Caution Caution Warning

Total Page:16

File Type:pdf, Size:1020Kb

Caution Caution Warning XPG20 Corp. 0907−L3 Service Literature XPG20 SERIES UNITS The XPG20−036 is a high efficiency residential split−system heat pump unit, which features a solar assisted DC motor, two−step scroll compressor and HFC−410A refrigerant. The XPG20 is designed for use with an expansion valve only (approved for use with HFC−410A) in the indoor unit. This manual is divided into sections which discuss the major components, refrigerant system, charging procedure, maintenance and operation sequence. CAUTION Physical contact with metal edges and corners while applying excessive force or rapid motion can result in personal injury. Be aware of, and use caution when working nearby these areas during installation or while servicing this equipment. CAUTION To prevent personal injury, or damage to panels, unit or structure, be sure to observe the following: While installing or servicing this unit, carefully stow all removed panels out of the way, so that the panels will not cause injury to personnel, nor cause damage to objects or structures nearby, nor will the panels be subjected to damage (e.g., being bent or scratched). While handling or stowing the panels, consider any weather conditions, especially windy conditions, that may cause panels to be blown around and bat- tered. DANGER Shock Hazard Remove all power at disconnect before WARNING removing access panel. Improper installation, adjustment, alteration, service XPG20 units use single-pole contac- or maintenance can cause personal injury, loss of tors. Potential exists for electrical life, or damage to property. shock resulting in injury or death. Line voltage exists at all components Installation and service must be performed by a (even when unit is not in operation). licensed professional installer (or equivalent) or a service agency. Table of Contents General. 1 IV Charging. 26 Specifications / Electrical Data. 2 V Service and Recovery. 34 I Application. 3 VI Maintenance. 34 II Unit Components. 3 VII Brazing Procedure. 34 III Refrigerant System. 18 VIII Diagrams and Operating Sequence. 35 Page 1 © 2009 Lennox Industries Inc. SPECIFICATIONS General Model No. XPG20−036 Data Nominal Tonnage (kW) 3 (10.6) Connections Liquid line (o.d.) − in. (mm) 3/8 (9.5) (sweat) Vapor line (o.d.) − in. (mm) 7/8 (22.2) Refrigerant 1 R−410A charge furnished 12 lbs. 5 oz. (5.6 kg) Outdoor Net face area − sq. ft. (m2) Outer coil 20.50 (1.90) Coil Inner coil 19.86 (1.85) Tube diameter − in. (mm) 5/16 (0.52) No. of rows 2 Fins per inch (m) 22 (866) Outdoor Diameter − in. (mm) 26 (660) Fan No. of blades 3 Motor hp (W) 1/3 (249) Cfm (L/s) 1st stage 2500 (1180) 2nd stage 2800 (1320) Rpm − 1st stage 700 2nd stage 820 Watts − 1st stage 70 2nd stage 105 Shipping Data − lbs. (kg) 1 pkg. 315 (143) ELECTRICAL DATA Line voltage data − 60hz 208/230V−1ph 3 Maximum overcurrent protection (amps) 40 2 Minimum circuit ampacity 23.7 Compressor Rated load amps 16.7 Locked rotor amps 82 Power factor 0.98 Outdoor Coil Full load amps 2.8 Fan Motor OPTIONAL ACCESSORIES − must be ordered extra Compressor Hard Start Kit 10J42 S 81J69 Compressor Low Ambient Cut−Off 45F08 S Freezestat 3/8 in. tubing 93G35 S 1/2 in. tubing 39H29 S 5/8 in. tubing 50A93 S Indoor Blower Relay 40K58 S Low Ambient Kit 68M04 S Monitor Kit − Service Light 76F53 S Mounting Base 69J07 S Outdoor Thermostat 56A87 S Thermostat Mounting Box − US 31461 S Kit Canada 33A09 S SignatureStatt Home Comfort Control 81M28 S Refrigerant L15−65−15 L15−65−40 S Line Sets L15−65−30 L15−65−50 Field Fabricate Time Delay Relay 58M81 S NOTE − Extremes of operating range are plus 10% and minus 5% of line voltage. 1 Refrigerant charge sufficient for 15 ft. (4.6 m) length of refrigerant lines. 2 Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements. 3 HACR type breaker or fuse. Page 2 I−APPLICATION Holding the panel’s hinged side firmly in place, close the All major components (indoor blower and coil) must be right−hand side of the panel, aligning the screw holes. matched according to Lennox recommendations for the When panel is correctly positioned and aligned, insert the compressor to be covered under warranty. Refer to the En- screws and tighten. gineering Handbook for approved system matchups. A Removing/Installing Louvered Panels misapplied system will cause erratic operation and can re- IMPORTANT! Do not allow panels to hang on unit by top tab. Tab sult in early compressor failure. is for alignment and not designed to support weight of panel. II−Unit Components Panel shown slightly ro- tated to allow top tab to Access Panel exit (or enter) top slot for removing (or instal- ling) panel. LIP SCREW HOLES Detail A Remove 4 screws to remove panel for accessing compressor and controls. Install by positioning Detail B panel with holes aligned; install screws and tighten. FIGURE 1 Removing Access Panels Detail C Remove and reinstall the access panel as described in fig- ROTATE IN THIS DIRECTION; ure 1. THEN DOWN TO REMOVE PANEL MAINTAIN MINIMUM PANEL ANGLE (AS CLOSE TO PARALLEL WITH THE UNIT Remove the louvered panels as follows: AS POSSIBLE) WHILE INSTALLING PANEL. 1−. Remove 2 screws, allowing the panel to swing open HOLD DOOR FIRMLY TO THE HINGED ANGLE MAY BE TOO SIDE TO MAINTAIN slightly. EXTREME FULLY−ENGAGED TABS 2−. Hold the panel firmly throughout this procedure. PREFERRED ANGLE Rotate bottom corner of panel away from hinge corner FOR INSTALLATION post until lower 3 tabs clear the slots (see figure 2, De- tail B). 3−. Move panel down until lip of upper tab clears the top slot in corner post (see figure 2, Detail A). Position and Install PanelPosition the panel almost Detail D parallel with the unit (figure 2, Detail D) with the screw side" as close to the unit as possible. Then, in a continuous motion: Slightly rotate and guide the LIP of top tab inward (figure 2, Details A and C); then upward into the top slot of the hinge corner post. Rotate panel to vertical to fully engage all tabs. FIGURE 2 Page 3 AC FAN MOTOR AC FAN MOTOR MOUNT OUTDOOR FAN CONTACTOR SOLAR ASSIST DC MOTOR COUPLER DEFROST CONTROL SOLAR ASSIST DC MOTOR LENNOX SYSTEM OPERATION MONITOR (LSOM) RUN CAPACITOR SOLAR PANEL TERMINAL BLOCK VAPOR VALVE AND GAUGE PORT TWO−STAGE COMPRESSOR DISCHARGE LINE REVERSING VALVE COMPRESSOR TERMINAL PLUG BI−FLOW FILTER DRIER HIGH PRESSURE SWITCH LOW PRESSURE SWITCH FIGURE 3 SOLAR FAN RELAY (24VAC) (K228) DEFROST RELAY SOLAR FAN (K227) GROUND LUG HIGH VOLTAGE FIELD CONNECTIONS CONTACTOR−1POLE,25A (K1−1) DEFROST CONTROL BOARD (A108) CAPACITOR (C12) LOW VOLTAGE − CONTROL WIRE TIE LSOM MODULE (A132) TERMINAL BLOCK − TWO POSITION (SOLAR) FIGURE 4 Page 4 ELECTROSTATIC DISCHARGE (ESD) CROSS−SECTION OF SCROLLS Precautions and Procedures DISCHARGE DISCHARGE PRESSURE STATIONARY CAUTION SCROLL Electrostatic discharge can affect electronic components. Take precautions during unit instal- SUCTION lation and service to protect the unit’s electronic controls. Precautions will help to avoid control exposure to electrostatic discharge by putting the unit, the control and the technician at the same electrostatic potential. Neutralize electro- static charge by touching hand and all tools on an TIPS SEALED BY ORBITING SCROLL unpainted unit surface before performing any DISCHARGE PRESSURE service procedure. FIGURE 7 A−Two−Stage Scroll Compressor (B1) The counterclockwise orbiting scroll draws gas into the out- The scroll compressor design is simple, efficient and re- er crescent shaped gas pocket created by the two scrolls quires few moving parts. A cutaway diagram of the scroll (figure 8 − 1). The centrifugal action of the orbiting scroll compressor is shown in figure 1.The scrolls are located in seals off the flanks of the scrolls (figure 8 − 2). As the orbiting the top of the compressor can and the motor is located just below. The oil level is immediately below the motor. motion continues, the gas is forced toward the center of the The scroll is a simple compression concept centered scroll and the gas pocket becomes compressed (figure 8 around the unique spiral shape of the scroll and its inherent −3). When the compressed gas reaches the center, it is dis- properties. Figure 6 shows the basic scroll form. Two iden- charged vertically into a chamber and discharge port in the tical scrolls are mated together forming concentric spiral top of the compressor (figure 8 − 4). The discharge pressure shapes (figure 7). One scroll remains stationary, while the other is allowed to orbit" (figure 8). Note that the orbiting forcing down on the top scroll helps seal off the upper and scroll does not rotate or turn but merely orbits" the station- lower edges (tips) of the scrolls (figure 7). During a single or- ary scroll. bit, several pockets of gas are compressed simultaneously providing smooth continuous compression. TWO−STAGE MODULATED SCROLL slider ring The scroll compressor is tolerant to the effects of liquid re- turn. If liquid enters the scrolls, the orbiting scroll is allowed to separate from the stationary scroll. The liquid is worked toward the center of the scroll and is discharged. Due to its efficiency, the scroll compressor is capable of drawing a much deeper vacuum than reciprocating com- pressors. Deep vacuum operation can cause internal fusite arcing resulting in damaged internal parts and will result in compressor failure. This type of damage can be detected and will result in denial of warranty claims. The scroll com- solenoid actuator coil pressor can be used to pump down refrigerant as long as FIGURE 5 the pressure is not reduced below 7 psig.
Recommended publications
  • RP1008-Climatemaster-Residential-Accessories-Geothermal-Heating-And-Cooling-Product
    ACCESSORIES UNIT AND LOOP ACCESSORIES Accessories Table of Contents Accessory Description .......................................................................3 Loop Accessories ................................................................................18 Accessory Compatability ..................................................................4 Extra Large Loop Accessories .....................................................20 Thermostats and Service Tools ......................................................5 Installation Accessories ....................................................................21 AWC99B01 iGate® Connect, Two-Way Geothermal Loop Pipe ...................................................................22 Communicating Thermostat ............................................................6 Geothermal Fittings ...........................................................................23 ATU3203 iGate® Communicating Thermostat ....................7 Socket Fusion Tools............................................................................25 ATP32U03 Thermostat ......................................................................9 Service Tools ..........................................................................................26 ATP32U04 Thermostat ...................................................................11 Service Parts Kit ..................................................................................26 ATA21U01 Thermostat ...................................................................13
    [Show full text]
  • HVAC TERMINOLOGY.Pdf
    HVAC TERMINOLOGY Abatement Reduction or removal of a contaminant. Absolute Humidity It is the ratio of the mass of water vaporto the unit volume of moist air represented in grams per cubic foot (g/ft3). Absolute Zero Temperature at which all molecular motion ceases (-460 F. and -273 C.). Absorption Refrigerator Refrigerator which creates low temperature by using the cooling effect formed when a refrigerant is absorbed by chemical substance. ACCA Air Conditioning Contractors of America - a leading HVAC/R Association. Acceptable indoor air quality Indoor air that does not contain harmful concentrations of contaminants; air with which at least 80% of building occupants do not express dissatisfaction. Accumulator Storage tank which receives liquid refrigerant from evaporator and prevents it from flowing into suction line before vaporizing. Tank on the suction side of a system that holds excess refrigerant to prevent slugging the compressor with liquid. ACH Air Changes Per Hour. The number of times that air in a house is completely replaced with outdoor air in one hour. Acid Condition In System Condition in which refrigerant or oil in system is mixed with fluids that are acid in nature. ACR Tubing Tubing used in air conditioning and refrigeration. Ends are sealed to keep tubing clean and dry. Activated Carbon Specially processed carbon used as a filter drier ; commonly used to clean air. Actuator That portion of a regulating valve which converts mechanical fluid, thermal energy or insulation energy into mechanical motion to open or close the valve seats. Adiabatic Compression Compressing refrigerant gas without removing or adding heat. Adjustable Grille A grille with linear blades which can be adjusted to vary the direction of the discharged air.
    [Show full text]
  • Dr. Ben's Solar Hot Water Systems Install
    Dr. Ben’s Solar Hot Water Systems Installation Manual By Ben Gravely, PhD Holocene Technologies 1241 Wicker Drive Raleigh, NC 27604 (c) 2012 2 Table of Contents 1. Planning the Installation 1.1 Site Analysis 1.2 Collector Tilt 1.3 Materials 2. Tank Installation 3. Collector Installation and Controls 3.1 Frame and Collector Mounting 3.2 Collector Piping 3.3 Pipe Insulation 3.4 Solar Controls and Wiring 3.5 Collector System Startup 4. Domestic Hot Water 4.1 Piping 4.2 Re-circulator DHW Controls 4.3 DHW System Startup 5. Space Heating 5.1 Forced Air Systems 5.1.1 Solar Controls for Gas/Oil Furnaces 5.1.2 Solar Controls for Heat Pumps (Reverse on Cooling) 5.1.3 Solar Controls for Heat Pumps (Reverse on Heating) 5.1.4 Space Heating Startup and Test 5.2 Radiant Slab Systems 5.3 Radiant Baseboard Systems 6. Pool/Spa 6.1 Pool/Spa Piping 6.2 Pool/Spa Controls 6.3 Pool Startup 7. Manually Fired Wood/Coal Boilers 7.1 Boiler Installation 7.2 Boiler Piping 7.3 Boiler Controls 8. Troubleshooting 8.1 Collector System 8.2 Differential (delta-T) Controllers 8.3 Space Heating System 8.4 Pumps About the Author Holocene Technologies © 2012 3 1. Planning the Installation This manual was written to provide a straight forward procedure for the installation of solar hot water systems. As with any project, a few minutes of planning will save hours of fixing. 1.1 Site Analysis Measure the angle of the collector mounting surface from south with a compass.
    [Show full text]
  • Maintenance Items N475HM
    02-Jul-2020 Maintenance Items N475HM Make & Model (Serial) Operator Date Hours Landings BEECHCRAFT HAWKER 800XP (258451) Business Jet Access 01-Jul-2020 3997.30 2744 Major Components Component Model (Serial) Hours Cycles Engine 1 TFE731-5BR-1H (P-107444) 3840.90 2656.00 Engine 2 TFE731-5BR-1H (P-107443) 3890.20 2680.00 APU 0 GTCP36-150 (P-522) 3984.00 0.00 ATA / Type / Group Description Compliance Intervals Tolerance TSN/TSO Next Due Remaining 01 1001 INSPECT AIRCRAFT KEY STORAGE UNIT FOR LOCATION AND SECURITY 08-JUN-2020 M: 6 31-DEC-2020 M: 5 D: 29 Airframe Work Order H: 3990.80 INSPECTION Number L: 2741 #2263 June 2020 04 0010 AIRCRAFT PAINT 29-NOV-1999 Airframe H: 0.00 INSPECTION #299 04 0015 AIRCRAFT INTERIOR 29-NOV-1999 Airframe H: 0.00 INSPECTION #1532 04 0500 LUBRICATE ALL AIRCRAFT LOCKS TO INCLUDE MAIN ENTRANCE DOOR AND SERVICE 17-MAR-2020 M: 4 M: 1 31-JUL-2020 M: 0 D: 29 Airframe PANELS H: 3975.50 INSPECTION Work Order Man Hours L: 2726 #483 Number July 2020 0.50 04 100 AIRCRAFT REGISTRATION-FAR 47.40 29-NOV-2019 M: 36 M: 4 30-NOV-2022 M: 28 D: 28 Airframe H: 3962.70 INSPECTION L: 2714 #1803 04 200 REDUCED VERTICAL SEPARATION MINIMUM (RVSM) MONITORING REQUIREMENTS LAST 21-OCT-2019 M: 24 21-OCT-2021 M: 15 D: 19 Airframe FLIGHT OVER AGHME H: 3883.60 INSPECTION L: 2669 #1593 05 0001 PRE-FLIGHT INSPECTION 29-NOV-1999 Airframe H: 0.00 INSPECTION #1675 Maintenance Items Copyright © 2020 Flightdocs, Inc.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,267,713 B2 Zamir (45) Date of Patent: Feb
    US009267713B2 (12) United States Patent (10) Patent No.: US 9,267,713 B2 Zamir (45) Date of Patent: Feb. 23, 2016 (54) TEMPERATURE CONTROL SYSTEM USPC ......................................... 62/235.1; 165/48.2 See application file for complete search history. (75) Inventor: Ofri Zamir, Hogla (IL) (73) Assignee: DZSOLAR LTD, Richmond (GB) (56) References Cited (*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS patent is extended or adjusted under 35 4.256,475 A 3, 1981 Schafer ........................ 62/235.1 U.S.C. 154(b) by 821 days. 4,285,208 A * 8/1981 Takeshita et al. ............... 62/141 5,177,977 A 1/1993 Larsen (21) Appl. No.: 13/502.923 5,261,251 A * 1 1/1993 Galiyano ..................... 62,176.6 (Continued) (22) PCT Filed: Oct. 20, 2010 FOREIGN PATENT DOCUMENTS (86). PCT No.: PCT/L2O1O/OOO863 AU 2011 100888 A4 2, 2012 S371 (c)(1), CN 26795.62 Y 2, 2005 (2), (4) Date: Apr. 19, 2012 (Continued) (87) PCT Pub. No.: WO2011/048594 OTHER PUBLICATIONS PCT Pub. Date: Apr. 28, 2011 The International Search Report for International Application No. (65) Prior Publication Data PCT/IL2010/000863, three pages, mailed May 12, 2011. US 2012/0204587 A1 Aug. 16, 2012 O O Primary Examiner — Ljiljana Ciric Related U.S. Application Data Assistant Examiner — Alexis Cox (60) Provisional application No. 61/253,573, filed on Oct. (74) Attorney, Agent, or Firm — Vorys, Sater, Seymour & 21, 2009. Pease LLP (51) Int. Cl. F25B 27/00 (2006.01) (57) ABSTRACT F25B I3/00 (2006.01) A temperature control system, including a closed refrigerant (52) U.S.
    [Show full text]
  • Do-It-Yourself HVAC Apprentice Contest Basic Guidelines for Planning an Apprentice Contest
    PHCC Educational Foundation Do-It-Yourself HVAC Apprentice Contest Basic Guidelines for Planning an Apprentice Contest 1. Find volunteers! Members, teachers, technicians and inspectors all make good volunteers. 2. Designate a chairman or coordinator to run the contest. The role of chairman or coordinator can be done by anyone who is willing to volunteer and dedicate the time it takes to plan and administer the contest. He or she should have some HVAC background as well as the ability to answer technical questions about the contest. The chairman/coordinator is responsible for delegating all necessary job tasks. His/her decisions are final. Normally, the chairman/coordinator is the state or local apprenticeship committee chairman or an instructor at an apprentice school. 3. Set up a timeline or schedule of events. 4. Design the test and/or contest you will use. A sample contest has been provided at the end of this book. 5. Make a list of contest rules for the apprentices to follow. Provide this information with the registration form. 6. Make an agenda for the apprentices to follow. Include registration deadlines, time to arrive at the contest site and time of the awards presentation. 7. Find students to compete. Ideally, they should be PHCC apprentices and/or SkillsUSA students. You can have as few as three and as many as you feel you can handle. 8. Find a location for the contest. Some suggestions include outside under a tent, inside an exhibition hall, in a member’s shop or at the apprentice school. If you use an exhibition hall, please note that you may have to obtain a permit from the local fire marshal.
    [Show full text]
  • About Wiring Color
    About Wiring Color There is no official industry standard for wiring colors. However, the majority of manufacturers follow the common practices for installation. The following information is strictly for reference. Please be advised that the technician who did the previous installation of the thermostat may not incorporate conventional color coding for various reasons. Red for the R terminal. The R terminal is the power. This comes from the transformer usually located in the air handler for split systems but you may find the transformer in the condensing unit. For this reason, we advise turning off the power before adjusting the thermostat's wiring. Red for the RH terminal. RH – The RH terminal is designated for the power for heating when two transformers are used. See RC below for an explanation for the cooling. It should be noted that a jumper can be installed between RC and RH for a heating and cooling system equipped with a single transformer. It should be noted that a jumper wire can be installed between RC and RH for a heating and cooling system equipped with a single transformer. Red for the RC terminal. The RC terminal is designated to the cooling power source. Some HVAC systems consist of two transformers, one for cooling and the other for heating. In this case the power from the transformer in the air conditioning system would go to the thermostat terminal RC. It should be noted that a jumper wire can be installed between RC and RH for a heating and cooling system equipped with a single transformer.
    [Show full text]
  • Iii I 1 111.11111 Ii 111111
    THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47th St., New York, N.Y. 10017 , k97-AA-30 kr The Society shall not be responsible for statements or opinions achrancedin papers or cricussion at meetings of the Society or of Its Divisions or. Sections, or printed In its publications. Discussion is printed only it the paper is published in'an ASME Journal. Authorization to photocopy , , material for Internal or personal use under circumstance not falling within the fair use provisions's% the Copyright Act Is granted by ASME to libraries and other users registered with the Copyright Clearance Center (CCC)Transactional Reporting Service provided that the base fee of $OSO , per page is paid directly to the CCC. 27 Congress Street. Salem MA 01970. Requests for special permission or bulk reproduction shotdd be addressed to the ASME Technical Pubishing Department Copyright *1997 by ASME All Rights Reserved . Printed in U.S.A Heat Exchanger Design And System Balance Of Downloaded from http://asmedigitalcollection.asme.org/GT/proceedings-pdf/TA1997/78675/V001T13A006/4460073/v001t13a006-97-aa-030.pdf by guest on 01 October 2021 An Air Source Heat Pump/Chiller Using Brazed Plate Heat Exchangers. III I 1 111.11111 II 111111 By Changiz Tolouee (M.Sc), Member of International Institute of Refrigeration, Member of Australian Institute of Refrigeration, Air Conditioning and Heating. ABSTRACT Air Source heat pump/chiller is used to provide chilled water for cooling and hot water for heating purposes. This is one investment for both applications with no requirement for boiler and fuel with the advantage of heat pump efficiency.
    [Show full text]
  • Console Water Source Heat Pumps R-410A Models MHC Standard Range & MHW Geothermal Range Flat Top & Slope Top – Unit Sizes 007 – 018
    Installation & Maintenance Data IM 985-2 Group: WSHP Part Number: 669479302 Date: November 2011 Console Water Source Heat Pumps R-410A Models MHC Standard Range & MHW Geothermal Range Flat Top & Slope Top – Unit Sizes 007 – 018 Slope Top Unit Flat Top Unit ® ©2011 McQuay International Contents Model Nomenclature ...........................................................3 Start-up ...............................................................................25 Receiving and Storage ........................................................4 Cooling or Heating – Manual Operation ........................25 Pre-Installation.....................................................................4 Additional Accessories .....................................................25 General ...........................................................................25 Unit Installation (Recommended) ......................................5 Alternate Unit Installation ..................................................7 Wall-Mounted Programmable Electronic Thermostat (Using Provided Brackets) ................................................7 (P/N 668811301) ............................................................... 25 Non-Programmable Electronic Thermostat ...................26 Piping ....................................................................................8 (P/N 668811201) .............................................................26 Water Connections ..............................................................9 Programmable Electronic
    [Show full text]
  • Heating, Ventilation, Air-Conditioning, and Refrigeration. Occupational Competency Analysis Profile. INSTITUTION Ohio State Univ., Columbus
    DOCUMENT RESUME ED 488 875 CE 070 293 TITLE Heating, Ventilation, Air-Conditioning, and Refrigeration. Occupational Competency Analysis Profile. INSTITUTION Ohio State Univ., Columbus. Vocational Instructional Materials Lab. SPONS AGENCY Ohio State Dept. of Education, Columbus. Div. of Vocational and Adult Education. PUB DATE 95 NOTE 80p.; For the 1992 edition, see ED 345 074. For other related profilos, see CE 070 281-294. AVAILABLE FROMVocational Instructional Materials Lab, Center on Education and Training for Employment, 1900 Kenny Road, Columbus, OH 43210-1090 (order no. OCAP-07R: $10). PUB TYPE Guides - Classroom Use - Teaching Guides (For Teacher) (052) EDRS PRICE MF01/PC04 Plus Postage. DESCRIPTORS Air Conditioning; Air Conditioning Equipment; Behavioral Objectives; Career Development; *Competence; Competency Based Education; *Employment Potential; Entry Workers; *Heating; *Job Skills; *Occupational Information; Postsecondary Education; *Refrigeration; Refrigeration Mechanics; Secondary Education; Ventilation IDENTIFIERS DACUM Process; Ohio ABSTRACT This Occupational Competency Analysis Profile (OCAP) contains a competency list verified by expert workers and developed through a modified DACUM (Developing a Curriculum) involving business, industry, labor, and community agency representatives from This OCAP identifies the occupational, academic, and employability skills (competencies) needed to enter building climate control occupations. The competencies are clustered into 12 units that cover the following topics: fundamental concepts
    [Show full text]
  • Air-Source Heat Pumps
    YOUR GUIDE TO Air-Source Heat Pumps AIR-SOURCE HEAT PUMPS: Four Reasons to Switch 1 2 3 4 LOWER GREENHOUSE COST ALL-IN-ONE VERSATILE GAS EMISSIONS COMPETITIVE COMFORT Air-source heat pumps are efficient heating and cooling systems that can keep your home at a comfortable temperature all year round. Clean Energy Lives Here MASSCEC.COM/GOCLEAN Ⓡ TABLE OF CONTENTS Air-Source Heat Pumps (ASHP) Technology Overview 3 Are ASHPs a Good Fit for My Home? 8 Case Studies 9 Benefits of ASHPs 10 Costs 11 Incentives & Financing 12 Efficiency First 13 Making the Switch 14 How Can I Prepare for an ASHP Installation? 15 Questions to Ask Your Installer 17 Getting the Most From Your New System 22 2 Air-Source Heat Pumps (ASHP) Technology Overview Air-Source Heat Pumps are heating and cooling systems that move heat into a home in the winter and draw heat out of the home in the summer. Instead of burning fossil fuels, they operate on the same principle as your refrigerator: using a refrigerant cycle, powered by electricity, to move heat and to keep your home at a comfortable temperature year round. They are much more efficient than electric resistance (electric baseboard) heating and also provide highly efficient air conditioning. Outdoor Unit Indoor Unit Air-source heat pump systems feature an outdoor unit (containing a compressor, reversing valve, heat exchanger and expansion device) connected to one or more indoor units by small refrigerant piping. The refrigerant is a substance with properties that enable it to easily absorb and release heat.
    [Show full text]
  • Technology Review CSU DECARBONIZATION FRAMEWORK TASK 4: TECHNOLOGY REVIEW TABLE of CONTENTS SECTION 4.1: Introduction
    CSU Office of the Chancellor CSU Decarbonization Framework: Technology Review CSU DECARBONIZATION FRAMEWORK TASK 4: TECHNOLOGY REVIEW TABLE OF CONTENTS SECTION 4.1: Introduction ........................................................................................................................ 3 SECTION 4.2: Space Heating Technologies .............................................................................................. 4 4.2.1 Heat Pump Overview .................................................................................................................. 6 4.2.2 Hydronic Heat Pumps ................................................................................................................. 7 Air-to-Water Heat Pump (AWHP)............................................................................................................ 7 Water-to-Water Heat Pump (WWHP) .................................................................................................... 13 4.2.3 Non-Hydronic Heat Pumps ....................................................................................................... 21 Water source heat pump (WSHP)......................................................................................................... 21 Air-to-Air Heat Pump ............................................................................................................................ 25 Variable Refrigerant Flow (VRF/VRV) .................................................................................................... 27
    [Show full text]