sur de Uruguay, incluyendo la desembocadura del Río de la Plata, con abundancias generalmente bajas (<1x103 células L-1); un estudio en una estación de serie de tiempo mostró una marcada estacionalidad con mayores abundancias en primavera y otoño. La tercera floración (>106 células L-1) de A. cf. spinosum ocurrió en agosto-septiembre 1998 en un área coincidente con las previas, en condiciones hidrográficas propicias para su crecimiento poblacional. Esta floración comprobada in situ tuvo registros satelitales del sensor SeaWiFS que indicaron altas concentraciones de clorofila-a (máximo: 11,76 mg Clo-a m-3) dentro de una ancha y larga banda (al menos 2,5° de latitud) adyacente al talud continental y la Corriente de Malvinas.
    [Show full text]