Horizontal Datums Knowing Where in the World You Are Maralyn L. Vorhauer Geodesist National Geodetic Survey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
State Plane Coordinate System
Wisconsin Coordinate Reference Systems Second Edition Published 2009 by the State Cartographer’s Office Wisconsin Coordinate Reference Systems Second Edition Wisconsin State Cartographer’s Offi ce — Madison, WI Copyright © 2015 Board of Regents of the University of Wisconsin System About the State Cartographer’s Offi ce Operating from the University of Wisconsin-Madison campus since 1974, the State Cartographer’s Offi ce (SCO) provides direct assistance to the state’s professional mapping, surveying, and GIS/ LIS communities through print and Web publications, presentations, and educational workshops. Our staff work closely with regional and national professional organizations on a wide range of initia- tives that promote and support geospatial information technologies and standards. Additionally, we serve as liaisons between the many private and public organizations that produce geospatial data in Wisconsin. State Cartographer’s Offi ce 384 Science Hall 550 North Park St. Madison, WI 53706 E-mail: [email protected] Phone: (608) 262-3065 Web: www.sco.wisc.edu Disclaimer The contents of the Wisconsin Coordinate Reference Systems (2nd edition) handbook are made available by the Wisconsin State Cartographer’s offi ce at the University of Wisconsin-Madison (Uni- versity) for the convenience of the reader. This handbook is provided on an “as is” basis without any warranties of any kind. While every possible effort has been made to ensure the accuracy of information contained in this handbook, the University assumes no responsibilities for any damages or other liability whatsoever (including any consequential damages) resulting from your selection or use of the contents provided in this handbook. Revisions Wisconsin Coordinate Reference Systems (2nd edition) is a digital publication, and as such, we occasionally make minor revisions to this document. -
Part V: the Global Positioning System ______
PART V: THE GLOBAL POSITIONING SYSTEM ______________________________________________________________________________ 5.1 Background The Global Positioning System (GPS) is a satellite based, passive, three dimensional navigational system operated and maintained by the Department of Defense (DOD) having the primary purpose of supporting tactical and strategic military operations. Like many systems initially designed for military purposes, GPS has been found to be an indispensable tool for many civilian applications, not the least of which are surveying and mapping uses. There are currently three general modes that GPS users have adopted: absolute, differential and relative. Absolute GPS can best be described by a single user occupying a single point with a single receiver. Typically a lower grade receiver using only the coarse acquisition code generated by the satellites is used and errors can approach the 100m range. While absolute GPS will not support typical MDOT survey requirements it may be very useful in reconnaissance work. Differential GPS or DGPS employs a base receiver transmitting differential corrections to a roving receiver. It, too, only makes use of the coarse acquisition code. Accuracies are typically in the sub- meter range. DGPS may be of use in certain mapping applications such as topographic or hydrographic surveys. DGPS should not be confused with Real Time Kinematic or RTK GPS surveying. Relative GPS surveying employs multiple receivers simultaneously observing multiple points and makes use of carrier phase measurements. Relative positioning is less concerned with the absolute positions of the occupied points than with the relative vector (dX, dY, dZ) between them. 5.2 GPS Segments The Global Positioning System is made of three segments: the Space Segment, the Control Segment and the User Segment. -
Reference Systems for Surveying and Mapping Lecture Notes
Delft University of Technology Reference Systems for Surveying and Mapping Lecture notes Hans van der Marel ii The front cover shows the NAP (Amsterdam Ordnance Datum) ”datum point” at the Stopera, Amsterdam (picture M.M.Minderhoud, Wikipedia/Michiel1972). H. van der Marel Lecture notes on Reference Systems for Surveying and Mapping: CTB3310 Surveying and Mapping CTB3425 Monitoring and Stability of Dikes and Embankments CIE4606 Geodesy and Remote Sensing CIE4614 Land Surveying and Civil Infrastructure February 2020 Publisher: Faculty of Civil Engineering and Geosciences Delft University of Technology P.O. Box 5048 Stevinweg 1 2628 CN Delft The Netherlands Copyright ©20142020 by H. van der Marel The content in these lecture notes, except for material credited to third parties, is licensed under a Creative Commons AttributionsNonCommercialSharedAlike 4.0 International License (CC BYNCSA). Third party material is shared under its own license and attribution. The text has been type set using the MikTex 2.9 implementation of LATEX. Graphs and diagrams were produced, if not mentioned otherwise, with Matlab and Inkscape. Preface This reader on reference systems for surveying and mapping has been initially compiled for the course Surveying and Mapping (CTB3310) in the 3rd year of the BScprogram for Civil Engineering. The reader is aimed at students at the end of their BSc program or at the start of their MSc program, and is used in several courses at Delft University of Technology. With the advent of the Global Positioning System (GPS) technology in mobile (smart) phones and other navigational devices almost anyone, anywhere on Earth, and at any time, can determine a three–dimensional position accurate to a few meters. -
HORIZONTAL DATUM CONVERSIONS Helping Vermonters Visualize Choice
PART 3: SECTION K HORIZONTAL DATUM CONVERSIONS Helping Vermonters Visualize Choice A Discussion, Examples, and Recommended Conversion Methodology for the Transformation of ARC/INFO Coverages from the North American Datum of 1927 to the North American Datum of 1983 in Vermont. This paper would not have been made available without the thoughtful writing of Milo Robinson, NGS Geodetic Advisor to the State of Vermont, and Gary Smith of Green Mountain Geographics. These recognized leaders in the VGIS community have all of our thanks. EXECUTIVE SUMMARY This paper outlines the steps required to convert ARC/INFO coverages from the North American Datum of 1927 (NAD27) to the more accurate North American Datum of 1983 (NAD83). Until recently, most contemporary maps of Vermont used the NAD27 as the reference datum. This made it the logical option for direct digital conversion and subsequent inclusion in the Vermont GIS database. With the arrival of the new Vermont Digital Orthophotography, expanded GPS activity and new maps from the U.S. Geological Survey being prepared using NAD83, it is increasingly necessary to convert existing NAD27 data to NAD83 to properly incorporate new information. The need of particular data developers or users to convert data depends on the location in the State, and particular mapping requirements. As this paper is released the Vermont counties for which NAD83 digital orthophotos are available are Rutland, Windsor, Franklin, Grand Isle and Addison, plus portions of Washington County. The remainder of Washington and Orange Counties will be available soon, with the remainder of Vermont to be processed in coming years. The remainder of this paper provides more detail on the datum change, suggests new data entry guidelines, details the coordinate and naming convention for Vermont's orthophotos, and provides the procedures for converting Vermont's NAD27 data to NAD83 using software by ESRI (Environmental Systems Research Institute, Redlands, CA). -
Datums in Texas NGS: Welcome to Geodesy
Datums in Texas NGS: Welcome to Geodesy Geodesy is the science of measuring and monitoring the size and shape of the Earth and the location of points on its surface. NOAA's National Geodetic Survey (NGS) is responsible for the development and maintenance of a national geodetic data system that is used for navigation, communication systems, and mapping and charting. ln this subject, you will find three sections devoted to learning about geodesy: an online tutorial, an educational roadmap to resources, and formal lesson plans. The Geodesy Tutorial is an overview of the history, essential elements, and modern methods of geodesy. The tutorial is content rich and easy to understand. lt is made up of 10 chapters or pages (plus a reference page) that can be read in sequence by clicking on the arrows at the top or bottom of each chapter page. The tutorial includes many illustrations and interactive graphics to visually enhance the text. The Roadmap to Resources complements the information in the tutorial. The roadmap directs you to specific geodetic data offered by NOS and NOAA. The Lesson Plans integrate information presented in the tutorial with data offerings from the roadmap. These lesson plans have been developed for students in grades 9-12 and focus on the importance of geodesy and its practical application, including what a datum is, how a datum of reference points may be used to describe a location, and how geodesy is used to measure movement in the Earth's crust from seismic activity. Members of a 1922 geodetic suruey expedition. Until recent advances in satellite technology, namely the creation of the Global Positioning Sysfem (GPS), geodetic surveying was an arduous fask besf suited to individuals with strong constitutions, and a sense of adventure. -
The Evolution of Earth Gravitational Models Used in Astrodynamics
JEROME R. VETTER THE EVOLUTION OF EARTH GRAVITATIONAL MODELS USED IN ASTRODYNAMICS Earth gravitational models derived from the earliest ground-based tracking systems used for Sputnik and the Transit Navy Navigation Satellite System have evolved to models that use data from the Joint United States-French Ocean Topography Experiment Satellite (Topex/Poseidon) and the Global Positioning System of satellites. This article summarizes the history of the tracking and instrumentation systems used, discusses the limitations and constraints of these systems, and reviews past and current techniques for estimating gravity and processing large batches of diverse data types. Current models continue to be improved; the latest model improvements and plans for future systems are discussed. Contemporary gravitational models used within the astrodynamics community are described, and their performance is compared numerically. The use of these models for solid Earth geophysics, space geophysics, oceanography, geology, and related Earth science disciplines becomes particularly attractive as the statistical confidence of the models improves and as the models are validated over certain spatial resolutions of the geodetic spectrum. INTRODUCTION Before the development of satellite technology, the Earth orbit. Of these, five were still orbiting the Earth techniques used to observe the Earth's gravitational field when the satellites of the Transit Navy Navigational Sat were restricted to terrestrial gravimetry. Measurements of ellite System (NNSS) were launched starting in 1960. The gravity were adequate only over sparse areas of the Sputniks were all launched into near-critical orbit incli world. Moreover, because gravity profiles over the nations of about 65°. (The critical inclination is defined oceans were inadequate, the gravity field could not be as that inclination, 1= 63 °26', where gravitational pertur meaningfully estimated. -
Mind the Gap! a New Positioning Reference
A new positioning reference Why is the United States adopting NATRF2022? What are we doing about this in Canada? We want to hear from you! • The Canadian Geodetic Survey and the United States • Improved compatibility with Global Navigation • The Canadian Geodetic Survey is working closely National Geodetic Survey have collaborated for Satellite Systems (GNSS), such as GPS, is driving this with the United States National Geodetic Survey in • Send us your comments, the challenges you over a century to provide the fundamental reference change. The geometric reference frames currently defining reference frames to ensure they will also foresee, and any concerns to help inform our path Mind the gap! systems for latitude, longitude and height for their used in Canada and the United States, although be suitable for Canada. forward to either of these organizations: respective countries. compatible with each other, are offset by 2.2 m from • Geodetic agencies from across Canada are A new positioning reference the Earth’s geocentre, whereas GNSS are geocentric. - Canadian Geodetic Survey: nrcan. • Together our reference systems have evolved collaborating on reference system improvements geodeticinformation-informationgeodesique. to meet today’s world of GPS and geographical • Real-time decimetre-level accuracies directly from through the Canadian Geodetic Reference System [email protected] NATRF2022 information systems, while supporting legacy datums GNSS satellites are expected to be available soon. Committee, a working committee of the Canadian -
JHR Final Report Template
TRANSFORMING NAD 27 AND NAD 83 POSITIONS: MAKING LEGACY MAPPING AND SURVEYS GPS COMPATIBLE June 2015 Thomas H. Meyer Robert Baron JHR 15-327 Project 12-01 This research was sponsored by the Joint Highway Research Advisory Council (JHRAC) of the University of Connecticut and the Connecticut Department of Transportation and was performed through the Connecticut Transportation Institute of the University of Connecticut. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Connecticut or the Connecticut Department of Transportation. This report does not constitute a standard, specification, or regulation. i Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. JHR 15-327 N/A 4. Title and Subtitle 5. Report Date Transforming NAD 27 And NAD 83 Positions: Making June 2015 Legacy Mapping And Surveys GPS Compatible 6. Performing Organization Code CCTRP 12-01 7. Author(s) 8. Performing Organization Report No. Thomas H. Meyer, Robert Baron JHR 15-327 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) University of Connecticut N/A Connecticut Transportation Institute 11. Contract or Grant No. Storrs, CT 06269-5202 N/A 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Connecticut Department of Transportation Final 2800 Berlin Turnpike 14. Sponsoring Agency Code Newington, CT 06131-7546 CCTRP 12-01 15. Supplementary Notes This study was conducted under the Connecticut Cooperative Transportation Research Program (CCTRP, http://www.cti.uconn.edu/cctrp/). -
Evolution of NAD 83 in the United States: Journey from 2D Toward 4D
Evolution of NAD 83 in the United States: Journey from 2D toward 4D Richard A. Snay1 Abstract: In 1986, Canada, Greenland, and the United States adopted the North American Datum of 1983 (NAD 83) to replace the North American Datum of 1927 as their official spatial reference system for geometric positioning. The rigor of the original NAD 83 realization benefited from the extensive use of electronic distance measuring instrumentation and from the use of both TRANSIT Doppler observations and very long baseline interferometry observations. However, the original NAD 83 realization predated the widespread use of the global po- sitioning system and the use of continuously operating reference stations. Consequently, NAD 83 has evolved significantly in the United States since 1986 to embrace these technological advances, as well as to accommodate improvements in the understanding of crustal motion. This paper traces this evolution from what started as essentially a two-dimensional (2D) reference frame and has been progressing toward a four-dimensional (4D) frame. In anticipation of future geodetic advances, the U.S. National Geodetic Survey is planning to replace NAD 83 about a decade from now with a newer, more geocentric spatial reference system for geometric positioning. DOI: 10.1061/(ASCE)SU.1943- 5428.0000083. © 2012 American Society of Civil Engineers. CE Database subject headings: History; Datum; Transformations; Geodetic surveys; North America. Author keywords: History; Datum transformations; Dynamic datums; Crustal deformation; NAD 83. Introduction height, and how these three coordinates vary over time. NAD 27 provided a foundation for measuring only geodetic latitude and lon- In 1986 a group of institutions representing Canada, Greenland, and gitude; therefore, it is considered a horizontal datum. -
The History of Geodesy Told Through Maps
The History of Geodesy Told through Maps Prof. Dr. Rahmi Nurhan Çelik & Prof. Dr. Erol KÖKTÜRK 16 th May 2015 Sofia Missionaries in 5000 years With all due respect... 3rd FIG Young Surveyors European Meeting 1 SUMMARIZED CHRONOLOGY 3000 BC : While settling, people were needed who understand geometries for building villages and dividing lands into parts. It is known that Egyptian, Assyrian, Babylonian were realized such surveying techniques. 1700 BC : After floating of Nile river, land surveying were realized to set back to lost fields’ boundaries. (32 cm wide and 5.36 m long first text book “Papyrus Rhind” explain the geometric shapes like circle, triangle, trapezoids, etc. 550+ BC : Thereafter Greeks took important role in surveying. Names in that period are well known by almost everybody in the world. Pythagoras (570–495 BC), Plato (428– 348 BC), Aristotle (384-322 BC), Eratosthenes (275–194 BC), Ptolemy (83–161 BC) 500 BC : Pythagoras thought and proposed that earth is not like a disk, it is round as a sphere 450 BC : Herodotus (484-425 BC), make a World map 350 BC : Aristotle prove Pythagoras’s thesis. 230 BC : Eratosthenes, made a survey in Egypt using sun’s angle of elevation in Alexandria and Syene (now Aswan) in order to calculate Earth circumferences. As a result of that survey he calculated the Earth circumferences about 46.000 km Moreover he also make the map of known World, c. 194 BC. 3rd FIG Young Surveyors European Meeting 2 150 : Ptolemy (AD 90-168) argued that the earth was the center of the universe. -
Reference Systems for Surveying and Mapping Lecture Notes
Delft University of Technology Reference Systems for Surveying and Mapping Lecture notes Hans van der Marel ii The front cover shows the NAP (Amsterdam Ordnance Datum) ”datum point” at the Stopera, Amsterdam (picture M.M.Minderhoud, Wikipedia/Michiel1972). H. van der Marel Surveying and Mapping Lecture notes CTB3310 (Reference Systems for Surveying and Mapping) August 2014 Publisher: Faculty of Civil Engineering and Geosciences Delft University of Technology P.O. Box 5048 Stevinweg 1 2628 CN Delft The Netherlands Copyright ©2014 by H. van der Marel All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, scanning, recording or by any information storage and retrieval system, without written permission from the copyright owner. The text has been type set using the MikTex 2.9 implementation of LATEX. Graphs and diagrams were produced, if not mentioned otherwise, with Matlab and Inkscape. Contents 1 Introduction 1 2 2D Coordinate systems 3 2.1 2D Cartesian coordinates . 3 2.2 2D coordinate transformations . 4 3 3D Coordinate systems 7 3.1 3D Cartesian coordinates . 7 3.2 7-parameter similarity transformation . 9 4 Spherical and ellipsoidal coordinate systems 13 4.1 Spherical coordinates . 13 4.2 Geographic coordinates (ellipsoidal coordinates) . 14 4.3 Topocentric coordinates, azimuth and zenith angle . 18 4.4 Practical aspects of using latitude and longitude. 19 4.5 Spherical and ellipsoidal computations . 22 5 Map projections 25 6 Datum transformations and coordinate conversions 29 7 Vertical reference systems 33 8 Common reference systems and frames 37 8.1 International Terrestrial Reference System and Frames . -
CERI 7211/8211 Global Geodynamics
Earth’s Size I What are the early ideas on the Earth’s shape? I What are the qualitative observations against them? I Understand how Eratosthenes measured the Earth’s size (Fig. 2.1 of Lowry 2007). I His estimate of the Earth’s circumference is 46,250 km. 15 % greater than the modern value, 40,030 km. Earth’s Size cont’d I A French astronomer, Picard measured the length of one degree of meridian arc in 1671 using triangulation. He got 6372 km as the radius of the Earth: cf. modern value, 6371 km Earth’s Shape I Jean Richer’s finding (1672) that his accurate pendulum clock, calibrated in Paris, was “losing 2m 30s” (i.e., indicated an increased period of the pendulum!) on an equatorial island of Cayenne. I What does it imply about the shape of the Earth? q l I Hint: T = 2π g I What was Newton’s idea on the shape of the Earth? Oblate or prolate? I How was the length of a degree of meridian measured? Earth’s Gravity I Newton’s law of universal gravitation: m M F = −G ^r r 2 I Gravitational acceleration M a = −G ^r G r 2 I Gravitational potential M U = −G G r I How to measure aG? I How to measure G? I see https://www.aps.org/publications/ apsnews/201605/big-g.cfm Earth’s Gravity cont’d I What is the mass and the mean density of the Earth? I Kepler’s thirs law: 4π2 GM = a3; (1) T 2 where G is the gravitational constant, M is the mass of a planet, T is the period of the orbital motion and a is the semi-major axis of the orbit.