Microsoft Powerpoint
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Media Player Codec Pack Version 4.1 Media Player Codec Pack
download media player codec pack version 4.1 Media Player Codec Pack. Description: In Microsoft Windows 10 it is not possible to set all file associations using an installer. Microsoft chose to block changes of file associations with the introduction of their Zune players. Third party codecs are also blocked in some instances, preventing some files from playing in the Zune players. A simple workaround for this problem is to switch playback of video and music files to Windows Media Player manually. In start menu click on the "Settings". In the "Windows Settings" window click on "System". On the "System" pane click on "Default apps". On the "Choose default applications" pane click on "Films & TV" under "Video Player". On the "Choose an application" pop up menu click on "Windows Media Player" to set Windows Media Player as the default player for video files. Footnote: The same method can be used to apply file associations for music, by simply clicking on "Groove Music" under "Media Player" instead of changing Video Player in step 4. Media Player Codec Pack Plus. Codec's Explained: A codec is a piece of software on either a device or computer capable of encoding and/or decoding video and/or audio data from files, streams and broadcasts. The word Codec is a portmanteau of ' co mpressor- dec ompressor' Compression types that you will be able to play include: x264 | x265 | h.265 | HEVC | 10bit x265 | 10bit x264 | AVCHD | AVC DivX | XviD | MP4 | MPEG4 | MPEG2 and many more. File types you will be able to play include: .bdmv | .evo | .hevc | .mkv | .avi | .flv | .webm | .mp4 | .m4v | .m4a | .ts | .ogm .ac3 | .dts | .alac | .flac | .ape | .aac | .ogg | .ofr | .mpc | .3gp and many more. -
Pre-Roll & Mid-Roll Video
Pre-roll & Mid-roll Video 1/2 THIRD PARTY ALL ASSETS BELOW ARE REQUIRED VAST SPECIFICATIONS TO BE PRESENT IN THE VAST TAG Not available for live stream sponsorships or feature sponsorships. All assets for sponsored Bit rate Codecs accepted Min dimensions Max file size Use cases content must use the "Network 10 Hosted Video In-Stream Ad with Companion" specifications. Mezzanine File 15–30 Mbps H.264 1920x1080 1.7 GB Required for SSAI Aspect ratio Format (High profile) Environments 16:9 Video will auto-scale correctly Frame Rate: 24 :15 – 4.5MB High Codec Constant frame rate only 2,100 kbps H.264 Mezzanine File - .mov +/- 50 kbps (High profile) 1024x576 :30 – 9MB bandwidth (H.264 High Profile) No de-interlacing with :18 – 18MB users no frame blending mp4 (high profile) :15 – 3.5MB Standard asset Remove any pull-down 1,500 kbps H.264 +/- 50 kbps (High profile) 960x540 :30 – 7MB for most users webm (VP8 or VP9) added for broadcast :18 – 14MB and pre roll Duration Audio :15 – 1MB Low 750 kbps H.264 768x432 :30 – 2MB bandwidth Network 10 accepts a variety of length Mezzanine file: 2 Channels only, AAC +/- 50 kbps (High profile) :18 – 4MB users creatives, standards include :6*, :15, :30, Codec, 192 KBPS minimum, 16 or 24 bit Available on :60*, :90*. only, 48 kHz Sample Rate. :15 – 4.5MB High 375 kbps H.264 Any tag submitted must contain creative mp4 assets: 2 Channels only, AAC Codec, +/- 50 kbps (High profile) 640x360 :30 – 9MB bandwidth of all the same length. 192 KBPS minimum, 16 or 24 bit only, 48 :18 – 18MB users kHz Sample Rate. -
Realaudio and Realvideo Content Creation Guide
RealAudioâ and RealVideoâ Content Creation Guide Version 5.0 RealNetworks, Inc. Contents Contents Introduction......................................................................................................................... 1 Streaming and Real-Time Delivery................................................................................... 1 Performance Range .......................................................................................................... 1 Content Sources ............................................................................................................... 2 Web Page Creation and Publishing................................................................................... 2 Basic Steps to Adding Streaming Media to Your Web Site ............................................... 3 Using this Guide .............................................................................................................. 4 Overview ............................................................................................................................. 6 RealAudio and RealVideo Clips ....................................................................................... 6 Components of RealSystem 5.0 ........................................................................................ 6 RealAudio and RealVideo Files and Metafiles .................................................................. 8 Delivering a RealAudio or RealVideo Clip ...................................................................... -
(A/V Codecs) REDCODE RAW (.R3D) ARRIRAW
What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format. -
Opus, a Free, High-Quality Speech and Audio Codec
Opus, a free, high-quality speech and audio codec Jean-Marc Valin, Koen Vos, Timothy B. Terriberry, Gregory Maxwell 29 January 2014 Xiph.Org & Mozilla What is Opus? ● New highly-flexible speech and audio codec – Works for most audio applications ● Completely free – Royalty-free licensing – Open-source implementation ● IETF RFC 6716 (Sep. 2012) Xiph.Org & Mozilla Why a New Audio Codec? http://xkcd.com/927/ http://imgs.xkcd.com/comics/standards.png Xiph.Org & Mozilla Why Should You Care? ● Best-in-class performance within a wide range of bitrates and applications ● Adaptability to varying network conditions ● Will be deployed as part of WebRTC ● No licensing costs ● No incompatible flavours Xiph.Org & Mozilla History ● Jan. 2007: SILK project started at Skype ● Nov. 2007: CELT project started ● Mar. 2009: Skype asks IETF to create a WG ● Feb. 2010: WG created ● Jul. 2010: First prototype of SILK+CELT codec ● Dec 2011: Opus surpasses Vorbis and AAC ● Sep. 2012: Opus becomes RFC 6716 ● Dec. 2013: Version 1.1 of libopus released Xiph.Org & Mozilla Applications and Standards (2010) Application Codec VoIP with PSTN AMR-NB Wideband VoIP/videoconference AMR-WB High-quality videoconference G.719 Low-bitrate music streaming HE-AAC High-quality music streaming AAC-LC Low-delay broadcast AAC-ELD Network music performance Xiph.Org & Mozilla Applications and Standards (2013) Application Codec VoIP with PSTN Opus Wideband VoIP/videoconference Opus High-quality videoconference Opus Low-bitrate music streaming Opus High-quality music streaming Opus Low-delay -
Compression for Great Video and Audio Master Tips and Common Sense
Compression for Great Video and Audio Master Tips and Common Sense 01_K81213_PRELIMS.indd i 10/24/2009 1:26:18 PM 01_K81213_PRELIMS.indd ii 10/24/2009 1:26:19 PM Compression for Great Video and Audio Master Tips and Common Sense Ben Waggoner AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Focal Press is an imprint of Elsevier 01_K81213_PRELIMS.indd iii 10/24/2009 1:26:19 PM Focal Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Linacre House, Jordan Hill, Oxford OX2 8DP, UK © 2010 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions . This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this fi eld are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. -
There Are 2 Types of Files in the Graphics World Bit Mapped (RASTER)
There are 2 Types of Files in the Graphics World Bit Mapped (RASTER) • There are two kinds of computer graphics: Bit Mapped (RASTER) and Object Oriented (VECTOR). Bit mapped graphics are graphics that are stored in the form of a bitmap. They are a sequence of bits that get drawn onto the screen. You create bit mapped graphics using a painting program. • When you enlarge a bit mapped image, you will get a pixelated look. If you are planning to print out an image that was originally 3 inches on 3 inches as 6 inches by 6 inches, you will get a very pixelated look. • Bit mapped graphics tend to create larger files than object oriented graphics. • As you can see from these two pictures, when a bitmapped image gets scaled up, the detail is lost, as opposed to an object oriented drawing where no pixelation occurs. Key Points of Raster Images pixels in a grid resolution dependent resizing reduces quality easily converted restricted to rectangle minimal support for transparency Object Oriented (VECTOR) Definition: Vector graphics are made up of many individual objects. Each of these objects can be defined by mathematical statements and has individual properties assigned to it such as color, fill, and outline. Vector graphics are resolution independent because they can be output to the highest quality at any scale. Software used to create vector graphics is sometimes referred to as object-based editing software. Common vector formats include AI (Adobe Illustrator), CDR (CorelDRAW), CGM (Computer Graphics Metafile), SWF (Shockwave Flash), and DXF (AutoCAD and other CAD software). -
Google Chrome Browser Dropping H.264 Support 14 January 2011, by John Messina
Google Chrome Browser dropping H.264 support 14 January 2011, by John Messina with the codecs already supported by the open Chromium project. Specifically, we are supporting the WebM (VP8) and Theora video codecs, and will consider adding support for other high-quality open codecs in the future. Though H.264 plays an important role in video, as our goal is to enable open innovation, support for the codec will be removed and our resources directed towards completely open codec technologies." Since Google is developing the WebM technology, they can develop a good video standard using open source faster and better than a current standard video player can. The problem with H.264 is that it cost money and On January 11, Google announced that Chrome’s the patents for the technologies in H.264 are held HTML5 video support will change to match codecs by 27 companies, including Apple and Microsoft supported by the open source Chromium project. and controlled by MPEG LA. This makes H.264 Chrome will support the WebM (VP8) and Theora video expensive for content owners and software makers. codecs, and support for the H.264 codec will be removed to allow resources to focus on open codec Since Apple and Microsoft hold some of the technologies. patents for the H.264 technology and make money off the licensing fees, it's in their best interest not to change the technology in their browsers. (PhysOrg.com) -- Google will soon stop supporting There is however concerns that Apple and the H.264 video codec in their Chrome browser Microsoft's lack of support for WebM may impact and will support its own WebM and Ogg Theora the Chrome browser. -
REALNETWORKS PRODUCTION GUIDE with Realone Player Last Update: 1 October 2002 Realnetworks, Inc
REALNETWORKS PRODUCTION GUIDE With RealOne Player Last Update: 1 October 2002 RealNetworks, Inc. PO Box 91123 Seattle, WA 98111-9223 U.S.A. http://www.real.com http://www.realnetworks.com ©2002 RealNetworks, Inc. All rights reserved. Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of RealNetworks, Inc. Printed in the United States of America. Helix, The Helix Logo, RBN, the Real "bubble" (logo), Real Broadcast Network, RealAudio, Real.com, RealJukebox, RealMedia, RealNetworks, RealPlayer, RealOne, RealPresenter, RealSlideshow, RealSystem, RealText, RealVideo, SureStream, and Surreal.FX Design are trademarks or registered trademarks of RealNetworks, Inc. Other product and corporate names may be trademarks or registered trademarks of their respective companies. SUMMARY OF CONTENTS DOCUMENTATION RELEASE NOTE .......................................................................................1 INTRODUCTION.....................................................................................................................5 PART I: GETTING STARTED WITH STREAMING MEDIA 1 NEW FEATURES .........................................................................................................17 2 PRESENTATION PLANNING.......................................................................................27 PART II: PRODUCING CLIPS 3 AUDIO PRODUCTION ...............................................................................................59 -
5Lesson 5: Multimedia on the Web
5Lesson 5: Multimedia on the Web Objectives By the end of this lesson, you will be able to: 1.5.7: Download and store files using a Web browser. 1.5.10: Install and upgrade common plug-ins, add-ons and viewers (e.g., Adobe Reader, Adobe Flash Player, Microsoft Silverlight, Windows Media Player, Apple QuickTime) and identify their common file name extensions. 1.5.11: Use document and multimedia file formats, including PDF, PNG, RTF, PostScript (PS), AVI, MPEG, MP3, MP4, Ogg. Convert between file formats when appropriate. 5-2 Internet Business Associate Pre-Assessment Questions 1. Briefly describe C++. 2. Which statement about vector graphics is true? a. Vector graphics are saved as sequences of vector statements. b. Vector graphics have much larger file sizes than raster graphics. c. Vector graphics are pixel-based. d. GIFs and JPGs are vector graphics. 3. Name at least two examples of browser plug-ins. © 2014 Certification Partners, LLC. — All Rights Reserved. Version 2.1 Lesson 5: Multimedia on the Web 5-3 Introduction to Multimedia on the Web NOTE: Multimedia on the Web has expanded rapidly as broadband connections have allowed Multimedia use on users to connect at faster speeds. Almost all Web sites, including corporate sites, feature the Web has been hindered by multimedia content and interactive objects. For instance, employee orientation sessions, bandwidth audio and video memos, and training materials are often placed on the Internet or limitations. Until all Internet users have corporate intranets. high-speed connections Nearly all network-connected devices, such as PCs, tablets, smartphones and smart TVs, (broadband or can view online interactive multimedia. -
Qoe Based Comparison of H.264/AVC and Webm/VP8 in Error-Prone Wireless Networkqoe Based Comparison of H.264/AVC and Webm/VP8 In
QoE based comparison of H.264/AVC and WebM/VP8 in an error-prone wireless network Omer Nawaz, Tahir Nawaz Minhas, Markus Fiedler Department of Technology and Aesthetics (DITE) Blekinge Institute of Technology Karlskrona, Sweden fomer.nawaz, tahir.nawaz.minhas, markus.fi[email protected] Abstract—Quality of Experience (QoE) management is a prime the subsequent inter-frames are dependent will result in more topic of research community nowadays as video streaming, quality loss as compared to lower priority frame. Hence, the online gaming and security applications are completely reliant traditional QoS metrics simply fails to analyze the network on the network service quality. Moreover, there are no standard models to map Quality of Service (QoS) into QoE. HTTP measurement’s impact on the end-user service satisfaction. media streaming is primarily used for such applications due The other approach to measure the user-satisfaction is by to its coherence with the Internet and simplified management. direct interaction via subjective assessment. But the downside The most common video codecs used for video streaming are is the time and cost associated with these qualitative subjective H.264/AVC and Google’s VP8. In this paper, we have analyzed assessments and their inability to be applied in real-time the performance of these two codecs from the perspective of QoE. The most common end-user medium for accessing video content networks. The objective measurement quality tools like Mean is via home based wireless networks. We have emulated an error- Squared Error (MSE), Peak signal-to-noise ratio (PSNR), prone wireless network with different scenarios involving packet Structural Similarity Index (SSIM), etc. -
Codec Is a Portmanteau of Either
What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format.