Lời Cam Đoan

Total Page:16

File Type:pdf, Size:1020Kb

Lời Cam Đoan i LỜI CAM ĐOAN Tôi xin cam đoan rằng: số liệu và kết quả nghiên cứu trong luận văn là trung thực và chưa từng được sử dụng để bảo vệ một học vị nào. Tôi xin cam đoan rằng mọi sự giúp đỡ cho việc thực hiện luận văn này đã được cảm ơn và các thông tin trích dẫn trong luận văn đều đã được ghi rõ nguồn gốc. Thừa Thiên Huế, ngày tháng 7 năm 2016 Tác giả Nguyễn Văn Sỹ ii LỜI CẢM ƠN Để hoàn thành luận văn này tôi xin chân thành cảm ơn: Tiến sĩ Nguyễn Ngọc Phước đã tận tình hướng dẫn, tạo mọi điều kiện cho em học tập, nghiên cứu và hoàn thành luận văn. Các thầy giáo, cô giáo Khoa Thủy sản – Trường Đại học Nông Lâm Huế đã giúp đỡ và truyền dạy cho em những kiến thức quý báu trong suốt thời gian học tập tại trường. Ban giám đốc Trung tâm giống thủy sản Quảng Bình, các anh chị, các bạn đồng nghiệp đã tạo mọi điều kiện thuận lợi cho tôi trong suốt thời gian học tập và nghiên cứu vừa qua. Gia đình và bạn bè đã động viên, giúp đỡ tôi trong quá trình học tập cũng như thực hiện đề tài. Thừa Thiên Huế, ngày tháng 7 năm 2016 Tác giả Nguyễn Văn Sỹ iii TÓM TẮT Vi khuẩn quang hợp (Phototropic bacteria) là một nhóm vi sinh vật có khả năng phân giải NH3 và H2S dưới tác dụng ánh sáng mặt trời, trong điều kiện kỵ khí nên có thể sử dụng để xử lý ô nhiễm trong các ao nuôi tôm. Nghiên cứu này đã phân lập được 8 chủng vi khuẩn quang hợp từ bùn các ao nuôi tôm thẻ chân trắng tại tỉnh Thừa Thiên Huế. Sau quá trình nuôi cấy trên môi trường DSMZ 27 lỏng, trong điều kiện kỵ khí, chiếu sáng liên tục đã lựa chọn được 2 chủng có mức độ tích lũy sinh khối cao nhất, được ký hiệu DL11, PH21 để tiến hành nghiên cứu đặc điểm sinh hoá, sinh lý và khả năng chuyển hoá lưu huỳnh. Quan sát đặc điểm hình thái, sinh lý sinh hoá của hai chủng vi khuẩn quang hợp cho thấy khuẩn lạc của chủng DL11 có màu cam nâu và khuẩn lạc chủng PH21 có màu vàng. Cả hai chủng PH21 và DL11 đều là vi khuẩn Gram (-), có dạng hình que và phản ứng âm tính (-) với oxidase. Chủng vi khuẩn DL11 có khả năng lên men đường sucrose, chuyển hoá tốt với nguồn sulfide. Chủng PH21 có thể sử dụng các nguồn cacbon khác nhau như citrate, glucose, succose. Kết quả định danh qua phân tích gen mã hóa 16S– rRNA của 2 chủng PH21 và DL11 có thể khẳng định: chủng DL11 là Allochromatium sp, chủng PH21 là Marichromatium sp. Khoảng nồng độ muối của 2 chủng Allochromatium sp và Marichromatium sp tương đồng nhau: sinh trưởng và phát triển tốt ở nồng độ 10‰ - 20‰. Nồng độ pH tối ưu cho 2 chủng này phát triển trong khoảng 6 – 7. Việc bổ sung nồng độ cao nấm men vào môi trường nuôi cấy kích thích khả năng sinh trưởng của 2 chủng Allochromatium sp và Marichromatium sp, điều này thể hiện ở nồng độ cao nấm men càng cao thì tăng sinh của vi khuẩn càng cao. Ở điều kiện chiếu sáng, nuôi kị khí, cả 2 chủng đều có khả năng loại bỏ sulfide cao. Các chủng vi khuẩn quang hợp được tuyển chọn hoạt động tốt nhất ở nồng độ sulfide từ 10 - 20 mg/L. Kết quả nghiên cứu cho thấy cả hai chủng PH21 và DL11 có khả năng làm giảm hàm lượng khí độc H2S trong ao nuôi tôm. iv MỤC LỤC LỜI CAM ĐOAN ........................................................................................................ i LỜI CẢM ƠN ............................................................................................................. ii TÓM TẮT .................................................................................................................. iii MỤC LỤC ................................................................................................................. iv DANH MỤC CÁC KÝ HIỆU, CHỬ VIẾT TẮT..................................................... vii DANH MỤC CÁC BẢNG ...................................................................................... viii DANH MỤC CÁC HÌNH VẺ, ĐỒ THỊ .................................................................... ix MỞ ĐẦU .................................................................................................................... 1 1. Đặt vấn đề ............................................................................................................... 1 2. Mục đích của đề tài ................................................................................................. 2 3. Ý nghĩa khoa học và thực tiễn ................................................................................ 2 3.1 Ý nghĩa khoa học .................................................................................................. 2 3.2 Ý nghĩa thực tiễn ................................................................................................... 3 CHƯƠNG 1. TỔNG QUAN CÁC VẤN ĐỀ NGHIÊN CỨU ................................... 4 1.1. Tổng quan về vi khuẩn quang hợp ....................................................................... 4 1.1.1. Vi khuẩn quang hợp tía ..................................................................................... 4 1.1.2. Ảnh hưởng của các nhân tố lý hóa đến sinh trưởng và phát triển của vi khuẩn tía ... 10 1.2. Tổng quan về tôm thẻ chân trắng (Litopenaeus vannamei) ............................... 11 1.2.1. Hệ thống phân loại, phân bố ........................................................................... 11 1.2.2. Tập tính sống, khả năng thích nghi với môi trường sống ............................... 13 1.2.3. Đặc điểm dinh dưỡng ...................................................................................... 14 1.2.4. Đặc điểm sinh trưởng ...................................................................................... 14 1.2.5. Đặc điểm sinh sản ........................................................................................... 16 1.3. Tình hình nuôi tôm thẻ chân trắng trên thế giới và tại Việt Nam ...................... 17 1.3.1. Tình hình nuôi tôm thẻ chân trắng trên thế giới ............................................. 17 1.3.2. Tình hình nuôi tôm thẻ chân trắng tại Viêt Nam ............................................ 19 v 1.3.3. Tình hình nuôi tôm thẻ chân trắng tại tỉnh Thừa Thiên Huế .......................... 22 1.4. Vấn đề ô nhiểm môi trường nước trong hoạt động thủy sản ............................. 23 1.4.1. Ô nhiểm môi trường nước do hoạt động chế biến thủy sản............................ 24 1.4.2. Ô nhiễm môi trường biển, ven bờ do các hoạt động hàng hải ........................ 25 1.4.3. Ô nhiểm nguồn nước do tác động của nuôi trồng thủy sản ............................ 25 1.4.4. Ô nhiễm do việc sử dụng thuốc và các hóa chất trong nuôi tôm .................... 27 1.5. Một số nghiên cứu về vi khuẩn quang hợp và ứng dụng của chúng trong nuôi trồng thủy sản ............................................................................................................ 28 1.6. Một số ứng dụng khác của vi khuẩn quang hợp tía ........................................... 30 1.6.1. Sản xuất protein đơn bào ................................................................................ 30 1.6.2. Sản xuất ubiquinone........................................................................................ 30 1.6.3. Sản xuất hoocmon thực vật ............................................................................. 31 1.6.4. Sản xuất các chất kháng sinh .......................................................................... 31 1.6.5. Sử dụng vi khuẩn quang hợp tía trong xử lý nước thải .................................. 31 1.7. Ảnh hưởng của H2S trong nuôi trồng thủy sản .................................................. 32 1.7.1. Bản chất của khí H2S ...................................................................................... 32 1.7.2. Tác hại của khí H2S ........................................................................................ 32 1.8. Giải pháp giảm ô nhiễm môi trường bằng chế phẩm vi sinh ............................. 33 1.8.1. Phòng ngừa dịch bệnh..................................................................................... 33 1.8.2. Kích thích tôm phát triển ................................................................................ 34 1.8.3. Ngăn ngừa, làm giảm thiểu ô nhiễm và chất độc trong ao ............................. 34 CHƯƠNG 2. NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU .......................... 36 2.1. Phạm vi, đối tượng nghiên cứu .......................................................................... 36 2.1.1. Phạm vi nghiên cứu ........................................................................................ 36 2.1.2. Đối tượng nghiên cứu ..................................................................................... 36 2.2. Môi trường hóa chất ........................................................................................... 36 2.3. Phương pháp nghiên cứu và theo dõi các chỉ tiêu ............................................. 37 vi 2.3.1. Phương pháp thu mẩu bùn đáy ao nuôi tôm ................................................... 37 2.3.2. Phương pháp pha loảng mẩu nuôi cấy vi khuẩn ............................................. 38 2.3.3. Nuôi cấy vi khuẩn ........................................................................................... 38 2.3.4. Phương pháp làm giàu và phân lập vi khuẩn quang hợp tía ........................... 39 2.3.5. Quan sát hình thái tế bào ................................................................................ 40 2.3.6. Xác định khả năng sinh trưởng ....................................................................... 40 2.3.7. Đánh giá ảnh hưởng của pH và nồng độ NaCl lên sự phát triển của vi khuẩn quang hợp. ................................................................................................................
Recommended publications
  • The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
    life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment.
    [Show full text]
  • Tesis 23Dez A
    A multi-gene approach in the systematics of the phototrophic purple sulfur bacteria genera Marichromatium and Allochromatium with description of the new species Allochromatium humboldtianum and the new biotype Marichromatium gracile biotype thermosulfidiphilum. Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Wilbert Serrano aus Lima-Peru Bremen 2009 Die Untersuchungen zur vorlegelegten Doktorarbeit wurden in der Zeit von Juli 2005 bis Juni 2009 am UFT der Universität Bremen und am Max Planck Institut für Marine Mikrobiologie in Bremen durchgeführt. 1. Gutachter: Prof. Dr. Ulrich Fischer 2. Gutachter: Prof. Dr. Rudolf Amann Tag des Promotionskolloquiums: 23. Juli 2009. Für meine Eltern Table of contents Table of contents …………………………….. .....................................................3 List of abbreviations………………………………………………………………… ..5 Summary.……………………………………………………………………………….7 Zusammenfassung .............................................................................................9 Chapter 1 Introduction .......................................................................................................11 1. A general overview of bacterial sytematics ..................................................11 2. A multi-gene taxonomy in prokaryotes ........................................................17 3. Photosynthetic bacteria …………………………………………………….….20 3.1. Antenna complex………..…………………………………..………….….24 3.2. Reaction center
    [Show full text]
  • A Novel Bacterial Thiosulfate Oxidation Pathway Provides a New Clue About the Formation of Zero-Valent Sulfur in Deep Sea
    The ISME Journal (2020) 14:2261–2274 https://doi.org/10.1038/s41396-020-0684-5 ARTICLE A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea 1,2,3,4 1,2,4 3,4,5 1,2,3,4 4,5 1,2,4 Jing Zhang ● Rui Liu ● Shichuan Xi ● Ruining Cai ● Xin Zhang ● Chaomin Sun Received: 18 December 2019 / Revised: 6 May 2020 / Accepted: 12 May 2020 / Published online: 26 May 2020 © The Author(s) 2020. This article is published with open access Abstract Zero-valent sulfur (ZVS) has been shown to be a major sulfur intermediate in the deep-sea cold seep of the South China Sea based on our previous work, however, the microbial contribution to the formation of ZVS in cold seep has remained unclear. Here, we describe a novel thiosulfate oxidation pathway discovered in the deep-sea cold seep bacterium Erythrobacter flavus 21–3, which provides a new clue about the formation of ZVS. Electronic microscopy, energy-dispersive, and Raman spectra were used to confirm that E. flavus 21–3 effectively converts thiosulfate to ZVS. We next used a combined proteomic and genetic method to identify thiosulfate dehydrogenase (TsdA) and thiosulfohydrolase (SoxB) playing key roles in the conversion of thiosulfate to ZVS. Stoichiometric results of different sulfur intermediates further clarify the function of TsdA − – – – − 1234567890();,: 1234567890();,: in converting thiosulfate to tetrathionate ( O3S S S SO3 ), SoxB in liberating sulfone from tetrathionate to form ZVS and sulfur dioxygenases (SdoA/SdoB) in oxidizing ZVS to sulfite under some conditions.
    [Show full text]
  • Metabolomic Profiling of the Purple Sulfur Bacterium Allochromatium
    Metabolomics (2014) 10:1094–1112 DOI 10.1007/s11306-014-0649-7 ORIGINAL ARTICLE Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate Thomas Weissgerber • Mutsumi Watanabe • Rainer Hoefgen • Christiane Dahl Received: 20 December 2013 / Accepted: 5 March 2014 / Published online: 22 May 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Environmental fluctuations require rapid Concentrations of the metabolite classes ‘‘amino acids’’ adjustment of the physiology of bacteria. Anoxygenic and ‘‘organic acids’’ (i.e., pyruvate and its derivatives) phototrophic purple sulfur bacteria, like Allochromatium were higher on malate than on reduced sulfur compounds vinosum, thrive in environments that are characterized by by at least 20 and 50 %, respectively. Similar observations steep gradients of important nutrients for these organisms, were made for metabolites assigned to anabolism of glu- i.e., reduced sulfur compounds, light, oxygen and carbon cose. Growth on sulfur compounds led to enhanced con- sources. Changing conditions necessitate changes on every centrations of sulfur containing metabolites, while other level of the underlying cellular and molecular network. cell constituents remained unaffected or decreased. Inca- Thus far, two global analyses of A. vinosum responses to pability of sulfur globule oxidation of the mutant strain was changes of nutritional conditions have been performed and reflected by a low energy level of the cell and consequently these focused on gene expression and protein levels. Here, reduced levels of amino acids (40 %) and sugars (65 %). we provide a study on metabolite composition and relate it with transcriptional and proteomic profiling data to provide Keywords Allochromatium vinosum Á Metabolomic a more comprehensive insight on the systems level profiling Á Purple sulfur bacteria Á Sulfur oxidation Á adjustment to available nutrients.
    [Show full text]
  • Phaeobacterium Nitratireducens Gen. Nov., Sp. Nov., a Phototrophic
    International Journal of Systematic and Evolutionary Microbiology (2015), 65, 2357–2364 DOI 10.1099/ijs.0.000263 Phaeobacterium nitratireducens gen. nov., sp. nov., a phototrophic gammaproteobacterium isolated from a mangrove forest sediment sample Nupur,1 Naga Radha Srinivas Tanuku,2 Takaichi Shinichi3 and Anil Kumar Pinnaka1 Correspondence 1Microbial Type Culture Collection and Gene Bank, CSIR – Institute of Microbial Technology, Anil Kumar Pinnaka Sector 39A, Chandigarh – 160 036, India [email protected] 2CSIR – National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam – 530017, India 3Nippon Medical School, Department of Biology, Kosugi-cho, Nakahara, Kawasaki 211-0063, Japan A novel brown-coloured, Gram-negative-staining, rod-shaped, motile, phototrophic, purple sulfur bacterium, designated strain AK40T, was isolated in pure culture from a sediment sample collected from Coringa mangrove forest, India. Strain AK40T contained bacteriochlorophyll a and carotenoids of the rhodopin series as major photosynthetic pigments. Strain AK40T was able to grow photoheterotrophically and could utilize a number of organic substrates. It was unable to grow photoautotrophically and did not utilize sulfide or thiosulfate as electron donors. Thiamine and riboflavin were required for growth. The dominant fatty acids were C12 : 0,C16 : 0, C18 : 1v7c and summed feature 3 (C16 : 1v7c and/or iso-C15 : 0 2-OH). The polar lipid profile of strain AK40T was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and eight unidentified lipids. Q-10 was the predominant respiratory quinone. The DNA G+C content of strain AK40T was 65.5 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represented a member of the family Chromatiaceae within the class Gammaproteobacteria.
    [Show full text]
  • Sulfite Oxidation in the Purple Sulfur Bacterium Allochromatium Vinosum: Identification of Soeabc As a Major Player and Relevance of Soxyz in the Process
    Microbiology (2013), 159, 2626–2638 DOI 10.1099/mic.0.071019-0 Editor’s Choice Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: identification of SoeABC as a major player and relevance of SoxYZ in the process Christiane Dahl, Bettina Franz,3 Daniela Hensen,4 Anne Kesselheim and Renate Zigann Correspondence Institut fu¨r Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universita¨t Bonn, Christiane Dahl Meckenheimer Allee 168, 53115 Bonn, Germany [email protected] In phototrophic sulfur bacteria, sulfite is a well-established intermediate during reduced sulfur compound oxidation. Sulfite is generated in the cytoplasm by the reverse-acting dissimilatory sulfite reductase DsrAB. Many purple sulfur bacteria can even use externally available sulfite as a photosynthetic electron donor. Nevertheless, the exact mode of sulfite oxidation in these organisms is a long-standing enigma. Indirect oxidation in the cytoplasm via adenosine-59- phosphosulfate (APS) catalysed by APS reductase and ATP sulfurylase is neither generally present nor essential. The inhibition of sulfite oxidation by tungstate in the model organism Allochromatium vinosum indicated the involvement of a molybdoenzyme, but homologues of the periplasmic molybdopterin-containing SorAB or SorT sulfite dehydrogenases are not encoded in genome-sequenced purple or green sulfur bacteria. However, genes for a membrane-bound polysulfide reductase-like iron–sulfur molybdoprotein (SoeABC) are universally present. The catalytic subunit of the protein is predicted to be oriented towards the cytoplasm. We compared the sulfide- and sulfite-oxidizing capabilities of A. vinosum WT with single mutants deficient in SoeABC or APS reductase and the respective double mutant, and were thus able to prove that SoeABC is the major sulfite-oxidizing enzyme in A.
    [Show full text]
  • Thiohalocapsa Marina Sp. Nov., from an Indian Marine Aquaculture Pond
    International Journal of Systematic and Evolutionary Microbiology (2009), 59, 2333–2338 DOI 10.1099/ijs.0.003053-0 Thiohalocapsa marina sp. nov., from an Indian marine aquaculture pond P. Anil Kumar,1 T. N. R. Srinivas,1 V. Thiel,2 M. Tank,2 Ch. Sasikala,1 Ch. V. Ramana3 and J. F. Imhoff2 Correspondence 1Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, Ch. Sasikala J. N. T. University, Kukatpally, Hyderabad 500 085, India [email protected] or 2Leibniz-Institut fu¨r Meereswissenschaften IFM-GEOMAR, Marine Mikrobiologie, Du¨sternbrooker [email protected] Weg 20, D-24105 Kiel, Germany 3Department of Plant Sciences, School of Life Sciences, University of Hyderabad, PO Central University, Hyderabad 500 046, India A spherical-shaped, phototrophic, purple sulfur bacterium was isolated in pure culture from anoxic sediment in a marine aquaculture pond near Bheemli (India). Strain JA142T is Gram-negative and non-motile. It has a requirement for NaCl (optimum of 2 % and maximum of 6 % w/v NaCl). Intracellular photosynthetic membranes are of the vesicular type. In vivo absorption spectra indicate the presence of bacteriochlorophyll a and carotenoids of the okenone series as photosynthetic pigments. Phylogenetic analysis on the basis of 16S rRNA gene sequences showed that strain JA142T is related to halophilic purple sulfur bacteria of the genera Thiohalocapsa and Halochromatium, with the highest sequence similarity to Thiohalocapsa halophila DSM 6210T (97.5 %). Morphological and physiological characteristics differentiate strain JA142T from other species of the genera Halochromatium and Thiohalocapsa. Strain JA142T is sufficiently different from Thiohalocapsa halophila based on 16S rRNA gene sequence analysis and morphological and physiological characteristics to allow the proposal of a novel species, Thiohalocapsa marina sp.
    [Show full text]
  • Allochromatium Humboldtianum Sp. Nov., Isolated from Soft Coastal Sediments
    International Journal of Systematic and Evolutionary Microbiology (2015), 65, 2980–2985 DOI 10.1099/ijs.0.000364 Allochromatium humboldtianum sp. nov., isolated from soft coastal sediments Wilbert Serrano,1,2 Jan Schru¨bbers,13 Rudolf Amann2 and Ulrich Fischer1,2 Correspondence 1Zentrum fu¨r Umweltforschung und nachhaltige Technologien, Fachbereich 2 Biologie/Chemie, Wilbert Serrano Abteilung Marine Mikrobiologie, Universita¨t Bremen, D-28359 Bremen, Germany [email protected] 2Max Planck Institute for Marine Microbiology, Celsiusstraße 1, D-28359 Bremen, Germany Ulrich Fischer ufi[email protected] A novel purple sulfur bacterium, strain AX1YPET, was isolated from marine sediments sampled at 47 m depth in Callao Bay, Peru. Strain AX1YPE grew anaerobically, synthesizing bacteriochlorophyll a and carotenoid pigments of the spirilloxanthin series. Cells were Gram- stain-negative rods and actively motile by a polar flagellum. Strain AX1YPE was able to grow photolithoautotrophically with sulfide and thiosulfate as electron donors. This new phototrophic organism utilized ammonium salt, N2, urea and glutamate as nitrogen sources. Strain AX1YPE had a DNA base composition of 63.9 mol% G+C. Analysis of the 16S rRNA gene sequence indicated that strain AX1YPE clusters in a separate branch within the genus Allochromatium of the family Chromatiaceae. Strain AX1YPE showed 16S rRNA gene sequence similarities of 98.2 % with Allochromatium vinosum DSM 180T and Allochromatium minutissimum DSM 1376T, 98.1 % with Allochromatium phaeobacterium JA144T, 97.3 % with Allochromatium renukae DSM 18713T and 96.8 % with Allochromatium warmingii DSM 173T. DNA–DNA hybridization values to the type strains of its closest relatives, A. vinosum and A. minutissimum, T were 59 and 64 %, respectively.
    [Show full text]
  • Phylogenetic Relationships Among the Chromatiaceae, Their
    International Journal of Systematic Bacteriology (1998), 48, 11 29-1 143 Printed in Great Britain Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatiurn , Thiococcus, Thiohalocapsa and Thermochromatium Johannes F. Imhoff, Jorg Wing and Ralf Petri Author for correspondence: Johannes F. Imhoff. Tel: +49 431 697 3850. Fax: +49 431 565876. e-mail : jimhoff(n ifm.uni-kiel.de lnstitut fur Meereskunde Sequences of the 16s rDNA from all available type strains of Chromatium an der Universitat Kiel, species have been determined and were compared to those of other Abteilung Marine Mikrobiologie, Chromatiaceae, a few selected Ectothiorhodospiraceae and Escherichia coli. Dusternbrooker Weg 20, The clear separation of Ectothiorhodospiraceae and Chromatiaceae is D-24105 Kiel, Germany confirmed. Most significantly the sequence comparison revealed a genetic divergence between Chromatium species originated from freshwater sources and those of truly marine and halophilic nature. Major phylogenetic branches of the Chromatiaceae contain (i)marine and halophilic species, (ii)freshwater Chromatium species together with Thiocystis species and (iii)species of the genera Thiocapsa and Amoebobacter as recently reclassified [Guyoneaud, R. & 6 other authors (1998). lnt J Syst Bacteriol48, 957-9641, namely Thiocapsa roseopersicina, Thiocapsa pendens (formerly Amoebobacter pendens), Thiocapsa rosea (formerly Amoebobacter roseus), Amoebobacter purpureus and Thiolamprovum pedioforme (formerly Amoebobacter pedioformis). The genetic relationships between the species and groups are not in congruence with the current classification of the Chromatiaceae and a reclassification is proposed on the basis of 16s rDNA sequence similarity supported by selected phenotypic properties. The proposed changes include the transfers of Chromatium minus and Chromatium violascens to Thiocystis minor comb.
    [Show full text]
  • Microbial Evolution and Systematics
    16 Microbial Evolution and Systematics Fluorescent dyes bound to I Early Earth and the Origin specific nucleic acid probes and Diversification of Life 447 can differentiate cells in 16.1 Formation and Early History of Earth 447 natural samples that are 16.2 Origin of Cellular Life 448 morphologically similar 16.3 Microbial Diversification: Consequences for Earth’s Biosphere 451 but phylogenetically 16.4 Endosymbiotic Origin of Eukaryotes 452 distinct. II Microbial Evolution 454 16.5 The Evolutionary Process 454 16.6 Evolutionary Analysis: Theoretical Aspects 455 16.7 Evolutionary Analysis: Analytical Methods 457 16.8 Microbial Phylogeny 459 16.9 Applications of SSU rRNA Phylogenetic Methods 462 III Microbial Systematics 463 16.10 Phenotypic Analysis: Fatty Acid Methyl Esters (FAME) 463 16.11 Genotypic Analyses 465 16.12 The Species Concept in Microbiology 467 16.13 Classification and Nomenclature 470 CHAPTER 16 • Microbial Evolution and Systematics 447 unifying theme in all of biology is evolution. By deploying asteroids and other objects, are thought to have persisted for Aits major tools of descent through modification and selection over 500 million years. Water on Earth originated from innumer- of the fittest, evolution has affected all life on Earth, from the first able collisions with icy comets and asteroids and from volcanic self-replicating entities, be they cells or otherwise, to the modern outgassing of the planet’s interior. At this time, due to the heat, cells we see today. Since its origin, Earth has undergone a contin- water would have been present only as water vapor. No rocks uous process of physical and geological change, eventually estab- dating to the origin of planet Earth have yet been discovered, pre- lishing conditions conducive to the origin of life.
    [Show full text]
  • Purple Sulfur Bacteria Dominate Microbial Community in Brazilian Limestone Cave
    microorganisms Article Purple Sulfur Bacteria Dominate Microbial Community in Brazilian Limestone Cave Eric L. S. Marques 1,* , João C. T. Dias 1, Eduardo Gross 2 , Adriana B. de Cerqueira e Silva 1, Suzana R. de Moura 1 and Rachel P. Rezende 1,* 1 Department of Biological Sciences, State University of Santa Cruz, Rod. Jorge Amado, Km 16, Ilheus CEP: 45662-900, Bahia, Brazil; [email protected] (J.C.T.D.); [email protected] (A.B.d.C.eS.); [email protected] (S.R.d.M.) 2 Department of Agricultural and Environmental Science, State University of Santa Cruz, Rod. Jorge Amado, Km 16, Ilheus CEP: 45662-900, Bahia, Brazil; [email protected] * Correspondence: [email protected] (E.L.S.M.); [email protected] (R.P.R.); Tel.: +55-73-3680-5435 (E.L.S.M.); +55-73-3680-5441 (R.P.R.) Received: 30 November 2018; Accepted: 13 January 2019; Published: 23 January 2019 Abstract: The mineralogical composition of caves makes the environment ideal for inhabitation by microbes. However, the bacterial diversity in the cave ecosystem remains largely unexplored. In this paper, we described the bacterial community in an oxic chamber of the Sopradeira cave, an iron-rich limestone cave, in the semiarid region of Northeast Brazil. The microbial population in the cave samples was studied by 16S rDNA next-generation sequencing. A type of purple sulfur bacteria (PSB), Chromatiales, was found to be the most abundant in the sediment (57%), gravel-like (73%), and rock samples (96%). The predominant PSB detected were Ectothiorhodospiraceae, Chromatiaceae, and Woeseiaceae.
    [Show full text]
  • Characterization of Anoxygenic Phototrophs That Grow Using Infrared Radiation (>800 Nm) (Sampling Location: Little Sippewissett Marsh, Woods Hole, Ma)
    Characterization Of Anoxygenic Phototrophs That Grow Using Infrared Radiation (>800 Nm) (Sampling Location: Little Sippewissett Marsh, Woods Hole, Ma) Martina Cappelletti, PhD University of Bologna, e-mail: [email protected] Microbial Diversity Course Marine Biological Laboratory, June-July 2011 1 ABSTRACT In this study I performed two enrichment cultures for purple bacteria from a mat soil sample collected in Little Sippewissett marsh. I obtained two mixed culture that were named LWS_880 and LWS_960 as they could grow absorbing light at 880 nm and 960 nm. The molecular analysis of the culturable bacteria obtained by using two different isolation techniques was performed with two primer sets, one specific for the 16S rDNA and the other for the pufM gene. As a result, culturable bacteria in LWS_880 were identified as purple non- sulphur bacteria belonging to the following genera Rhodobacter, Rhodospirillum, Rhodovulum and Rhodobium. The culturable bacteria in LW_960 were shown to belong to the genera Thioroducoccus, Allochromatium, Marichromatium of purple sulfur bacteria and to the purple non-sulfur Rhodovolum genus. CARD-FISH hybridization technique allowed measuring the relative abundance of each group of Proteobacteria in each microbial community pointing out interesting differences between the two samples. Further biochemical assay identified the bacterioclorophyll present in each consortium and chemotaxis activity was detected in the sample LWS_960. INTRODUCTION Most of the fossil fuels utilized as energy source on earth is the result of photosynthesis process occurred many hundreds of millions of years ago. Moreover, the evolution of oxygenic photosynthesis resulted in the oxygenation of Earth’s atmosphere creating a radical new environment for all life.
    [Show full text]