Digital Recording of Performing Arts: Formats and Conversion

Total Page:16

File Type:pdf, Size:1020Kb

Digital Recording of Performing Arts: Formats and Conversion detailed approach also when the transfer of rights forms part of an employment contract between the producer of Digital recording of performing the recording and the live crew. arts: formats and conversion • Since the area of activity most probably qualifies as Stijn Notebaert, Jan De Cock, Sam Coppens, Erik Mannens, part of the ‘cultural sector’, separate remuneration for Rik Van de Walle (IBBT-MMLab-UGent) each method of exploitation should be stipulated in the Marc Jacobs, Joeri Barbarien, Peter Schelkens (IBBT-ETRO-VUB) contract. If no separate remuneration system has been set up, right holders might at any time invoke the legal default mechanism. This default mechanism grants a proportionate part of the gross revenue linked to a specific method of exploitation to the right holders. The producer In today’s digital era, the cultural sector is confronted with a may also be obliged to provide an annual overview of the growing demand for making digital recordings – audio, video and gross revenue per way of exploitation. This clause is crucial still images – of stage performances available over a multitude of in order to avoid unforeseen financial and administrative channels, including digital television and the internet. Essentially, burdens in a later phase. this can be accomplished in two different ways. A single entity can act as a content aggregator, collecting digital recordings from • Determine geographical scope and, if necessary, the several cultural partners and making this content available to duration of the transfer for each way of exploitation. content distributors or each individual partner can distribute its own • Include future methods of exploitation in the contract. recordings via the internet. Both methods (content aggregation and Although the legitimacy of this kind of clause is not individual internet distribution) imply a different set of requirements completely guaranteed, we believe future or unknown for audio-visual compression and container formats. ways of exploitation can be covered. In order to guarantee Content aggregation requires high-resolution, high-quality the applicability of such a clause, make sure two material, suitable for editing/post-processing and conversion additional conditions are fulfilled: (1) if the transfer of to different audio-visual formats tailored to specific distribution future/unknown means of exploitation is done within the channels. Compression and container formats must be chosen framework of an employment contract, part of the profit so that the content can be processed using (semi)professional generated through that specific method of future/unknown production tools. This means that interoperability is essential, exploitation should be granted to the right holder and; (2) which implies the use of internationally standardized solutions. insert a clause which secures the validity of the rest of the Since the material is typically transferred offline, storage and contract in case one clause turns out to be invalid. bandwidth limitations are of secondary importance. However, constantly increasing quality and resolution demands and the need for an efficient production chain prohibit the use of older, sub-optimal compression techniques. 94 table of contents 95 For internet distribution, the formats must be flexible enough to coMPrEssIon Formats support a wide range of terminals (PC, personal media player, smartphone, etc.) and bandwidth-limited connections (xDSL, still image compression UMTS, etc.). This specifically implies the use of compression algorithms with a very good rate-distortion performance, (i.e. As mentioned in the introduction, there is a difference in the algorithms which require a minimal number of bits to obtain a requirements for the two scenarios, content aggregation and given, suitable quality) over a large range of resolutions, frame distribution via the internet. The first scenario puts the emphasis rates, and quality levels. Additionally, it is of prime importance on quality, implying the use of lossless image compression, that the distribution formats are supported by popular playback whereas the second scenario must take into account the limitations software. imposed by the internet connection bandwidth, implying the use Establishing a standard set of suitable content aggregation and of lossy image compression. For the first scenario, the following distribution formats necessitates efficient tools for the conversion standardized image coding techniques, operated in lossless of contributed and legacy content to the chosen formats. This mode, were tested: JPEG-LS, JPEG 2000, JPEG XR (HD Photo) conversion is often a time- and resource-consuming process. and PNG. The evaluation of the compression performance of The efficiency of conversion tools can be improved by performing these codecs is straightforward. The most efficient codec is the transcoding instead of re-encoding. Transcoding implies the one that offers the highest compression ratio, i.e. the size of use of information present in the compressed representation of the uncompressed image divided by the size of the compressed the original material to facilitate low-complexity conversion to a image, for a set of representative test images. In our evaluation, different format. the employed test material consisted of a set of high resolution In the project, the problems of compression and container images related to performing arts productions and exhibiting format selection and that of efficient format conversion through varying characteristics. The results of our experiments clearly transcoding have been investigated in great detail. In this chapter, show that PNG has the worst compression efficiency. JPEG XR the main conclusions of this work will be presented. A selection performs significantly better than PNG but its efficiency is still of compression formats for video, audio and still images will considerably worse than that of JPEG-LS and JPEG 2000. For be discussed. The next section will elaborate on the choice of a black and white images, the performance of JPEG-LS and JPEG proper container format. Finally, the work on transcoding will be 2000 is very similar but for colour images, JPEG-LS outperforms summarized. JPEG 2000. From the viewpoint of professional support, none of the compared compression formats should pose a problem for professional image processing and desktop publishing software. This leads us to conclude that JPEG-LS is the best choice for image compression in the content aggregation scenario. 96 table of contents 97 Figure 1: Compression ratios for lossless still image Microsoft is actively pushing support for JPEG XR, as shown compression (scenario 1) by the fact that JPEG XR is natively supported in all versions of Windows Vista. As a conclusion, based on its performance and end-user support, JPEG XR is our recommended choice for the 10 JPEG 2000 internet distribution scenario. Figure 2 presents a typical PSNR JPEG-LS graph – showing PSNR values in function of corresponding bit 8 JPEG XR PNG rates – from our tests with lossy image compression. 6 Figure 2: Typical PSNR graph for lossy image compression 4 (scenario 2) 2 40 JPEG 2000 0 JPEG XR IMG IMG IMG IMG IMG IMG IMG IMG IMG IMG IMG IMG IMG IMG IMG IMG IMG IMG IMG Compression ratio (higher is better) JPEG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 35 ] dB [ 30 For the second scenario, distribution via the internet, the following standardized lossy image coding techniques were tested: JPEG, PSNR JPEG 2000 and JPEG XR (HDPhoto). The images used were the 25 same as for the first scenario but their resolution was uniformly reduced to obtain pictures with a maximum height of 768 pixels 20 (typical height of a modern computer monitor). The test images 0 1 2 3 were coded using different bit rates (ranging from 0.1875 to 3 bits Bitrate [bpp] per pixel). In each case, the quality of the decoded video material was measured using the peak signal-to-noise ratio (PSNR), which expresses the quality difference between the original and the Audio compression compressed material. The test results for the second scenario clearly show that classical JPEG coding is no match for the other For the content aggregation scenario the following audio com- two image coding techniques. The results for JPEG 2000 and JPEG pression techniques were evaluated: MPEG-4 Audio Lossless XR show that JPEG 2000 slightly outperforms JPEG XR. However, Coding (ALS), Free Lossless Audio Codec (FLAC), Monkey’s Audio the performance difference is limited. Based on its performance, (APE), Windows Media Audio (WMA) Lossless 9.2 and WAVPACK. JPEG 2000 is the winner, closely followed by JPEG XR. However, Lossless audio compression techniques were selected, since the end-user support for JPEG 2000 is rather limited, whereas they offer sufficient size reduction to be practically useful 98 table of contents 99 in professional environments, while introducing no quality Figure 3: Compression ratios for lossless audio compression degradation. Apart from MPEG-4 ALS, these compression (scenario 1) techniques are not officially standardized and WMA Lossless is even a closed-source audio compression technique. To evaluate 2.0 the performance of the selected codecs, their compression ratio was compared on different representative audio fragments with 1.5 varying characteristics. All fragments had two channels (stereo) and a sampling rate of 96 KHz with 24 bits per sample. 1.0 The experimental results, graphically presented in Figure 3, show that MPEG-4 ALS yields the best compression performance, 0.5 closely followed by Monkey’s Audio. The third place is shared by FLAC and WMA Lossless. WAVPACK shows the worst performance. Compressiefactor (hoger is beter) 0.0 Based on compression performance alone, MPEG-4 ALS is AUD AUD AUD AUD AUD AUD AUD AUD AUD AUD AUD AUD AUD AUD AUD AUD AUD AUD AUD AUD clearly the winner. However, the current generation of media 1 2A 2B 2C 2D 2E 3A 3B 3C 4A 4B 5A 5B 5C 6 7A 7B 8A 8B 9 applications seems to have only limited support for lossless audio FLAC compression in general and for MPEG-4 ALS and Monkey’s Audio APE APE specifically.
Recommended publications
  • Download Media Player Codec Pack Version 4.1 Media Player Codec Pack
    download media player codec pack version 4.1 Media Player Codec Pack. Description: In Microsoft Windows 10 it is not possible to set all file associations using an installer. Microsoft chose to block changes of file associations with the introduction of their Zune players. Third party codecs are also blocked in some instances, preventing some files from playing in the Zune players. A simple workaround for this problem is to switch playback of video and music files to Windows Media Player manually. In start menu click on the "Settings". In the "Windows Settings" window click on "System". On the "System" pane click on "Default apps". On the "Choose default applications" pane click on "Films & TV" under "Video Player". On the "Choose an application" pop up menu click on "Windows Media Player" to set Windows Media Player as the default player for video files. Footnote: The same method can be used to apply file associations for music, by simply clicking on "Groove Music" under "Media Player" instead of changing Video Player in step 4. Media Player Codec Pack Plus. Codec's Explained: A codec is a piece of software on either a device or computer capable of encoding and/or decoding video and/or audio data from files, streams and broadcasts. The word Codec is a portmanteau of ' co mpressor- dec ompressor' Compression types that you will be able to play include: x264 | x265 | h.265 | HEVC | 10bit x265 | 10bit x264 | AVCHD | AVC DivX | XviD | MP4 | MPEG4 | MPEG2 and many more. File types you will be able to play include: .bdmv | .evo | .hevc | .mkv | .avi | .flv | .webm | .mp4 | .m4v | .m4a | .ts | .ogm .ac3 | .dts | .alac | .flac | .ape | .aac | .ogg | .ofr | .mpc | .3gp and many more.
    [Show full text]
  • 2018-07-11 and for Information to the Iso Member Bodies and to the Tmb Members
    Sergio Mujica Secretary-General TO THE CHAIRS AND SECRETARIES OF ISO COMMITTEES 2018-07-11 AND FOR INFORMATION TO THE ISO MEMBER BODIES AND TO THE TMB MEMBERS ISO/IEC/ITU coordination – New work items Dear Sir or Madam, Please find attached the lists of IEC, ITU and ISO new work items issued in June 2018. If you wish more information about IEC technical committees and subcommittees, please access: http://www.iec.ch/. Click on the last option to the right: Advanced Search and then click on: Documents / Projects / Work Programme. In case of need, a copy of an actual IEC new work item may be obtained by contacting [email protected]. Please note for your information that in the annexed table from IEC the "document reference" 22F/188/NP means a new work item from IEC Committee 22, Subcommittee F. If you wish to look at the ISO new work items, please access: http://isotc.iso.org/pp/. On the ISO Project Portal you can find all information about the ISO projects, by committee, document number or project ID, or choose the option "Stages search" and select "Search" to obtain the annexed list of ISO new work items. Yours sincerely, Sergio Mujica Secretary-General Enclosures ISO New work items 1 of 8 2018-07-11 Alert Detailed alert Timeframe Reference Document title Developing committee VA Registration dCurrent stage Stage date Guidance for multiple organizations implementing a common Warning Warning – NP decision SDT 36 ISO/NP 50009 (ISO50001) EnMS ISO/TC 301 - - 10.60 2018-06-10 Warning Warning – NP decision SDT 36 ISO/NP 31050 Guidance for managing
    [Show full text]
  • Panstamps Documentation Release V0.5.3
    panstamps Documentation Release v0.5.3 Dave Young 2020 Getting Started 1 Installation 3 1.1 Troubleshooting on Mac OSX......................................3 1.2 Development...............................................3 1.2.1 Sublime Snippets........................................4 1.3 Issues...................................................4 2 Command-Line Usage 5 3 Documentation 7 4 Command-Line Tutorial 9 4.1 Command-Line..............................................9 4.1.1 JPEGS.............................................. 12 4.1.2 Temporal Constraints (Useful for Moving Objects)...................... 17 4.2 Importing to Your Own Python Script.................................. 18 5 Installation 19 5.1 Troubleshooting on Mac OSX...................................... 19 5.2 Development............................................... 19 5.2.1 Sublime Snippets........................................ 20 5.3 Issues................................................... 20 6 Command-Line Usage 21 7 Documentation 23 8 Command-Line Tutorial 25 8.1 Command-Line.............................................. 25 8.1.1 JPEGS.............................................. 28 8.1.2 Temporal Constraints (Useful for Moving Objects)...................... 33 8.2 Importing to Your Own Python Script.................................. 34 8.2.1 Subpackages.......................................... 35 8.2.1.1 panstamps.commonutils (subpackage)........................ 35 8.2.1.2 panstamps.image (subpackage)............................ 35 8.2.2 Classes............................................
    [Show full text]
  • Microsoft Powerpoint
    Development of Multimedia WebApp on Tizen Platform 1. HTML Multimedia 2. Multimedia Playing with HTML5 Tags (1) HTML5 Video (2) HTML5 Audio (3) HTML Pulg-ins (4) HTML YouTube (5) Accessing Media Streams and Playing (6) Multimedia Contents Mgmt (7) Capturing Images 3. Multimedia Processing Web Device API Multimedia WepApp on Tizen - 1 - 1. HTML Multimedia • What is Multimedia ? − Multimedia comes in many different formats. It can be almost anything you can hear or see. − Examples : Pictures, music, sound, videos, records, films, animations, and more. − Web pages often contain multimedia elements of different types and formats. • Multimedia Formats − Multimedia elements (like sounds or videos) are stored in media files. − The most common way to discover the type of a file, is to look at the file extension. ⇔ When a browser sees the file extension .htm or .html, it will treat the file as an HTML file. ⇔ The .xml extension indicates an XML file, and the .css extension indicates a style sheet file. ⇔ Pictures are recognized by extensions like .gif, .png and .jpg. − Multimedia files also have their own formats and different extensions like: .swf, .wav, .mp3, .mp4, .mpg, .wmv, and .avi. Multimedia WepApp on Tizen - 2 - 2. Multimedia Playing with HTML5 Tags (1) HTML5 Video • Some of the popular video container formats include the following: Audio Video Interleave (.avi) Flash Video (.flv) MPEG 4 (.mp4) Matroska (.mkv) Ogg (.ogv) • Browser Support Multimedia WepApp on Tizen - 3 - • Common Video Format Format File Description .mpg MPEG. Developed by the Moving Pictures Expert Group. The first popular video format on the MPEG .mpeg web.
    [Show full text]
  • Delivery Specifications for Commercials and Billboards
    DELIVERY SPECIFICATIONS FOR COMMERCIALS AND BILLBOARDS 1. General This document covers the technical requirements for commercials and billboards commissioned in High Definition (HD) which are to be transmitted by the broadcaster. The broadcaster offers the option of electronic delivery by means of transferring computer files via the Internet, further described in section 3. A submission always consists of two files: the file containing image and audio data, and a file containing metadata. Next to this document, the General Terms and Conditions and Sales Restrictions must be accepted by the supplier. If the requirements included in this document are not fulfilled, the broadcaster retains the right to refuse or adapt the received production. 2. Specifications for the computer file The content is packaged in an MXF file containing compressed image and audio data. The file must be delivered in MXF format using ‘Operational Pattern 1a’, which is specified in the following section. 2.1 References A submission must at least comply with the following standards and recommendations: SMPTE 377M-2009 Material Exchange Format (MXF) – File Format Specification. SMPTE 378M-2004 Material Exchange Format (MXF) – Operational pattern 1A. (Single Item, Single Package) SMPTE 379M-2010 Material Exchange Format (MXF) – MXF Generic Container. SMPTE 381M-2005 Material Exchange Format (MXF) – Mapping MPEG Streams into the MXF Generic Container. SMPTE 382M-2007 Material Exchange Format – Mapping AES3 and Broadcast Wave Audio into the MXF Generic Container. ITU-R BT.709-5-2004 Parameter values for the HDTV standards for production and international program exchange. ITU-R BT.1702-2005 Guidance for the reduction of photosensitive epileptic seizures caused by television.
    [Show full text]
  • On Audio-Visual File Formats
    On Audio-Visual File Formats Summary • digital audio and digital video • container, codec, raw data • different formats for different purposes Reto Kromer • AV Preservation by reto.ch • audio-visual data transformations Film Preservation and Restoration Hyderabad, India 8–15 December 2019 1 2 Digital Audio • sampling Digital Audio • quantisation 3 4 Sampling • 44.1 kHz • 48 kHz • 96 kHz • 192 kHz digitisation = sampling + quantisation 5 6 Quantisation • 16 bit (216 = 65 536) • 24 bit (224 = 16 777 216) • 32 bit (232 = 4 294 967 296) Digital Video 7 8 Digital Video Resolution • resolution • SD 480i / SD 576i • bit depth • HD 720p / HD 1080i • linear, power, logarithmic • 2K / HD 1080p • colour model • 4K / UHD-1 • chroma subsampling • 8K / UHD-2 • illuminant 9 10 Bit Depth Linear, Power, Logarithmic • 8 bit (28 = 256) «medium grey» • 10 bit (210 = 1 024) • linear: 18% • 12 bit (212 = 4 096) • power: 50% • 16 bit (216 = 65 536) • logarithmic: 50% • 24 bit (224 = 16 777 216) 11 12 Colour Model • XYZ, L*a*b* • RGB / R′G′B′ / CMY / C′M′Y′ • Y′IQ / Y′UV / Y′DBDR • Y′CBCR / Y′COCG • Y′PBPR 13 14 15 16 17 18 RGB24 00000000 11111111 00000000 00000000 00000000 00000000 11111111 00000000 00000000 00000000 00000000 11111111 00000000 11111111 11111111 11111111 11111111 00000000 11111111 11111111 11111111 11111111 00000000 11111111 19 20 Compression Uncompressed • uncompressed + data simpler to process • lossless compression + software runs faster • lossy compression – bigger files • chroma subsampling – slower writing, transmission and reading • born
    [Show full text]
  • Datasheet-Smartsignage
    Fanless Embedded Box PC with Intel® Celeron® SmartSignage 4-core Processor J1900 EBC-3311 Features Fanless digital signage solution Cableless design Low power consumption 1 x USB 3.0 Line-out 1 x USB 2.0 2 x RJ-45 VGA DC INPUT 12V On board Intel® Celeron® 4-core Processor EBC-3311B High definition video output J1900 (Bay Trail) Supports DDR3L SO-DIMM 1333 max. up to 8GB 1 x High definition video output & 1 VGA or 2 x High definition video output 1 x USB 3.0 Line-out 1 x USB 2.0 2 x RJ-45 DC INPUT 12V Front Side 1 mSATA supported High definition video output Supports VESA mount Rear Side Power Switch Applications Digital Signage Kiosk Engine POS PC IoT Gateway Specifications Image format Jpeg, tiff, png, (anim) gif, bmp System Optional for 802.11 b/g/n CPU Intel® Celeron® 4-core Processor J1900 WiFi (Bay Trail) Expansion Slot 1 x full-size Mini card Chipset SoC integrated (for mSATA) System Memory 1 x DDR3L 1333 max up to 8GB 1 x half-size PCI Express Mini card Storage 1 x mSATA supported for optional WiFi module Watchdog Timer 255 levels, 1-255 sec. Power Supply 12V DC-in I/O 1 x USB 2.0 , 1 x USB 3.0 2 x 10/100/1000Mbps Ethernet Dimensions (W x D x H) 170 x 120 x 40 mm 1 x power on/off button 6.69 x 4.72 x 1.57” 1 x Audio (Line-out) Packing Dimension 320 x 205 x 65 mm Video I/O EBC-3311 EBC-3311B (W x D x H) 12.59 x 8.07 x 2.55” 1 x High 2 x High definition Weight (net/gross) 0.7kg(1.5lb)/1.2kg(2.61b) definition video output video output Environmental 1 x VGA Operation Temperature 0°C – +40°C,(32°F – 104°F) Video MPEG-4, MPEG-2, MPEG-1, H.264,
    [Show full text]
  • Ardour Export Redesign
    Ardour Export Redesign Thorsten Wilms [email protected] Revision 2 2007-07-17 Table of Contents 1 Introduction 4 4.5 Endianness 8 2 Insights From a Survey 4 4.6 Channel Count 8 2.1 Export When? 4 4.7 Mapping Channels 8 2.2 Channel Count 4 4.8 CD Marker Files 9 2.3 Requested File Types 5 4.9 Trimming 9 2.4 Sample Formats and Rates in Use 5 4.10 Filename Conflicts 9 2.5 Wish List 5 4.11 Peaks 10 2.5.1 More than one format at once 5 4.12 Blocking JACK 10 2.5.2 Files per Track / Bus 5 4.13 Does it have to be a dialog? 10 2.5.3 Optionally store timestamps 5 5 Track Export 11 2.6 General Problems 6 6 MIDI 12 3 Feature Requests 6 7 Steps After Exporting 12 3.1 Multichannel 6 7.1 Normalize 12 3.2 Individual Files 6 7.2 Trim silence 13 3.3 Realtime Export 6 7.3 Encode 13 3.4 Range ad File Export History 7 7.4 Tag 13 3.5 Running a Script 7 7.5 Upload 13 3.6 Export Markers as Text 7 7.6 Burn CD / DVD 13 4 The Current Dialog 7 7.7 Backup / Archiving 14 4.1 Time Span Selection 7 7.8 Authoring 14 4.2 Ranges 7 8 Container Formats 14 4.3 File vs Directory Selection 8 8.1 libsndfile, currently offered for Export 14 4.4 Container Types 8 8.2 libsndfile, also interesting 14 8.3 libsndfile, rather exotic 15 12 Specification 18 8.4 Interesting 15 12.1 Core 18 8.4.1 BWF – Broadcast Wave Format 15 12.2 Layout 18 8.4.2 Matroska 15 12.3 Presets 18 8.5 Problematic 15 12.4 Speed 18 8.6 Not of further interest 15 12.5 Time span 19 8.7 Check (Todo) 15 12.6 CD Marker Files 19 9 Encodings 16 12.7 Mapping 19 9.1 Libsndfile supported 16 12.8 Processing 19 9.2 Interesting 16 12.9 Container and Encodings 19 9.3 Problematic 16 12.10 Target Folder 20 9.4 Not of further interest 16 12.11 Filenames 20 10 Container / Encoding Combinations 17 12.12 Multiplication 20 11 Elements 17 12.13 Left out 21 11.1 Input 17 13 Credits 21 11.2 Output 17 14 Todo 22 1 Introduction 4 1 Introduction 2 Insights From a Survey The basic purpose of Ardour's export functionality is I conducted a quick survey on the Linux Audio Users to create mixdowns of multitrack arrangements.
    [Show full text]
  • (L3) - Audio/Picture Coding
    Committee: (L3) - Audio/Picture Coding National Designation Title (Click here to purchase standards) ISO/IEC Document L3 INCITS/ISO/IEC 9281-1:1990:[R2013] Information technology - Picture Coding Methods - Part 1: Identification IS 9281-1:1990 INCITS/ISO/IEC 9281-2:1990:[R2013] Information technology - Picture Coding Methods - Part 2: Procedure for Registration IS 9281-2:1990 INCITS/ISO/IEC 9282-1:1988:[R2013] Information technology - Coded Representation of Computer Graphics Images - Part IS 9282-1:1988 1: Encoding principles for picture representation in a 7-bit or 8-bit environment :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 7: IS 13522-7:2001 Interoperability and conformance testing for ISO/IEC 13522-5 (MHEG-7) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 5: IS 13522-5:1997 Support for Base-Level Interactive Applications (MHEG-5) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 3: IS 13522-3:1997 MHEG script interchange representation (MHEG-3) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 6: IS 13522-6:1998 Support for enhanced interactive applications (MHEG-6) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 8: IS 13522-8:2001 XML notation for ISO/IEC 13522-5 (MHEG-8) Created: 11/16/2014 Page 1 of 44 Committee: (L3) - Audio/Picture Coding National Designation Title (Click here to purchase standards) ISO/IEC Document :[] Information technology - Coding
    [Show full text]
  • Reviewer's Guide
    Episode® 6.5 Affordable transcoding for individuals and workgroups Multiformat encoding software with uncompromising quality, speed and control. The Episode Product Guide is designed to provide an overview of the features and functions of Telestream’s Episode products. This guide also provides product information, helpful encoding scenarios and other relevant information to assist in the product review process. Please review this document along with the associated Episode User Guide, which provides complete product details. Telestream provides this guide for informational purposes only; it is not a product specification. The information in this document is subject to change at any time. 1 CONTENTS EPISODE OVERVIEW ........................................................................................................... 3 Episode ($495 USD) ........................................................................................................... 3 Episode Pro ($995 USD) .................................................................................................... 3 Episode Engine ($4995 USD) ............................................................................................ 3 KEY BENEFITS ..................................................................................................................... 4 FEATURES ............................................................................................................................ 5 Highest quality ...................................................................................................................
    [Show full text]
  • Datasheet Media Server
    Flussonic Media Server A multi-format and multi-protocol transcoder, packager, and origin server with a consistent, high density channel count independent of input or output encoding formats and protocols. FEATURES SRT, RTMP, RTSP, HLS, Low Latency Efficient video archive that can store HLS, HDS, HTTP MPEG-TS, years of uninterrupted video MPEG-DASH, and WebRTC recordings. streaming protocols. Live Video archives and VOD content High-performance graphics core. can be stored on local disk drives, CEPH, NFS, or in S3/Swift clouds. H.264, H.265, AV1, MPEG-2 Video, AAC, MP3, VP6, Speex, and G711 a/u Instant access to live video feed codecs for ingress and egress. and to archived recordings. Flussonic can form a cluster with Advanced monitoring system that unlimited number of ingest, origin, controls system load and performance. and streaming servers. Support for all major DRM systems Smart routing of video streams and Cloud Multi-DRM providers. between servers in cluster. Full support for DVB-Subtitles Multiple redundancy options based and Closed Captions. on Flussonic Cluster mechanism, including N+1, N+M, Source Stream User-friendly Web-UI. Failover, and many others. Rich and well-defined API for 3000+ simultaneous connections per programmatically controlling single Edge server. and managing all functions of the Media Server. TECHNICAL SPECIFICATIONS Protocols and formats support MPEG TS Ingest SPTS, MPTS, Data PID Passthrough MPEG TS Monitoring TR101290 MPEG TS electronic EPG EIT program guide MPEG TS advertising SCTE35 MPEG TS constant PCR
    [Show full text]
  • Realaudio and Realvideo Content Creation Guide
    RealAudioâ and RealVideoâ Content Creation Guide Version 5.0 RealNetworks, Inc. Contents Contents Introduction......................................................................................................................... 1 Streaming and Real-Time Delivery................................................................................... 1 Performance Range .......................................................................................................... 1 Content Sources ............................................................................................................... 2 Web Page Creation and Publishing................................................................................... 2 Basic Steps to Adding Streaming Media to Your Web Site ............................................... 3 Using this Guide .............................................................................................................. 4 Overview ............................................................................................................................. 6 RealAudio and RealVideo Clips ....................................................................................... 6 Components of RealSystem 5.0 ........................................................................................ 6 RealAudio and RealVideo Files and Metafiles .................................................................. 8 Delivering a RealAudio or RealVideo Clip ......................................................................
    [Show full text]