Mites Glossary/Terminology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Epidemiology and Pathology of Raccoon-Derived Sarcoptes Mites from Urban Areas of Germany
Medical and Veterinary Entomology (2014) 28 (Suppl. 1), 98–103 Genetic epidemiology and pathology of raccoon-derived Sarcoptes mites from urban areas of Germany Z. RENTERÍA-SOLÍS1,A.M.MIN2, S. ALASAAD3,4, K. MÜLLER5, F.-U. MICHLER6, R. SCHMÄSCHKE7, U. WITTSTATT8, L. ROSSI2 andG. WIBBELT1 1Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany, 2Department of Animal Production, Epidemiology and Ecology, University of Turin, Grugliasco, Italy, 3Doñana Biological Station, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Seville, Spain, 4Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland, 5Clinic for Small Animals, Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany, 6Group for Wildlife Research, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Tharandt, Germany, 7Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany and 8Department of Animal Diseases, Zoonoses and Infection Diagnostics, Landeslabor Berlin–Brandenburg, Berlin, Germany Abstract. The raccoon, Procyon lotor (Carnivora: Procyonidae), is an invasive species that is spreading throughout Europe, in which Germany represents its core area. Here, raccoons mostly live in rural regions, but some urban populations are already established, such as in the city of Kassel, or are starting to build up, such as in Berlin. The objective of this study was to investigate Sarcoptes (Sarcoptiformes: Sarcoptidae) infections in racoons in these two urban areas and to identify the putative origin of the parasite. Parasite morphology, and gross and histopathological examinations of diseased skin tissue were consistent with Sarcoptes scabiei infection. Using nine microsatellite markers, we genotyped individual mites from five raccoons and compared them with Sarcoptes mites derived from fox, wild boar and Northern chamois, originating from Italy and Switzerland. -
Transcriptomic Analysis of the Temporal Host Response to Skin
Burgess et al. BMC Genomics 2010, 11:624 http://www.biomedcentral.com/1471-2164/11/624 RESEARCH ARTICLE Open Access Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis Stewart TG Burgess*, David Frew, Francesca Nunn, Craig A Watkins, Tom N McNeilly, Alasdair J Nisbet, John F Huntley Abstract Background: Infestation of ovine skin with the ectoparasitic mite Psoroptes ovis results in a rapid cutaneous immune response, leading to the crusted skin lesions characteristic of sheep scab. Little is known regarding the mechanisms by which such a profound inflammatory response is instigated and to identify novel vaccine and drug targets a better understanding of the host-parasite relationship is essential. The main objective of this study was to perform a combined network and pathway analysis of the in vivo skin response to infestation with P. ovis to gain a clearer understanding of the mechanisms and signalling pathways involved. Results: Infestation with P. ovis resulted in differential expression of 1,552 genes over a 24 hour time course. Clustering by peak gene expression enabled classification of genes into temporally related groupings. Network and pathway analysis of clusters identified key signalling pathways involved in the host response to infestation. The analysis implicated a number of genes with roles in allergy and inflammation, including pro-inflammatory cytokines (IL1A, IL1B, IL6, IL8 and TNF) and factors involved in immune cell activation and recruitment (SELE, SELL, SELP, ICAM1, CSF2, CSF3, CCL2 and CXCL2). The analysis also highlighted the influence of the transcription factors NF-kB and AP-1 in the early pro-inflammatory response, and demonstrated a bias towards a Th2 type immune response. -
And Wildlife, 1928-72
Bibliography of Research Publications of the U.S. Bureau of Sport Fisheries and Wildlife, 1928-72 UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF SPORT FISHERIES AND WILDLIFE RESOURCE PUBLICATION 120 BIBLIOGRAPHY OF RESEARCH PUBLICATIONS OF THE U.S. BUREAU OF SPORT FISHERIES AND WILDLIFE, 1928-72 Edited by Paul H. Eschmeyer, Division of Fishery Research Van T. Harris, Division of Wildlife Research Resource Publication 120 Published by the Bureau of Sport Fisheries and Wildlife Washington, B.C. 1974 Library of Congress Cataloging in Publication Data Eschmeyer, Paul Henry, 1916 Bibliography of research publications of the U.S. Bureau of Sport Fisheries and Wildlife, 1928-72. (Bureau of Sport Fisheries and Wildlife. Kesource publication 120) Supt. of Docs. no.: 1.49.66:120 1. Fishes Bibliography. 2. Game and game-birds Bibliography. 3. Fish-culture Bibliography. 4. Fishery management Bibliogra phy. 5. Wildlife management Bibliography. I. Harris, Van Thomas, 1915- joint author. II. United States. Bureau of Sport Fisheries and Wildlife. III. Title. IV. Series: United States Bureau of Sport Fisheries and Wildlife. Resource publication 120. S914.A3 no. 120 [Z7996.F5] 639'.9'08s [016.639*9] 74-8411 For sale by the Superintendent of Documents, U.S. Government Printing OfTie Washington, D.C. Price $2.30 Stock Number 2410-00366 BIBLIOGRAPHY OF RESEARCH PUBLICATIONS OF THE U.S. BUREAU OF SPORT FISHERIES AND WILDLIFE, 1928-72 INTRODUCTION This bibliography comprises publications in fishery and wildlife research au thored or coauthored by research scientists of the Bureau of Sport Fisheries and Wildlife and certain predecessor agencies. Separate lists, arranged alphabetically by author, are given for each of 17 fishery research and 6 wildlife research labora tories, stations, investigations, or centers. -
Sarcoptes Scabiei, Psoroptes Ovis
Mounsey et al. Parasites & Vectors 2012, 5:3 http://www.parasitesandvectors.com/content/5/1/3 RESEARCH Open Access Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus Kate E Mounsey1,2, Charlene Willis1, Stewart TG Burgess3, Deborah C Holt4, James McCarthy1,5 and Katja Fischer1* Abstract Background: The lack of genomic data available for mites limits our understanding of their biology. Evolving high- throughput sequencing technologies promise to deliver rapid advances in this area, however, estimates of genome size are initially required to ensure sufficient coverage. Methods: Quantitative real-time PCR was used to estimate the genome sizes of the burrowing ectoparasitic mite Sarcoptes scabiei, the non-burrowing ectoparasitic mite Psoroptes ovis, and the free-living house dust mite Dermatophagoides pteronyssinus. Additionally, the chromosome number of S. scabiei was determined by chromosomal spreads of embryonic cells derived from single eggs. Results: S. scabiei cells were shown to contain 17 or 18 small (< 2 μM) chromosomes, suggesting an XO sex- determination mechanism. The average estimated genome sizes of S. scabiei and P. ovis were 96 (± 7) Mb and 86 (± 2) Mb respectively, among the smallest arthropod genomes reported to date. The D. pteronyssinus genome was estimated to be larger than its parasitic counterparts, at 151 Mb in female mites and 218 Mb in male mites. Conclusions: This data provides a starting point for understanding the genetic organisation and evolution of these astigmatid mites, informing future sequencing projects. A comparitive genomic approach including these three closely related mites is likely to reveal key insights on mite biology, parasitic adaptations and immune evasion. -
Sarcoptes Scabiei] Genbank: AWM31286.1 Identical Proteins FASTA Graphics
11/5/2020 cytochrome c oxidase subunit 1, partial (mitochondrion) [Sarcoptes sca - Protein - NCBI Protein COVID-19 is an emerging, rapidly evolving situation. Get the latest public health information from CDC: https://www.coronavirus.gov . Get the latest research from NIH: https://www.nih.gov/coronavirus. GenPept cytochrome c oxidase subunit 1, partial (mitochondrion) [Sarcoptes scabiei] GenBank: AWM31286.1 Identical Proteins FASTA Graphics Go to: LOCUS AWM31286 96 aa linear INV 28-MAY-2018 DEFINITION cytochrome c oxidase subunit 1, partial (mitochondrion) [Sarcoptes scabiei]. ACCESSION AWM31286 VERSION AWM31286.1 DBSOURCE accession MH077557.1 KEYWORDS . SOURCE mitochondrion Sarcoptes scabiei ORGANISM Sarcoptes scabiei Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Chelicerata; Arachnida; Acari; Acariformes; Sarcoptiformes; Astigmata; Psoroptidia; Sarcoptoidea; Sarcoptidae; Sarcoptinae; Sarcoptes. REFERENCE 1 (residues 1 to 96) AUTHORS Lastuti,N.D.R., Rohman,A., Hastutiek,P., Desiandura,K. and Handijatno,D. TITLE Sequence analysis of cytochrome c oxidase subunit 1 gene of Sarcoptes scabiei isolated from goat and rabbit in East Java, Indonesia JOURNAL Unpublished REFERENCE 2 (residues 1 to 96) AUTHORS Lastuti,N.D.R., Rohman,A., Hastutiek,P., Desiandura,K. and Handijatno,D. TITLE Direct Submission JOURNAL Submitted (15-MAR-2018) Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya, East Java 60115, Indonesia FEATURES Location/Qualifiers source 1..96 /organism="Sarcoptes scabiei" /organelle="mitochondrion" /host="goat" /db_xref="taxon:52283" /country="Indonesia: Lamongan, East Java" Protein <1..>96 /product="cytochrome c oxidase subunit 1" Region 1..>75 /region_name="Heme_Cu_Oxidase_I" /note="Heme-copper oxidase subunit I. Heme-copper oxidases are transmembrane protein complexes in the respiratory chains of prokaryotes and mitochondria which catalyze the reduction of O2 and simultaneously pump protons across the membrane. -
Arthropod Parasites in Domestic Animals
ARTHROPOD PARASITES IN DOMESTIC ANIMALS Abbreviations KINGDOM PHYLUM CLASS ORDER CODE Metazoa Arthropoda Insecta Siphonaptera INS:Sip Mallophaga INS:Mal Anoplura INS:Ano Diptera INS:Dip Arachnida Ixodida ARA:Ixo Mesostigmata ARA:Mes Prostigmata ARA:Pro Astigmata ARA:Ast Crustacea Pentastomata CRU:Pen References Ashford, R.W. & Crewe, W. 2003. The parasites of Homo sapiens: an annotated checklist of the protozoa, helminths and arthropods for which we are home. Taylor & Francis. Taylor, M.A., Coop, R.L. & Wall, R.L. 2007. Veterinary Parasitology. 3rd edition, Blackwell Pub. HOST-PARASITE CHECKLIST Class: MAMMALIA [mammals] Subclass: EUTHERIA [placental mammals] Order: PRIMATES [prosimians and simians] Suborder: SIMIAE [monkeys, apes, man] Family: HOMINIDAE [man] Homo sapiens Linnaeus, 1758 [man] ARA:Ast Sarcoptes bovis, ectoparasite (‘milker’s itch’)(mange mite) ARA:Ast Sarcoptes equi, ectoparasite (‘cavalryman’s itch’)(mange mite) ARA:Ast Sarcoptes scabiei, skin (mange mite) ARA:Ixo Ixodes cornuatus, ectoparasite (scrub tick) ARA:Ixo Ixodes holocyclus, ectoparasite (scrub tick, paralysis tick) ARA:Ixo Ornithodoros gurneyi, ectoparasite (kangaroo tick) ARA:Pro Cheyletiella blakei, ectoparasite (mite) ARA:Pro Cheyletiella parasitivorax, ectoparasite (rabbit fur mite) ARA:Pro Demodex brevis, sebacceous glands (mange mite) ARA:Pro Demodex folliculorum, hair follicles (mange mite) ARA:Pro Trombicula sarcina, ectoparasite (black soil itch mite) INS:Ano Pediculus capitis, ectoparasite (head louse) INS:Ano Pediculus humanus, ectoparasite (body -
(Acari: Oribatida: Galumnoidea) in Japan
Taxonomic studies on oribatid mites of the genera Neoribates, Trichogalumna and Cosmogalumna (Acari: Oribatida: Title Galumnoidea) in Japan Author(s) 萩野, 航 Citation 北海道大学. 博士(理学) 甲第13140号 Issue Date 2018-03-22 DOI 10.14943/doctoral.k13140 Doc URL http://hdl.handle.net/2115/72711 Type theses (doctoral) File Information Wataru_Hagino.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Doctoral Dissertation Taxonomic studies on oribatid mites of the genera Neoribates, Trichogalumna and Cosmogalumna (Acari: Oribatida: Galumnoidea) in Japan (, , ()) Wataru HAGINO Graduate School of Science, Hokkaido University Department of Natural History Sciences 2018 March Taxonomic studies of three genera of Oribatida in Japan Table of Contents General Introduction ...................................................................................................... 1 Materials and Methods ................................................................................................ 13 Taxonomy ...................................................................................................................... 17 Superfamily Galumnoidea Jacot, 1925 ........................................................................... 17 Family Parakalummidae Grandjean, 1936 ................................................................. 17 Genus Neoribates Berlese, 1915 .............................................................................. 17 Neoribates incisus Hagino, Shimano, and Aoki, 2016 ........................................ -
The External Parasites of Birds: a Review
THE EXTERNAL PARASITES OF BIRDS: A REVIEW BY ELIZABETH M. BOYD Birds may harbor a great variety and numher of ectoparasites. Among the insects are biting lice (Mallophaga), fleas (Siphonaptera), and such Diptera as hippohoscid flies (Hippohoscidae) and the very transitory mosquitoes (Culicidae) and black flies (Simuliidae), which are rarely if every caught on animals since they fly off as soon as they have completed their blood-meal. One may also find, in birds ’ nests, bugs of the hemipterous family Cimicidae, and parasitic dipterous larvae that attack nestlings. Arachnida infesting birds comprise the hard ticks (Ixodidae), soft ticks (Argasidae), and certain mites. Most ectoparasites are blood-suckers; only the Ischnocera lice and some species of mites subsist on skin components. The distribution of ectoparasites on the host varies with the parasite concerned. Some show no habitat preference while others tend to confine themselves to, or even are restricted to, definite areas on the body. A list of 198 external parasites for 2.55 species and/or subspecies of birds east of the Mississippi has been compiled by Peters (1936) from files of the Bureau of Entomology and Plant Quarantine between 1928 and 1935. Fleas and dipterous larvae were omitted from this list. According to Peters, it is possible to collect three species of lice, one or two hippoboscids, and several types of mites on a single bird. He records as many as 15 species of ectoparasites each from the Bob-white (Co&us uirginianus), Song Sparrow (Melospiza melodia), and Robin (Turdus migratorius). The lice and plumicolous mites, however, are typically the most abundant forms present on avian hosts. -
WAAVP2019-Abstract-Book.Pdf
27th Conference of the World Association for the Advancement of Veterinary Parasitology JULY 7 – 11, 2019 | MADISON, WI, USA Dedicated to the legacy of Professor Arlie C. Todd Sifting and Winnowing the Evidence in Veterinary Parasitology @WAAVP2019 @WAAVP_2019 Abstract Book Joint meeting with the 64th American Association of Veterinary Parasitologists Annual Meeting & the 63rd Annual Livestock Insect Workers Conference WAAVP2019 27th Conference of the World Association for the Advancements of Veterinary Parasitology 64th American Association of Veterinary Parasitologists Annual Meeting 1 63rd Annualwww.WAAVP2019.com Livestock Insect Workers Conference #WAAVP2019 Table of Contents Keynote Presentation 84-89 OA22 Molecular Tools II 89-92 OA23 Leishmania 4 Keynote Presentation Demystifying 92-97 OA24 Nematode Molecular Tools, One Health: Sifting and Winnowing Resistance II the Role of Veterinary Parasitology 97-101 OA25 IAFWP Symposium 101-104 OA26 Canine Helminths II 104-108 OA27 Epidemiology Plenary Lectures 108-111 OA28 Alternative Treatments for Parasites in Ruminants I 6-7 PL1.0 Evolving Approaches to Drug 111-113 OA29 Unusual Protozoa Discovery 114-116 OA30 IAFWP Symposium 8-9 PL2.0 Genes and Genomics in 116-118 OA31 Anthelmintic Resistance in Parasite Control Ruminants 10-11 PL3.0 Leishmaniasis, Leishvet and 119-122 OA32 Avian Parasites One Health 122-125 OA33 Equine Cyathostomes I 12-13 PL4.0 Veterinary Entomology: 125-128 OA34 Flies and Fly Control in Outbreak and Advancements Ruminants 128-131 OA35 Ruminant Trematodes I Oral Sessions -
Hotspots of Mite New Species Discovery: Sarcoptiformes (2013–2015)
Zootaxa 4208 (2): 101–126 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4208.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:47690FBF-B745-4A65-8887-AADFF1189719 Hotspots of mite new species discovery: Sarcoptiformes (2013–2015) GUANG-YUN LI1 & ZHI-QIANG ZHANG1,2 1 School of Biological Sciences, the University of Auckland, Auckland, New Zealand 2 Landcare Research, 231 Morrin Road, Auckland, New Zealand; corresponding author; email: [email protected] Abstract A list of of type localities and depositories of new species of the mite order Sarciptiformes published in two journals (Zootaxa and Systematic & Applied Acarology) during 2013–2015 is presented in this paper, and trends and patterns of new species are summarised. The 242 new species are distributed unevenly among 50 families, with 62% of the total from the top 10 families. Geographically, these species are distributed unevenly among 39 countries. Most new species (72%) are from the top 10 countries, whereas 61% of the countries have only 1–3 new species each. Four of the top 10 countries are from Asia (Vietnam, China, India and The Philippines). Key words: Acari, Sarcoptiformes, new species, distribution, type locality, type depository Introduction This paper provides a list of the type localities and depositories of new species of the order Sarciptiformes (Acari: Acariformes) published in two journals (Zootaxa and Systematic & Applied Acarology (SAA)) during 2013–2015 and a summary of trends and patterns of these new species. It is a continuation of a previous paper (Liu et al. -
Sarcoptes Scabiei: Past, Present and Future Larry G
Arlian and Morgan Parasites & Vectors (2017) 10:297 DOI 10.1186/s13071-017-2234-1 REVIEW Open Access A review of Sarcoptes scabiei: past, present and future Larry G. Arlian* and Marjorie S. Morgan Abstract The disease scabies is one of the earliest diseases of humans for which the cause was known. It is caused by the mite, Sarcoptes scabiei,thatburrowsintheepidermisoftheskinofhumans and many other mammals. This mite was previously known as Acarus scabiei DeGeer, 1778 before the genus Sarcoptes was established (Latreille 1802) and it became S. scabiei. Research during the last 40 years has tremendously increased insight into the mite’s biology, parasite-host interactions, and the mechanisms it uses to evade the host’s defenses. This review highlights some of the major advancements of our knowledge of the mite’s biology, genome, proteome, and immunomodulating abilities all of which provide a basis for control of the disease. Advances toward the development of a diagnostic blood test to detect a scabies infection and a vaccine to protect susceptible populations from becoming infected, or at least limiting the transmission of the disease, are also presented. Keywords: Sarcoptes scabiei, Biology, Host-seeking behavior, Infectivity, Nutrition, Host-parasite interaction, Immune modulation, Diagnostic test, Vaccine Background Classification of scabies mites The ancestral origin of the scabies mite, Sarcoptes scabiei, Sarcoptes scabiei was initially placed in the genus Acarus that parasitizes humans and many families of mammals is and named Acarus scabiei DeGeer, 1778. As mite no- not known. Likewise, how long ago the coevolution of S. menclature has evolved, so has the classification of S. -
A New Picorna-Like Virus in Varroa Mites As Well As Honey Bees
Varroa destructor virus 1: A new picorna-like virus in Varroa mites as well as honey bees Juliette R. Ongus Promotor: Prof. Dr. J. M. Vlak Persoonlijk Hoogleraar bij de Leerstoelgroep Virologie Co-promotoren: Dr. M. M. van Oers Universitair Docent bij de Leerstoelgroep Virologie Dr. D. Peters Universitair Hoofddocent bij de Leerstoelgroep Virologie Promotiecommissie: Prof. Dr. M. Dicke (Wageningen Universiteit) Dr. F. J. M. van Kuppeveld (Radboud Universiteit Nijmegen) Prof. Dr. C. W. A. Pleij (Rijks Universiteit Leiden) Prof. Dr. D. L. Cox-Foster (Pennsylvania State University, U.S.A.) Dit onderzoek is uitgevoerd binnen de onderzoekschool Production Ecology and Resource Conservation. II Varroa destructor virus 1: A new picorna-like virus in Varroa mites as well as honey bees Juliette R. Ongus Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. dr. M. J. Kropff in het openbaar te verdedigen op woensdag 12 april 2006 des namiddags te half twee in de Aula III Ongus, J.R. (2006) Varroa destructor virus 1: A new picorna-like virus in Varroa mites as well as honey bees Thesis Wageningen University – with references – with summary in Dutch ISBN 90-8504-363-8 Subject headings: Varroa destructor , Apis mellifera , picorna-like viruses, iflaviruses, genomics, replication, detection, Varroa destructor virus-1, Deformed wing virus IV Contents Chapter 1 General introduction 1 Chapter 2 Detection and localisation of picorna-like virus particles in tissues of Varroa destructor , an