Chapter 52 – Humerus and Elbow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Appendicular Skeleton Appendicular Skeleton
THE SKELETAL SYSTEM: THE APPENDICULAR SKELETON APPENDICULAR SKELETON The primary function is movement It includes bones of the upper and lower limbs Girdles attach the limbs to the axial skeleton SKELETON OF THE UPPER LIMB Each upper limb has 32 bones Two separate regions 1. The pectoral (shoulder) girdle (2 bones) 2. The free part (30 bones) THE PECTORAL (OR SHOULDER) GIRDLE UPPER LIMB The pectoral girdle consists of two bones, the scapula and the clavicle The free part has 30 bones 1 humerus (arm) 1 ulna (forearm) 1 radius (forearm) 8 carpals (wrist) 19 metacarpal and phalanges (hand) PECTORAL GIRDLE - CLAVICLE The clavicle is “S” shaped The medial end articulates with the manubrium of the sternum forming the sternoclavicular joint The lateral end articulates with the acromion forming the acromioclavicular joint THE CLAVICLE PECTORAL GIRDLE - CLAVICLE The clavicle is convex in shape anteriorly near the sternal junction The clavicle is concave anteriorly on its lateral edge near the acromion CLINICAL CONNECTION - FRACTURED CLAVICLE A fall on an outstretched arm (F.O.O.S.H.) injury can lead to a fractured clavicle The clavicle is weakest at the junction of the two curves Forces are generated through the upper limb to the trunk during a fall Therefore, most breaks occur approximately in the middle of the clavicle PECTORAL GIRDLE - SCAPULA Also called the shoulder blade Triangular in shape Most notable features include the spine, acromion, coracoid process and the glenoid cavity FEATURES ON THE SCAPULA Spine - -
Locking Small Fragment Overview
Surgical Technique Locking Small Fragment Overview PERI-LOC™ Locked Plating System Locking Small Fragment Overview Surgical Technique Table of contents Product overview ...................................................................................2 Introduction .............................................................................................2 Indications ...............................................................................................2 Design features and benefits .................................................................3 System overview ....................................................................................4 Implant overview ...................................................................................10 Surgical technique ................................................................................23 Fracture reduction ...................................................................................23 Clavicle Locking Plate .............................................................................24 3.5mm Proximal Humerus Locking Plate ................................................25 Distal Humerus Locking Plates ...............................................................26 Olecranon Locking Plate .........................................................................28 3.5mm Lateral Proximal Tibia Locking Plate ......................................... 29 3.5mm Medial Distal Tibia Locking Plate .............................................. 30 3.5mm Anterolateral -
Bone Limb Upper
Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior -
Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action: -
Upper Extremity Fractures
Department of Rehabilitation Services Physical Therapy Standard of Care: Distal Upper Extremity Fractures Case Type / Diagnosis: This standard applies to patients who have sustained upper extremity fractures that require stabilization either surgically or non-surgically. This includes, but is not limited to: Distal Humeral Fracture 812.4 Supracondylar Humeral Fracture 812.41 Elbow Fracture 813.83 Proximal Radius/Ulna Fracture 813.0 Radial Head Fractures 813.05 Olecranon Fracture 813.01 Radial/Ulnar shaft fractures 813.1 Distal Radius Fracture 813.42 Distal Ulna Fracture 813.82 Carpal Fracture 814.01 Metacarpal Fracture 815.0 Phalanx Fractures 816.0 Forearm/Wrist Fractures Radius fractures: • Radial head (may require a prosthesis) • Midshaft radius • Distal radius (most common) Residual deformities following radius fractures include: • Loss of radial tilt (Normal non fracture average is 22-23 degrees of radial tilt.) • Dorsal angulation (normal non fracture average palmar tilt 11-12 degrees.) • Radial shortening • Distal radioulnar (DRUJ) joint involvement • Intra-articular involvement with step-offs. Step-off of as little as 1-2 mm may increase the risk of post-traumatic arthritis. 1 Standard of Care: Distal Upper Extremity Fractures Copyright © 2007 The Brigham and Women's Hospital, Inc. Department of Rehabilitation Services. All rights reserved. Types of distal radius fracture include: • Colle’s (Dinner Fork Deformity) -- Mechanism: fall on an outstretched hand (FOOSH) with radial shortening, dorsal tilt of the distal fragment. The ulnar styloid may or may not be fractured. • Smith’s (Garden Spade Deformity) -- Mechanism: fall backward on a supinated, dorsiflexed wrist, the distal fragment displaces volarly. • Barton’s -- Mechanism: direct blow to the carpus or wrist. -
Olecranon Bone Grafting for the Treatment of Nonunion After Distal Finger Replantation
Ercin et al. Plast Aesthet Res 2020;7:38 Plastic and DOI: 10.20517/2347-9264.2020.56 Aesthetic Research Original Article Open Access Olecranon bone grafting for the treatment of nonunion after distal finger replantation Burak Sercan Ercin1,2, Fatih Kabakas1,2, Musa Kemal Keles1,2, Ismail Bulent Ozcelik1,3,4, Berkan Mersa1,3,4 1IST-EL Microsurgery Group, Istanbul 34245, Turkey. 2Department of Plastic Surgery and Hand Surgery, Medicalpark Gebze Hospital, Kocaeli 41400, Turkey. 3Department of Hand Surgery, Yeni Yuzyil University, Gaziosmanpasa Hospital, Istanbul 34245, Turkey. 4Nisantasi University, Istanbul 34398, Turkey. Correspondence to: Dr. Burak Sercan Ercin, Department of Plastic Surgery and Hand Surgery, Medicalpark Gebze Hospital, Kocaeli 41400, Turkey. E-mail: [email protected] How to cite this article: Ercin BS, Kabakas F, Keles MK, Ozcelik IB, Mersa B. Olecranon bone grafting for the treatment of nonunion after distal finger replantation. Plast Aesthet Res 2020;7:38. http://dx.doi.org/10.20517/2347-9264.2020.56 Received: 29 Mar 2020 First Decision: 4 Jun 2020 Revised: 12 Jun 2020 Accepted: 7 Jul 2020 Published: 19 Jul 2020 Academic Editor: A Thione Copy Editor: Cai-Hong Wang Production Editor: Tian Zhang Abstract Aim: Although not very popular, the olecranon bone graft is a useful option for this type of operation due to the minimal donor morbidity and its ease of use in small bone defect reconstruction and non-union therapy. To our best knowledge, few studies have evaluated the use of the olecranon bone graft as a treatment for non-union after distal finger replantation. Our aim in this report was to present our experience of using olecranon grafts in our nonunion patients undergoing distal replantations. -
Olecranon Fractures Introduction
Olecranon Fractures Steven I. Rabin, M.D. Medical Director, Musculoskeletal Services Dreyer Medical Clinic Clinical Associate Professor, Loyola University Introduction: • General Comments – Diagnosis/Evaluation – Treatment Options – Complications • Specific Injuries (Fractures & Dislocations) – Isolated Olecranon Fractures – Complex Fractures – Olecranon Fractures in Children and the Elderly Olecranon Fracture Clinical Findings • Patients present with deformity, swelling & pain • Inability to Extend the Elbow • Don’t Miss: – Compartment Syndrome – Open wounds Remember the ulnar border is subcutaneous and even superficial wounds can expose the bone – Nerve injuries (especially ulnar nerve) Especially with open fractures Treatment of Olecranon Injuries • Successful Functional Outcome Correlates directly with: – Accuracy of Anatomic Joint Reduction – Restoration of Mechanical Stability that allows Early Motion – Respect for the Soft Tissues – Maintain the Extensor Mechanism Classification • Multiple attempts at classifying olecranon fractures: – Colton – Morrey – Schatzker – AO/ASIF –OTA • Classification helps decide treatment options Colton Classification • Type I: avulsion • Type II: oblique • Type III: associated with dislocation • Type IV: multisegmented Mayo Clinic Classification •Type I: Non-displaced 12% •Type II: Displaced/stable 82% • Type III: Elbow unstable 6% Morrey BF, JBJS 77A: 718-21, 1995 Treatment Overview • If Nondisplaced – Treat with Early Motion • If Displaced – Treat with Open Reduction – Transverse: Tension Band – -
Olecranon Fractures Diagnosed? • the First Thing I Do Is Listen to Your Story
Twincitiesshoulderandelbow.com Please scan these codes with your camera phone Dr. Myeroff’s Olecranon Fracture Information Sheet to learn more from Dr. Myeroff’s website as What is the olecranon Fracture? twincitiesshoulderandelbow.com/elbowfracturevideo/ you go! • The elbow is made up of 3 bones (Figure 1 & 2): Each bone has complex 3D anatomy and a cartilage covered joint. It is a highly tuned joint with many functions. o The distal humerus (far end of your upper arm bone) o The proximal ulna “olecranon” (near end of your inner forearm bone) o The radius “radial head” (near end of your outer forearm bone) • The Olecranon o Attached to your triceps tendon – allowing forceful extension and pushing. o Is part of the elbow joint cartilage surface ▪ Allows bending and straitening Figure 1(Left) The bones of the elbow. (Right) The nerves and ligaments of the elbow. (https://orthoinfo.aaos.org/en/diseases-- conditions/distal-humerus-fractures-of-the-elbow/) twincitiesshoulderandelbow.com/olecranon/ Updated: May 2020 This document does not necessarily represent the opinion of these parent health organizations. It is designed in good faith to increase your understanding of this injury and your treatment options. It does not replace the opinion, discussion, and treatment from a trained medical professional. Figure 2Elbow viewed directly from the front (left) and back (right). Figure 3(Left) Medial elbow ligaments (Right) Lateral elbow ligaments • Elbow injuries are at risk of two conflicting outcomes o Stiffness – because of its complex anatomy, the elbow is famous for stiffness after injuries. ▪ After the first 3 months from injury, it is incredibly hard or impossible to obtain more motion in the elbow without a surgery. -
Shoulder Shoulder
SHOULDER SHOULDER ⦿ Connects arm to thorax ⦿ 3 joints ◼ Glenohumeral joint ◼ Acromioclavicular joint ◼ Sternoclavicular joint ⦿ https://www.youtube.com/watch?v=rRIz6oO A0Vs ⦿ Functional Areas ◼ scapulothoracic ◼ scapulohumeral SHOULDER MOVEMENTS ⦿ Global Shoulder ⦿ Arm (Shoulder Movement Joint) ◼ Elevation ◼ Flexion ◼ Depression ◼ Extension ◼ Abduction ◼ Abduction ◼ Adduction ◼ Adduction ◼ Medial Rotation ◼ Medial Rotation ◼ Lateral Rotation ◼ Lateral Rotation SHOULDER MOVEMENTS ⦿ Movement of shoulder can affect spine and rib cage ◼ Flexion of arm Extension of spine ◼ Extension of arm Flexion of spine ◼ Adduction of arm Ipsilateral sidebending of spine ◼ Abduction of arm Contralateral sidebending of spine ◼ Medial rotation of arm Rotation of spine ◼ Lateral rotation of arm Rotation of spine SHOULDER GIRDLE ⦿ Scapulae ⦿ Clavicles ⦿ Sternum ⦿ Provides mobile base for movement of arms CLAVICLE ⦿ Collarbone ⦿ Elongated S shaped bone ⦿ Articulates with Sternum through Manubrium ⦿ Articulates with Scapula through Acromion STERNOCLAVICULAR JOINT STERNOCLAVICULAR JOINT ⦿ Saddle Joint ◼ Between Manubrium and Clavicle ⦿ Movement ◼ Flexion - move forward ◼ Extension - move backward ◼ Elevation - move upward ◼ Depression - move downward ◼ Rotation ⦿ Usually movement happens with scapula Scapula Scapula ● Flat triangular bone ● 3 borders ○ Superior, Medial, Lateral ● 3 angles ○ Superior, Inferior, Lateral ● Processes and Spine ○ Acromion Process, Coracoid Process, Spine of Scapula ● Fossa ○ Supraspinous, Infraspinous, Subscapularis, Glenoid SCAPULA -
Right Or Left Bones? Clavicle Ulna
Right or Left Bones? Clavicle Ulna . Together, the clavicles make a . Lay the ulna on the table. “handlebar” shape (low at the middle . Can you see the radial notch? of the chest, higher near the shoulders). o If yes, the open side of the . The blunt tip (sternal end) touches the trochlear (semilunar) notch tells sternum at the middle of the chest. you the bone orientation (see . The round tip (acromial end) touches the photo 1). scapula at the shoulder. o If no, the open side of the . The bumpy side of the clavicle faces the trochlear (semilunar) notch is the rib cage. opposite of the bone orientation . The smooth side of the clavicle faces (see photo 2). outward Radius Fibula . The styloid process always touches the . The smoother tip (head of the fibula) thumb. touches the knee. If the lower end of the radius (near the . The rougher tip (lateral malleolus) styloid process) is rough, you are touches the ankle. looking at the back of the wrist. The point of the lateral malleolus points . If the lower end of the radius is smooth, to the pinkie toe, not the middle of the you are looking at the inside of the wrist. foot. The front of the fibula (anterior view) has an edge. The back of the fibula (posterior view) is flat. References: University of Liverpool Faculty of Health and Life Sciences. (2013). Radius and ulna (right forearm) [Digital photograph]. Retrieved from https://www.flickr.com/photos/liverpoolhls/10819145494. . -
Upper Extremity Scapula
Lab 6 FUNCTIONAL HUMAN ANATOMY LAB #6 UPPER/LOWER EXTREMITY OSTEOLOGY OSTEOLOGY: UPPER EXTREMITY SCAPULA: Borders: Medial (Vertebral) - most superior aspect called the Superior angle Lateral - most inferior aspect called the inferior angle Fossa: Supraspinous fossa Infraspinous fossa Subscapular fossa Glenoid fossa Other Features: acromion process coracoid process scapular spine scapular notch infraglenoid tubercle - located at the bottom of the glenoid fossa supraglenoid tubercle - located at the top of the glenoid fossa Note: the shape of the Glenoid fossa suggests that shoulder stability is heavily reliant on connective tissues surrounding the joint to prevent dislocation CLAVICLE: sternal end - blunt, articulates with the Manubrium acromial end - flat/bladelike, articulates with the Acromium process HUMERUS: head greater tubercle lesser tubercle interturbicular (bicipital) groove - located between the tubercles deltoid tuberosity shaft medial/lateral epicondyles capitulum - the part of the distal condyle that articulates with the Radius trochlea - the part of the distal condyle that articulates with the Ulna olecranon fossa coronoid fossa ULNA: 1 Lab 6 coronoid process olecranon process trochlear notch ulnar tuberosity body head (distal end) radial notch - where the proximal end of the radius articulates interosseous border (lateral side) styloid process RADIUS: body neck head (proximal end) radial tuberosity anterior oblique line interosseous border styloid process CARPAL BONES # of rows? # of bones? Which carpal primarily articulates -
Baseball Injury Prevention from Japan
Sports Medicine & Joint Center Funabashi Orthopaedic Hospital New Approaches to Injury; Baseball Injury Prevention from Japan Hiroyuki Sugaya, MD Disclosure • Speakers bureau/paid presentations DepuySynthes; Smith&Nephew • Unpaid consultant DepuySynthes; Smith&Nephew;Biomet • Orthopaedic publications editorial Journal of Shoulder and Elbow Surgery Baseball in the World World Baseball Classic participant countries 1 Baseball Elbows in Kids Medial elbow injuries Baseball Elbows in Kids Lateral elbow injuries ⇒ Capitellar OCD Early Intermediate advanced Staging Shoulder & Elbow • “Function” is very important!! Scapula, Thorax, Trunk, Lower extremities ►Surgical indication: difficult ►Physio therapy: important ►Arthroscopy: effective 2 Hip & Shoulder Head << Cup Head >> Cup Bone support Soft tissue support Upper Extremities • Scapula & arm connected to trunk only through the clavicle • Scapula position & mobility susceptible to posture & muscle function Glenohumeral Joint HH need to be @ the center of the glenoid 3 Centralization of the HH • Static stabilizer @ GHJ ►Negative pressure ►Bony morphology ►Capsular integrity Disrupted in Traumatic Instability ►Requires surgery! Centralization of the HH • Dynamic stabilizer @ GHJ ►Rotator cuff ►LHB ►Scapula & thorax ►Trunk ►Lower extremities Centralization of the HH • Scapula follows the HH During arm motion, scapula automatically follows the humerus to face the glenoid to the HH »Yamaguchi & Tsutsui, JJSS, 2009 4 Scapula as a Follower • During the arm motion… ►Scapula needs to move freely on