Content Guidelines

Total Page:16

File Type:pdf, Size:1020Kb

Content Guidelines APPEDINX H Content Guidelines Content Guidelines The following table lists the content guidelines for the Cisco IEC 4650. Table H-1 Content Guidelines Video formats Multiple video formats are supported on the native player including MPEG-1, MPEG-2, MPEG-4, and H.264. Multiple containers/muxers are supported on the native player including AVI, MOV, MP4, MPEG2, and MPEG-2/TS (extensions: .wmv, .avi, .mov, .mp4, .mpg, .ts). Formats not recommended: On2 VP 6 (used by old FLV) Note Native video is strongly preferred over Flash video. Note The IEC 4650 supports WebM (VP8/Vorbis) and Ogg (Theora/Vorbis) for HTML5 video. Note Use of the native player strongly preferred over HTML5 video. Note The native player’s video compatibility can be validated by using VLC 2.0.8. Audio formats Multiple audio formats are supported on the native player including mp2, mp3, aac, mp4a, wma1, wma2, flac, and mpga. HTML HTML4 / CSS3 (early support for HTML5) Flash Up to Flash 11 Cisco Interactive Experience Client User Guide H-1 Appendix H Content Guidelines Content Guidelines Video Performance When using a native player, the IEC 4610 can support H.264 video up to Limitations 720p @ 6Mbps. Note The amount of CPU power required to decode a video clip depends on multiple factors such as codec, bitrate, and resolution of the video source. Different video codecs have different compression algorithms. H.264 offers much better compression efficiency than MPEG-2 or MPEG-4 but uses much more a complex algorithm and requires more CPU power to decode. For example, to achieve the same level of quality, it may require 5 Mbps using MPEG2 but less than 2 Mbps using H.264. The IEC 4610 can decode 1080p 14Mbps MPEG2 video with less than 90% of CPU usage, but cannot decode 720p 8Mbps H.264 video without obvious frame drops. Note When the video source is interlaced (1080i, 480i, etc.), you may see interlacing artifacts due to the lack of de-interlacing capability on the native player. Note The size of the native player object does not affect the CPU usage. If the video source is the same, the CPU usage is the same regardless of the player's height and width. That is, if the video source is 1280x720, the CPU usage will not change by setting the native player's size to 320x180 or 1920x1080. Screen Resolutions Up to 1920x1080 (1080p); IEC4650 defaults to monitor’s native resolution To ensure the content scales well, build for the lowest resolution expected, then use stretchers to make sure it can stretch to the highest resolution expected. Screen Rotations Both horizontal (landscape) and vertical (portrait) modes are supported with 90, 180, 270 degree turns. The content should be laid out naturally. General Content Guidelines HTML/JavaScript is a preferred mechanism for building kiosk applications. Use of Flash should be limited to small size and non-video rendering functionality. Ticker tapes should be using CSS3 for scrolling. “Screensaver” video playback should be postponed when the kiosk is being interacted with to avoid audio conflicts and preserve responsiveness. Regularly-playing videos should be cached locally. Cisco Interactive Experience Client User Guide H-2.
Recommended publications
  • Download Media Player Codec Pack Version 4.1 Media Player Codec Pack
    download media player codec pack version 4.1 Media Player Codec Pack. Description: In Microsoft Windows 10 it is not possible to set all file associations using an installer. Microsoft chose to block changes of file associations with the introduction of their Zune players. Third party codecs are also blocked in some instances, preventing some files from playing in the Zune players. A simple workaround for this problem is to switch playback of video and music files to Windows Media Player manually. In start menu click on the "Settings". In the "Windows Settings" window click on "System". On the "System" pane click on "Default apps". On the "Choose default applications" pane click on "Films & TV" under "Video Player". On the "Choose an application" pop up menu click on "Windows Media Player" to set Windows Media Player as the default player for video files. Footnote: The same method can be used to apply file associations for music, by simply clicking on "Groove Music" under "Media Player" instead of changing Video Player in step 4. Media Player Codec Pack Plus. Codec's Explained: A codec is a piece of software on either a device or computer capable of encoding and/or decoding video and/or audio data from files, streams and broadcasts. The word Codec is a portmanteau of ' co mpressor- dec ompressor' Compression types that you will be able to play include: x264 | x265 | h.265 | HEVC | 10bit x265 | 10bit x264 | AVCHD | AVC DivX | XviD | MP4 | MPEG4 | MPEG2 and many more. File types you will be able to play include: .bdmv | .evo | .hevc | .mkv | .avi | .flv | .webm | .mp4 | .m4v | .m4a | .ts | .ogm .ac3 | .dts | .alac | .flac | .ape | .aac | .ogg | .ofr | .mpc | .3gp and many more.
    [Show full text]
  • Microsoft Powerpoint
    Development of Multimedia WebApp on Tizen Platform 1. HTML Multimedia 2. Multimedia Playing with HTML5 Tags (1) HTML5 Video (2) HTML5 Audio (3) HTML Pulg-ins (4) HTML YouTube (5) Accessing Media Streams and Playing (6) Multimedia Contents Mgmt (7) Capturing Images 3. Multimedia Processing Web Device API Multimedia WepApp on Tizen - 1 - 1. HTML Multimedia • What is Multimedia ? − Multimedia comes in many different formats. It can be almost anything you can hear or see. − Examples : Pictures, music, sound, videos, records, films, animations, and more. − Web pages often contain multimedia elements of different types and formats. • Multimedia Formats − Multimedia elements (like sounds or videos) are stored in media files. − The most common way to discover the type of a file, is to look at the file extension. ⇔ When a browser sees the file extension .htm or .html, it will treat the file as an HTML file. ⇔ The .xml extension indicates an XML file, and the .css extension indicates a style sheet file. ⇔ Pictures are recognized by extensions like .gif, .png and .jpg. − Multimedia files also have their own formats and different extensions like: .swf, .wav, .mp3, .mp4, .mpg, .wmv, and .avi. Multimedia WepApp on Tizen - 2 - 2. Multimedia Playing with HTML5 Tags (1) HTML5 Video • Some of the popular video container formats include the following: Audio Video Interleave (.avi) Flash Video (.flv) MPEG 4 (.mp4) Matroska (.mkv) Ogg (.ogv) • Browser Support Multimedia WepApp on Tizen - 3 - • Common Video Format Format File Description .mpg MPEG. Developed by the Moving Pictures Expert Group. The first popular video format on the MPEG .mpeg web.
    [Show full text]
  • Pre-Roll & Mid-Roll Video
    Pre-roll & Mid-roll Video 1/2 THIRD PARTY ALL ASSETS BELOW ARE REQUIRED VAST SPECIFICATIONS TO BE PRESENT IN THE VAST TAG Not available for live stream sponsorships or feature sponsorships. All assets for sponsored Bit rate Codecs accepted Min dimensions Max file size Use cases content must use the "Network 10 Hosted Video In-Stream Ad with Companion" specifications. Mezzanine File 15–30 Mbps H.264 1920x1080 1.7 GB Required for SSAI Aspect ratio Format (High profile) Environments 16:9 Video will auto-scale correctly Frame Rate: 24 :15 – 4.5MB High Codec Constant frame rate only 2,100 kbps H.264 Mezzanine File - .mov +/- 50 kbps (High profile) 1024x576 :30 – 9MB bandwidth (H.264 High Profile) No de-interlacing with :18 – 18MB users no frame blending mp4 (high profile) :15 – 3.5MB Standard asset Remove any pull-down 1,500 kbps H.264 +/- 50 kbps (High profile) 960x540 :30 – 7MB for most users webm (VP8 or VP9) added for broadcast :18 – 14MB and pre roll Duration Audio :15 – 1MB Low 750 kbps H.264 768x432 :30 – 2MB bandwidth Network 10 accepts a variety of length Mezzanine file: 2 Channels only, AAC +/- 50 kbps (High profile) :18 – 4MB users creatives, standards include :6*, :15, :30, Codec, 192 KBPS minimum, 16 or 24 bit Available on :60*, :90*. only, 48 kHz Sample Rate. :15 – 4.5MB High 375 kbps H.264 Any tag submitted must contain creative mp4 assets: 2 Channels only, AAC Codec, +/- 50 kbps (High profile) 640x360 :30 – 9MB bandwidth of all the same length. 192 KBPS minimum, 16 or 24 bit only, 48 :18 – 18MB users kHz Sample Rate.
    [Show full text]
  • Opus, a Free, High-Quality Speech and Audio Codec
    Opus, a free, high-quality speech and audio codec Jean-Marc Valin, Koen Vos, Timothy B. Terriberry, Gregory Maxwell 29 January 2014 Xiph.Org & Mozilla What is Opus? ● New highly-flexible speech and audio codec – Works for most audio applications ● Completely free – Royalty-free licensing – Open-source implementation ● IETF RFC 6716 (Sep. 2012) Xiph.Org & Mozilla Why a New Audio Codec? http://xkcd.com/927/ http://imgs.xkcd.com/comics/standards.png Xiph.Org & Mozilla Why Should You Care? ● Best-in-class performance within a wide range of bitrates and applications ● Adaptability to varying network conditions ● Will be deployed as part of WebRTC ● No licensing costs ● No incompatible flavours Xiph.Org & Mozilla History ● Jan. 2007: SILK project started at Skype ● Nov. 2007: CELT project started ● Mar. 2009: Skype asks IETF to create a WG ● Feb. 2010: WG created ● Jul. 2010: First prototype of SILK+CELT codec ● Dec 2011: Opus surpasses Vorbis and AAC ● Sep. 2012: Opus becomes RFC 6716 ● Dec. 2013: Version 1.1 of libopus released Xiph.Org & Mozilla Applications and Standards (2010) Application Codec VoIP with PSTN AMR-NB Wideband VoIP/videoconference AMR-WB High-quality videoconference G.719 Low-bitrate music streaming HE-AAC High-quality music streaming AAC-LC Low-delay broadcast AAC-ELD Network music performance Xiph.Org & Mozilla Applications and Standards (2013) Application Codec VoIP with PSTN Opus Wideband VoIP/videoconference Opus High-quality videoconference Opus Low-bitrate music streaming Opus High-quality music streaming Opus Low-delay
    [Show full text]
  • Encoding H.264 Video for Streaming and Progressive Download
    W4: KEY ENCODING SKILLS, TECHNOLOGIES TECHNIQUES STREAMING MEDIA EAST - 2019 Jan Ozer www.streaminglearningcenter.com [email protected]/ 276-235-8542 @janozer Agenda • Introduction • Lesson 5: How to build encoding • Lesson 1: Delivering to Computers, ladder with objective quality metrics Mobile, OTT, and Smart TVs • Lesson 6: Current status of CMAF • Lesson 2: Codec review • Lesson 7: Delivering with dynamic • Lesson 3: Delivering HEVC over and static packaging HLS • Lesson 4: Per-title encoding Lesson 1: Delivering to Computers, Mobile, OTT, and Smart TVs • Computers • Mobile • OTT • Smart TVs Choosing an ABR Format for Computers • Can be DASH or HLS • Factors • Off-the-shelf player vendor (JW Player, Bitmovin, THEOPlayer, etc.) • Encoding/transcoding vendor Choosing an ABR Format for iOS • Native support (playback in the browser) • HTTP Live Streaming • Playback via an app • Any, including DASH, Smooth, HDS or RTMP Dynamic Streaming iOS Media Support Native App Codecs H.264 (High, Level 4.2), HEVC Any (Main10, Level 5 high) ABR formats HLS Any DRM FairPlay Any Captions CEA-608/708, WebVTT, IMSC1 Any HDR HDR10, DolbyVision ? http://bit.ly/hls_spec_2017 iOS Encoding Ladders H.264 HEVC http://bit.ly/hls_spec_2017 HEVC Hardware Support - iOS 3 % bit.ly/mobile_HEVC http://bit.ly/glob_med_2019 Android: Codec and ABR Format Support Codecs ABR VP8 (2.3+) • Multiple codecs and ABR H.264 (3+) HLS (3+) technologies • Serious cautions about HLS • DASH now close to 97% • HEVC VP9 (4.4+) DASH 4.4+ Via MSE • Main Profile Level 3 – mobile HEVC (5+)
    [Show full text]
  • Google Chrome Browser Dropping H.264 Support 14 January 2011, by John Messina
    Google Chrome Browser dropping H.264 support 14 January 2011, by John Messina with the codecs already supported by the open Chromium project. Specifically, we are supporting the WebM (VP8) and Theora video codecs, and will consider adding support for other high-quality open codecs in the future. Though H.264 plays an important role in video, as our goal is to enable open innovation, support for the codec will be removed and our resources directed towards completely open codec technologies." Since Google is developing the WebM technology, they can develop a good video standard using open source faster and better than a current standard video player can. The problem with H.264 is that it cost money and On January 11, Google announced that Chrome’s the patents for the technologies in H.264 are held HTML5 video support will change to match codecs by 27 companies, including Apple and Microsoft supported by the open source Chromium project. and controlled by MPEG LA. This makes H.264 Chrome will support the WebM (VP8) and Theora video expensive for content owners and software makers. codecs, and support for the H.264 codec will be removed to allow resources to focus on open codec Since Apple and Microsoft hold some of the technologies. patents for the H.264 technology and make money off the licensing fees, it's in their best interest not to change the technology in their browsers. (PhysOrg.com) -- Google will soon stop supporting There is however concerns that Apple and the H.264 video codec in their Chrome browser Microsoft's lack of support for WebM may impact and will support its own WebM and Ogg Theora the Chrome browser.
    [Show full text]
  • Qoe Based Comparison of H.264/AVC and Webm/VP8 in Error-Prone Wireless Networkqoe Based Comparison of H.264/AVC and Webm/VP8 In
    QoE based comparison of H.264/AVC and WebM/VP8 in an error-prone wireless network Omer Nawaz, Tahir Nawaz Minhas, Markus Fiedler Department of Technology and Aesthetics (DITE) Blekinge Institute of Technology Karlskrona, Sweden fomer.nawaz, tahir.nawaz.minhas, markus.fi[email protected] Abstract—Quality of Experience (QoE) management is a prime the subsequent inter-frames are dependent will result in more topic of research community nowadays as video streaming, quality loss as compared to lower priority frame. Hence, the online gaming and security applications are completely reliant traditional QoS metrics simply fails to analyze the network on the network service quality. Moreover, there are no standard models to map Quality of Service (QoS) into QoE. HTTP measurement’s impact on the end-user service satisfaction. media streaming is primarily used for such applications due The other approach to measure the user-satisfaction is by to its coherence with the Internet and simplified management. direct interaction via subjective assessment. But the downside The most common video codecs used for video streaming are is the time and cost associated with these qualitative subjective H.264/AVC and Google’s VP8. In this paper, we have analyzed assessments and their inability to be applied in real-time the performance of these two codecs from the perspective of QoE. The most common end-user medium for accessing video content networks. The objective measurement quality tools like Mean is via home based wireless networks. We have emulated an error- Squared Error (MSE), Peak signal-to-noise ratio (PSNR), prone wireless network with different scenarios involving packet Structural Similarity Index (SSIM), etc.
    [Show full text]
  • Digital Audio Processor Vp-8
    VP-8 DIGITAL AUDIO PROCESSOR TECHNICAL MANUAL ORSIS ® 600 Industrial Drive, New Bern, North Carolina, USA 28562 VP-8 Digital Audio Processor Technical Manual - 1st Edition - Revised [VP8GuiSetup_2_3_x(and above).exe] ©2009 Vorsis* Vorsis 600 Industrial Drive New Bern, North Carolina 28562 tel 252-638-7000 / fax 252-637-1285 * a division of Wheatstone Corporation VP-8 / Apr 2009 Attention! A TTENTION Federal Communications Commission (FCC) Compliance Notice: Radio Frequency Notice NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. This is a Class A product. In a domestic environment, this product may cause radio interference, in which case, the user may be required to take appropriate measures. This equipment must be installed and wired properly in order to assure compliance with FCC regulations. Caution! Any modifications not expressly approved in writing by Wheatstone could void the user's authority to operate this equipment. VP-8 / May 2008 READ ME! Making Audio Processing History In 2005 Wheatstone returned to its roots in audio processing with the creation of Vorsis, a new division of the company.
    [Show full text]
  • A Comparison of Video Formats for Online Teaching Ross A
    Contemporary Issues in Education Research – First Quarter 2017 Volume 10, Number 1 A Comparison Of Video Formats For Online Teaching Ross A. Malaga, Montclair State University, USA Nicole B. Koppel, Montclair State University, USA ABSTRACT The use of video to deliver content to students online has become increasingly popular. However, educators are often plagued with the question of which format to use to deliver asynchronous video material. Whether it is a College or University committing to a common video format or an individual instructor selecting the method that works best for his or her course, this research presents a comparison of various video formats that can be applied to online education and provides guidance in which one to select. Keywords: Online Teaching; Video Formats; Technology Acceptance Model INTRODUCTION istance learning is one of the most talked-about topics in higher education today. Online and hybrid (or blended) learning removes location and time-bound constraints of the traditional college classroom to a learning environment that can occur anytime or anywhere in a global environment. DAccording to research by the Online Learning Consortium, over 5 million students took an online course in the Fall 2014 semester. This represents an increase in online enrollment of over 3.9% in just one year. In 2014, 28% of higher education students took one or more courses online (Allen, I. E. and Seaman, J, 2016). With this incredible growth, albeit slower than the growth in previous years, institutions of higher education are continuing to increase their online course and program offerings. As such, institutions need to find easy to develop, easy to use, reliable, and reasonably priced technologies to deliver online content.
    [Show full text]
  • Audio and Video Standards for Internet Resources
    Downloaded from http://www.everyspec.com NASA STD-2821 Approval Date: 02/08/12 Expiration Date: None Audio and Video Standards for Internet Resources Downloaded from http://www.everyspec.com NASA STD-XXX FOREWORD The evolution of audio and video resources on the World Wide Web has grown beyond a fashionable trend and is fast becoming a primary means for communicating to a global audience. However, a result of this increasing success has led to such a wide range of competing codecs, media players, formats, wrappers, viewing devices and delivery options that accessing content has become increasingly confusing and can discourage even the most savvy web users. The National Aeronautic and Space Administration (NASA), a distinguished world class leader in Science, Engineering and Exploration has offered audio and video resources content on the internet for over a decade, though these offerings have suffered because of rapid growth of these various options and formats. Due to this perplexity, it has become a priority of the agency to establish an audio and video resources standard for use by the entire Agency to assure that every effort is made to reach the greatest possible audience with the simplest means available. This standard has been developed by the NASA Web Video Working Group and is approved and published by NASA for use by NASA Headquarters, NASA Centers and their subsidiary locations as well as NASA contractors where applicable to NASA contractual agreements. This standard provides a comprehensive guide for all audio and video resources produced by or for the agency, and also defines applicable requirements for accessibility as required by Federal law.
    [Show full text]
  • Standards – ST.88 Page: 3.88.1 En / 03-88-01 Date
    HANDBOOK ON INDUSTRIAL PROPERTY INFORMATION AND DOCUMENTATION Ref.: Standards – ST.88 page: 3.88.1 STANDARD ST.88 RECOMMENDATIONS FOR ELECTRONIC REPRESENTATION OF INDUSTRIAL DESIGNS Adopted by the Committee on WIPO Standards (CWS) at its eighth session on December 4, 2020 Editorial Note by the International Bureau At its eighth session, the CWS discussed the treatment of SVG format within this Standard. The CWS referred the issue of SVG back to the Design Representation Task Force to recommend a revision to this Standard at the ninth session of the CWS. This Standard does not currently make recommendations on 3D objects. Recommendations for 3D objects and file formats are being evaluated by the 3D Task Force of the CWS. It is proposed to revisit this topic when the 3D Task Force completes their evaluation, and possibly make revisions to this Standard if appropriate. INTRODUCTION 1. These recommendations provide guidance on how to create, store, display, manage, search, publish and exchange electronic representations of industrial designs. OBJECTIVES 2. These recommendations are intended to achieve: The maximum re-use of the same electronic representations for applicants to file the same design at multiple Intellectual Property (IP) offices; A common set of requirements for IP offices to exchange electronic representations data; A common set of requirements for IP offices to process and publish electronic representations; and A common set of requirements to enhance automated search of electronic representations. DEFINITIONS AND TERMINOLOGY 3. For the purposes of these recommendations, the following terms apply unless otherwise specified: (a) “3D model” means an electronic file that is created by a specialized software, for mathematically representing the surface of an object in three dimensions; (b) “industrial design” means the visual aspect of an object, including its two-dimensional and three-dimensional features of shape and surface.
    [Show full text]
  • VP8 Vs VP9 – Is This About Quality Or Bitrate?
    4/27/2020 VP8 vs VP9 - Is this about Quality or Bitrate? • BlogGeek.me PRODUCTS SERVICES ABOUT BLOG VP8 vs VP9 – Is this about Quality or Bitrate? Technology 09/05/2016 Both. VP8 and VP9 are video codecs developed and pushed by Google. Up until recently, we had only VP8 in Chrome’s WebRTC implementation and now, we have both VP8 and VP9. This lead me to several interesting conversations with customers around if and when to adopt VP9 – or should they use H.264 instead (but that’s a story for another post). This whole VP8 vs VP9 topic is usually misunderstood, so let me try to put some order in things. First things ƒrst: 1. VP8 is currently the default video codec in WebRTC. Without checking, it is probably safe to say that 90% or more of all WebRTC video sessions use VP8 2. VP9 is o∆cially and publicly available from Chrome 49 or so (give or take a version). But it isn’t the default codec in WebRTC. Yet 3. VP8 is on par with H.264 4. VP9 is better than VP8 when it comes to resultant quality of the compressed video https://bloggeek.me/vp8-vs-vp9-quality-or-bitrate/ 1/5 4/27/2020 VP8 vs VP9 - Is this about Quality or Bitrate? • BlogGeek.me 5. VP8 takes up less resources (=CPU) to compress video With that in mind, the following can be deduced: You can use the migration to VP9 for one of two things (or both): 1. Improve the quality of your video experience 2.
    [Show full text]