Linear Mixed-Effects Modeling in SPSS: an Introduction to the MIXED Procedure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improving the Interpretation of Fixed Effects Regression Results
Improving the Interpretation of Fixed Effects Regression Results Jonathan Mummolo and Erik Peterson∗ October 19, 2017 Abstract Fixed effects estimators are frequently used to limit selection bias. For example, it is well-known that with panel data, fixed effects models eliminate time-invariant confounding, estimating an independent variable's effect using only within-unit variation. When researchers interpret the results of fixed effects models, they should therefore consider hypothetical changes in the independent variable (coun- terfactuals) that could plausibly occur within units to avoid overstating the sub- stantive importance of the variable's effect. In this article, we replicate several recent studies which used fixed effects estimators to show how descriptions of the substantive significance of results can be improved by precisely characterizing the variation being studied and presenting plausible counterfactuals. We provide a checklist for the interpretation of fixed effects regression results to help avoid these interpretative pitfalls. ∗Jonathan Mummolo is an Assistant Professor of Politics and Public Affairs at Princeton University. Erik Pe- terson is a post-doctoral fellow at Dartmouth College. We are grateful to Justin Grimmer, Dorothy Kronick, Jens Hainmueller, Brandon Stewart, Jonathan Wand and anonymous reviewers for helpful feedback on this project. The fixed effects regression model is commonly used to reduce selection bias in the es- timation of causal effects in observational data by eliminating large portions of variation thought to contain confounding factors. For example, when units in a panel data set are thought to differ systematically from one another in unobserved ways that affect the outcome of interest, unit fixed effects are often used since they eliminate all between-unit variation, producing an estimate of a variable's average effect within units over time (Wooldridge 2010, 304; Allison 2009, 3). -
Application of Random-Effects Probit Regression Models
Journal of Consulting and Clinical Psychology Copyright 1994 by the American Psychological Association, Inc. 1994, Vol. 62, No. 2, 285-296 0022-006X/94/S3.00 Application of Random-Effects Probit Regression Models Robert D. Gibbons and Donald Hedeker A random-effects probit model is developed for the case in which the outcome of interest is a series of correlated binary responses. These responses can be obtained as the product of a longitudinal response process where an individual is repeatedly classified on a binary outcome variable (e.g., sick or well on occasion t), or in "multilevel" or "clustered" problems in which individuals within groups (e.g., firms, classes, families, or clinics) are considered to share characteristics that produce similar responses. Both examples produce potentially correlated binary responses and modeling these per- son- or cluster-specific effects is required. The general model permits analysis at both the level of the individual and cluster and at the level at which experimental manipulations are applied (e.g., treat- ment group). The model provides maximum likelihood estimates for time-varying and time-invari- ant covariates in the longitudinal case and covariates which vary at the level of the individual and at the cluster level for multilevel problems. A similar number of individuals within clusters or number of measurement occasions within individuals is not required. Empirical Bayesian estimates of per- son-specific trends or cluster-specific effects are provided. Models are illustrated with data from -
Multilevel and Mixed-Effects Modeling 391
386 Statistics with Stata , . d itl 770/ ""01' ncdctemp However the residuals pass tests for white noise 111uahtemp, compar e WI 1 /0 l' r : , , '12 19) (p = .65), and a plot of observed and predicted values shows a good visual fit (Figure . , Multilevel and Mixed-Effects predict uahhat2 solar, ENSO & C02" label variable uahhat2 "predicted from volcanoes, Modeling predict uahres2, resid label variable uahres2 "UAH residuals from ARMAX model" wntestq uahres2, lags(25) portmanteau test for white noise portmanteau (Q)statistic 21. 7197 Mixed-effects modeling is basically regression analysis allowing two kinds of effects: fixed =rob > chi2(25) 0.6519 effects, meaning intercepts and slopes meant to describe the population as a whole, just as in Figure 12.19 ordinary regression; and also random effects, meaning intercepts and slopes that can vary across subgroups of the sample. All of the regression-type methods shown so far in this book involve fixed effects only. Mixed-effects modeling opens a new range of possibilities for multilevel o models, growth curve analysis, and panel data or cross-sectional time series, "r~ 00 01 Albright and Marinova (2010) provide a practical comparison of mixed-modeling procedures uj"'! > found in Stata, SAS, SPSS and R with the hierarchical linear modeling (HLM) software 0>- m developed by Raudenbush and Bryck (2002; also Raudenbush et al. 2005). More detailed ~o c explanation of mixed modeling and its correspondences with HLM can be found in Rabe• ro (I! Hesketh and Skrondal (2012). Briefly, HLM approaches multilevel modeling in several steps, ::IN co I' specifying separate equations (for example) for levelland level 2 effects. -
10.1 Topic 10. ANOVA Models for Random and Mixed Effects References
10.1 Topic 10. ANOVA models for random and mixed effects References: ST&DT: Topic 7.5 p.152-153, Topic 9.9 p. 225-227, Topic 15.5 379-384. There is a good discussion in SAS System for Linear Models, 3rd ed. pages 191-198. Note: do not use the rules for expected MS on ST&D page 381. We provide in the notes below updated rules from Chapter 8 from Montgomery D.C. (1991) “Design and analysis of experiments”. 10. 1. Introduction The experiments discussed in previous chapters have dealt primarily with situations in which the experimenter is concerned with making comparisons among specific factor levels. There are other types of experiments, however, in which one wish to determine the sources of variation in a system rather than make particular comparisons. One may also wish to extend the conclusions beyond the set of specific factor levels included in the experiment. The purpose of this chapter is to introduce analysis of variance models that are appropriate to these different kinds of experimental objectives. 10. 2. Fixed and Random Models in One-way Classification Experiments 10. 2. 1. Fixed-effects model A typical fixed-effect analysis of an experiment involves comparing treatment means to one another in an attempt to detect differences. For example, four different forms of nitrogen fertilizer are compared in a CRD with five replications. The analysis of variance takes the following familiar form: Source df Total 19 Treatment (i.e. among groups) 3 Error (i.e. within groups) 16 And the linear model for this experiment is: Yij = µ + i + ij. -
Mixed Model Methodology, Part I: Linear Mixed Models
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/271372856 Mixed Model Methodology, Part I: Linear Mixed Models Technical Report · January 2015 DOI: 10.13140/2.1.3072.0320 CITATIONS READS 0 444 1 author: jean-louis Foulley Université de Montpellier 313 PUBLICATIONS 4,486 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Football Predictions View project All content following this page was uploaded by jean-louis Foulley on 27 January 2015. The user has requested enhancement of the downloaded file. Jean-Louis Foulley Mixed Model Methodology 1 Jean-Louis Foulley Institut de Mathématiques et de Modélisation de Montpellier (I3M) Université de Montpellier 2 Sciences et Techniques Place Eugène Bataillon 34095 Montpellier Cedex 05 2 Part I Linear Mixed Model Models Citation Foulley, J.L. (2015). Mixed Model Methodology. Part I: Linear Mixed Models. Technical Report, e-print: DOI: 10.13140/2.1.3072.0320 3 1 Basics on linear models 1.1 Introduction Linear models form one of the most widely used tools of statistics both from a theoretical and practical points of view. They encompass regression and analysis of variance and covariance, and presenting them within a unique theoretical framework helps to clarify the basic concepts and assumptions underlying all these techniques and the ones that will be used later on for mixed models. There is a large amount of highly documented literature especially textbooks in this area from both theoretical (Searle, 1971, 1987; Rao, 1973; Rao et al., 2007) and practical points of view (Littell et al., 2002). -
Chapter 17 Random Effects and Mixed Effects Models
Chapter 17 Random Effects and Mixed Effects Models Example. Solutions of alcohol are used for calibrating Breathalyzers. The following data show the alcohol concentrations of samples of alcohol solutions taken from six bottles of alcohol solution randomly selected from a large batch. The objective is to determine if all bottles in the batch have the same alcohol concentrations. Bottle Concentration 1 1.4357 1.4348 1.4336 1.4309 2 1.4244 1.4232 1.4213 1.4256 3 1.4153 1.4137 1.4176 1.4164 4 1.4331 1.4325 1.4312 1.4297 5 1.4252 1.4261 1.4293 1.4272 6 1.4179 1.4217 1.4191 1.4204 We are not interested in any difference between the six bottles used in the experiment. We therefore treat the six bottles as a random sample from the population and use a random effects model. If we were interested in the six bottles, we would use a fixed effects model. 17.3. One Random Factor 17.3.1. The Random‐Effects One‐way Model For a completely randomized design, with v treatments of a factor T, the one‐way random effects model is , :0, , :0, , all random variables are independent, i=1, ..., v, t=1, ..., . Note now , and are called variance components. Our interest is to investigate the variation of treatment effects. In a fixed effect model, we can test whether treatment effects are equal. In a random effects model, instead of testing : ..., against : treatment effects not all equal, we use : 0,: 0. If =0, then all random effects are 0. -
Recovering Latent Variables by Matching∗
Recovering Latent Variables by Matching∗ Manuel Arellanoy St´ephaneBonhommez This draft: November 2019 Abstract We propose an optimal-transport-based matching method to nonparametrically es- timate linear models with independent latent variables. The method consists in gen- erating pseudo-observations from the latent variables, so that the Euclidean distance between the model's predictions and their matched counterparts in the data is mini- mized. We show that our nonparametric estimator is consistent, and we document that it performs well in simulated data. We apply this method to study the cyclicality of permanent and transitory income shocks in the Panel Study of Income Dynamics. We find that the dispersion of income shocks is approximately acyclical, whereas skewness is procyclical. By comparison, we find that the dispersion and skewness of shocks to hourly wages vary little with the business cycle. Keywords: Latent variables, nonparametric estimation, matching, factor models, op- timal transport. ∗We thank Tincho Almuzara and Beatriz Zamorra for excellent research assistance. We thank Colin Mallows, Kei Hirano, Roger Koenker, Thibaut Lamadon, Guillaume Pouliot, Azeem Shaikh, Tim Vogelsang, Daniel Wilhelm, and audiences at various places for comments. Arellano acknowledges research funding from the Ministerio de Econom´ıay Competitividad, Grant ECO2016-79848-P. Bonhomme acknowledges support from the NSF, Grant SES-1658920. yCEMFI, Madrid. zUniversity of Chicago. 1 Introduction In this paper we propose a method to nonparametrically estimate a class of models with latent variables. We focus on linear factor models whose latent factors are mutually independent. These models have a wide array of economic applications, including measurement error models, fixed-effects models, and error components models. -
R2 Statistics for Mixed Models
Kansas State University Libraries New Prairie Press Conference on Applied Statistics in Agriculture 2005 - 17th Annual Conference Proceedings R2 STATISTICS FOR MIXED MODELS Matthew Kramer Follow this and additional works at: https://newprairiepress.org/agstatconference Part of the Agriculture Commons, and the Applied Statistics Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Kramer, Matthew (2005). "R2 STATISTICS FOR MIXED MODELS," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/2475-7772.1142 This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Conference on Applied Statistics in Agriculture Kansas State University 148 Kansas State University R2 STATISTICS FOR MIXED MODELS Matthew Kramer Biometrical Consulting Service, ARS (Beltsville, MD), USDA Abstract The R2 statistic, when used in a regression or ANOVA context, is appealing because it summarizes how well the model explains the data in an easy-to- understand way. R2 statistics are also useful to gauge the effect of changing a model. Generalizing R2 to mixed models is not obvious when there are correlated errors, as might occur if data are georeferenced or result from a designed experiment with blocking. Such an R2 statistic might refer only to the explanation associated with the independent variables, or might capture the explanatory power of the whole model. In the latter case, one might develop an R2 statistic from Wald or likelihood ratio statistics, but these can yield different numeric results. -
Testing for a Winning Mood Effect and Predicting Winners at the 2003 Australian Open
University of Tasmania School of Mathematics and Physics Testing for a Winning Mood Effect and Predicting Winners at the 2003 Australian Open Lisa Miller October 2005 Submitted in partial fulfilment of the requirements for the Degree of Bachelor of Science with Honours Supervisor: Dr Simon Wotherspoon Acknowledgements I would like to thank my supervisor Dr Simon Wotherspoon for all the help he has given me throughout the year, without him this thesis would not have happened. I would also like to thank my family, friends and fellow honours students, especially Shari, for all their support. 1 Abstract A `winning mood effect’ can be described as a positive effect that leads a player to perform well on a point after performing well on the previous point. This thesis investigates the `winning mood effect’ in males singles data from the 2003 Australian Open. It was found that after winning the penultimate set there was an increase in the probability of winning the match and that after serving an ace and also after breaking your opponents service there was an increase in the probability of winning the next service. Players were found to take more risk at game point but less risk after their service was broken. The second part of this thesis looked at predicting the probability of winning a match based on some previous measure of score. Using simulation, several models were able to predict the probability of winning based on a score from earlier in the match, or on a difference in player ability. However, the models were only really suitable for very large data sets. -
Linear Mixed Models and Penalized Least Squares
Linear mixed models and penalized least squares Douglas M. Bates Department of Statistics, University of Wisconsin–Madison Saikat DebRoy Department of Biostatistics, Harvard School of Public Health Abstract Linear mixed-effects models are an important class of statistical models that are not only used directly in many fields of applications but also used as iterative steps in fitting other types of mixed-effects models, such as generalized linear mixed models. The parameters in these models are typically estimated by maximum likelihood (ML) or restricted maximum likelihood (REML). In general there is no closed form solution for these estimates and they must be determined by iterative algorithms such as EM iterations or general nonlinear optimization. Many of the intermediate calculations for such iterations have been expressed as generalized least squares problems. We show that an alternative representation as a penalized least squares problem has many advantageous computational properties including the ability to evaluate explicitly a profiled log-likelihood or log-restricted likelihood, the gradient and Hessian of this profiled objective, and an ECME update to refine this objective. Key words: REML, gradient, Hessian, EM algorithm, ECME algorithm, maximum likelihood, profile likelihood, multilevel models 1 Introduction We will establish some results for the penalized least squares representation of a general form of a linear mixed-effects model, then show how these results specialize for particular models. The general form we consider is y = Xβ + Zb + ∼ N (0, σ2I), b ∼ N (0, σ2Ω−1), ⊥ b (1) where y is the n-dimensional response vector, X is an n × p model matrix for the p-dimensional fixed-effects vector β, Z is the n × q model matrix for Preprint submitted to Journal of Multivariate Analysis 25 September 2003 the q-dimensional random-effects vector b that has a Gaussian distribution with mean 0 and relative precision matrix Ω (i.e., Ω is the precision of b relative to the precision of ), and is the random noise assumed to have a spherical Gaussian distribution. -
Lecture 2: Linear and Mixed Models
Lecture 2: Linear and Mixed Models Bruce Walsh lecture notes Introduction to Mixed Models SISG (Module 12), Seattle 17 – 19 July 2019 1 Quick Review of the Major Points The general linear model can be written as y = Xb + e • y = vector of observed dependent values • X = Design matrix: observations of the variables in the assumed linear model • b = vector of unknown parameters to estimate • e = vector of residuals (deviation from model fit), e = y-X b 2 y = Xb + e Solution to b depends on the covariance structure (= covariance matrix) of the vector e of residuals Ordinary least squares (OLS) • OLS: e ~ MVN(0, s2 I) • Residuals are homoscedastic and uncorrelated, so that we can write the cov matrix of e as Cov(e) = s2I • the OLS estimate, OLS(b) = (XTX)-1 XTy Generalized least squares (GLS) • GLS: e ~ MVN(0, V) • Residuals are heteroscedastic and/or dependent, • GLS(b) = (XT V-1 X)-1 XTV-1y 3 BLUE • Both the OLS and GLS solutions are also called the Best Linear Unbiased Estimator (or BLUE for short) • Whether the OLS or GLS form is used depends on the assumed covariance structure for the residuals 2 – Special case of Var(e) = se I -- OLS – All others, i.e., Var(e) = R -- GLS 4 Linear Models One tries to explain a dependent variable y as a linear function of a number of independent (or predictor) variables. A multiple regression is a typical linear model, Here e is the residual, or deviation between the true value observed and the value predicted by the linear model. -
Menbreg — Multilevel Mixed-Effects Negative Binomial Regression
Title stata.com menbreg — Multilevel mixed-effects negative binomial regression Syntax Menu Description Options Remarks and examples Stored results Methods and formulas References Also see Syntax menbreg depvar fe equation || re equation || re equation ::: , options where the syntax of fe equation is indepvars if in , fe options and the syntax of re equation is one of the following: for random coefficients and intercepts levelvar: varlist , re options for random effects among the values of a factor variable levelvar: R.varname levelvar is a variable identifying the group structure for the random effects at that level or is all representing one group comprising all observations. fe options Description Model noconstant suppress the constant term from the fixed-effects equation exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1 offset(varnameo) include varnameo in model with coefficient constrained to 1 re options Description Model covariance(vartype) variance–covariance structure of the random effects noconstant suppress constant term from the random-effects equation 1 2 menbreg — Multilevel mixed-effects negative binomial regression options Description Model dispersion(dispersion) parameterization of the conditional overdispersion; dispersion may be mean (default) or constant constraints(constraints) apply specified linear constraints collinear keep collinear variables SE/Robust vce(vcetype) vcetype may be oim, robust, or cluster clustvar Reporting level(#) set confidence level; default is level(95)