View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarlyCommons@Penn University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 6-30-2006 Random Effects Logistic Models for Analyzing Efficacy of a Longitudinal Randomized Treatment With Non-Adherence Dylan S. Small University of Pennsylvania Thomas R. Ten Have University of Pennsylvania Marshall M. Joffe University of Pennsylvania Jing Cheng University of Pennsylvania Follow this and additional works at: http://repository.upenn.edu/statistics_papers Part of the Biostatistics Commons Recommended Citation Small, D. S., Ten Have, T. R., Joffe, M. M., & Cheng, J. (2006). Random Effects Logistic Models for Analyzing Efficacy of a Longitudinal Randomized Treatment With Non-Adherence. Statistics in Medicine, 25 (12), 1981-2007. http://dx.doi.org/10.1002/ sim.2313 This paper is posted at ScholarlyCommons. http://repository.upenn.edu/statistics_papers/429 For more information, please contact
[email protected]. Random Effects Logistic Models for Analyzing Efficacy of a Longitudinal Randomized Treatment With Non-Adherence Abstract We present a random effects logistic approach for estimating the efficacy of treatment for compliers in a randomized trial with treatment non-adherence and longitudinal binary outcomes. We use our approach to analyse a primary care depression intervention trial. The use of a random effects model to estimate efficacy supplements intent-to-treat longitudinal analyses based on random effects logistic models that are commonly used in primary care depression research. Our estimation approach is an extension of Nagelkerke et al.'s instrumental variables approximation for cross-sectional binary outcomes. Our approach is easily implementable with standard random effects logistic regression software.