Mathematical Geodesy Maa-6.3230
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Remote Pilot – Small Unmanned Aircraft Systems Study Guide
F FAA-G-8082-22 U.S. Department of Transportation Federal Aviation Administration Remote Pilot – Small Unmanned Aircraft Systems Study Guide August 2016 Flight Standards Service Washington, DC 20591 This page intentionally left blank. Preface The Federal Aviation Administration (FAA) has published the Remote Pilot – Small Unmanned Aircraft Systems (sUAS) Study Guide to communicate the knowledge areas you need to study to prepare to take the Remote Pilot Certificate with an sUAS rating airman knowledge test. This Remote Pilot – Small Unmanned Aircraft Systems Study Guide is available for download from faa.gov. Please send comments regarding this document to [email protected]. Remote Pilot – Small Unmanned Aircraft Systems Study Guide i This page intentionally left blank. Remote Pilot – Small Unmanned Aircraft Systems Study Guide ii Table of Contents Introduction ........................................................................................................................... 1 Obtaining Assistance from the Federal Aviation Administration (FAA) .............................................. 1 FAA Reference Material ...................................................................................................................... 1 Chapter 1: Applicable Regulations .......................................................................................... 3 Chapter 2: Airspace Classification, Operating Requirements, and Flight Restrictions .............. 5 Introduction ........................................................................................................................................ -
Geodetic Surveying, Earth Modeling, and the New Geodetic Datum of 2022
Geodetic Surveying, Earth Modeling, and the New Geodetic Datum of 2022 PDH330 3 Hours PDH Academy PO Box 449 Pewaukee, WI 53072 (888) 564-9098 www.pdhacademy.com [email protected] Geodetic Surveying Final Exam 1. Who established the U.S. Coast and Geodetic Survey? A) Thomas Jefferson B) Benjamin Franklin C) George Washington D) Abraham Lincoln 2. Flattening is calculated from what? A) Equipotential surface B) Geoid C) Earth’s circumference D) The semi major and Semi minor axis 3. A Reference Frame is based off how many dimensions? A) two B) one C) four D) three 4. Who published “A Treatise on Fluxions”? A) Einstein B) MacLaurin C) Newton D) DaVinci 5. The interior angles of an equilateral planar triangle adds up to how many degrees? A) 360 B) 270 C) 180 D) 90 6. What group started xDeflec? A) NGS B) CGS C) DoD D) ITRF 7. When will NSRS adopt the new time-based system? A) 2022 B) 2020 C) Unknown due to delays D) 2021 8. Did the State Plane Coordinate System of 1927 have more zones than the State Plane Coordinate System of 1983? A) No B) Yes C) They had the same D) The State Plane Coordinate System of 1927 did not have zones 9. A new element to the State Plane Coordinate System of 2022 is: A) The addition of Low Distortion Projections B) Adjoining tectonic plates C) Airborne gravity collection D) None of the above 10. The model GRAV-D (Gravity for Redefinition of the American Vertical Datum) created will replace _____________ and constitute the new vertical height system of the United States A) Decimal degrees B) Minutes C) NAVD 88 D) All of the above Introduction to Geodetic Surveying The early curiosity of man has driven itself to learn more about the vastness of our planet and the universe. -
Geodesy in the 21St Century
Eos, Vol. 90, No. 18, 5 May 2009 VOLUME 90 NUMBER 18 5 MAY 2009 EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION PAGES 153–164 geophysical discoveries, the basic under- Geodesy in the 21st Century standing of earthquake mechanics known as the “elastic rebound theory” [Reid, 1910], PAGES 153–155 Geodesy and the Space Era was established by analyzing geodetic mea- surements before and after the 1906 San From flat Earth, to round Earth, to a rough Geodesy, like many scientific fields, is Francisco earthquakes. and oblate Earth, people’s understanding of technology driven. Over the centuries, it In 1957, the Soviet Union launched the the shape of our planet and its landscapes has developed as an engineering discipline artificial satellite Sputnik, ushering the world has changed dramatically over the course because of its practical applications. By the into the space era. During the first 5 decades of history. These advances in geodesy— early 1900s, scientists and cartographers of the space era, space geodetic technolo- the study of Earth’s size, shape, orientation, began to use triangulation and leveling mea- gies developed rapidly. The idea behind and gravitational field, and the variations surements to record surface deformation space geodetic measurements is simple: Dis- of these quantities over time—developed associated with earthquakes and volcanoes. tance or phase measurements conducted because of humans’ curiosity about the For example, one of the most important between Earth’s surface and objects in Earth and because of geodesy’s application to navigation, surveying, and mapping, all of which were very practical areas that ben- efited society. -
NASA Space Geodesy Program: Catalogue of Site Information
NASA Technical Memorandum 4482 NASA Space Geodesy Program: Catalogue of Site Information M. A. Bryant and C. E. Noll March 1993 N93-2137_ (NASA-TM-4482) NASA SPACE GEODESY PROGRAM: CATALOGUE OF SITE INFORMATION (NASA) 688 p Unclas Hl146 0154175 v ,,_r NASA Technical Memorandum 4482 NASA Space Geodesy Program: Catalogue of Site Information M. A. Bryant McDonnell Douglas A erospace Seabro'ok, Maryland C. E. Noll NASA Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 1993 . _= _qum_ Table of Contents Introduction .......................................... ..... ix Map of Geodetic Sites - Global ................................... xi Map of Geodetic Sites - Europe .................................. xii Map of Geodetic Sites - Japan .................................. xiii Map of Geodetic Sites - North America ............................. xiv Map of Geodetic Sites - Western United States ......................... xv Table of Sites Listed by Monument Number .......................... xvi Acronyms ............................................... xxvi Subscription Application ..................................... xxxii Site Information ............................................. Site Name Site Number Page # ALGONQUIN 67 ............................ 1 AMERICAN SAMOA 91 ............................ 5 ANKARA 678 ............................ 9 AREQUIPA 98 ............................ 10 ASKITES 674 ........................... , 15 AUSTIN 400 ........................... -
Space Geodesy and Satellite Laser Ranging
Space Geodesy and Satellite Laser Ranging Michael Pearlman* Harvard-Smithsonian Center for Astrophysics Cambridge, MA USA *with a very extensive use of charts and inputs provided by many other people Causes for Crustal Motions and Variations in Earth Orientation Dynamics of crust and mantle Ocean Loading Volcanoes Post Glacial Rebound Plate Tectonics Atmospheric Loading Mantle Convection Core/Mantle Dynamics Mass transport phenomena in the upper layers of the Earth Temporal and spatial resolution of mass transport phenomena secular / decadal post -glacial glaciers polar ice post-glacial reboundrebound ocean mass flux interanaual atmosphere seasonal timetime scale scale sub --seasonal hydrology: surface and ground water, snow, ice diurnal semidiurnal coastal tides solid earth and ocean tides 1km 10km 100km 1000km 10000km resolution Temporal and spatial resolution of oceanographic features 10000J10000 y bathymetric global 1000J1000 y structures warming 100100J y basin scale variability 1010J y El Nino Rossby- 11J y waves seasonal cycle eddies timetime scale scale 11M m mesoscale and and shorter scale fronts physical- barotropic 11W w biological variability interaction Coastal upwelling 11T d surface tides internal waves internal tides and inertial motions 11h h 10m 100m 1km 10km 100km 1000km 10000km 100000km resolution Continental hydrology Ice mass balance and sea level Satellite gravity and altimeter mission products help determine mass transport and mass distribution in a multi-disciplinary environment Gravity field missions Oceanic -
The Longitude of the Mediterranean Throughout History: Facts, Myths and Surprises Luis Robles Macías
The longitude of the Mediterranean throughout history: facts, myths and surprises Luis Robles Macías To cite this version: Luis Robles Macías. The longitude of the Mediterranean throughout history: facts, myths and sur- prises. E-Perimetron, National Centre for Maps and Cartographic Heritage, 2014, 9 (1), pp.1-29. hal-01528114 HAL Id: hal-01528114 https://hal.archives-ouvertes.fr/hal-01528114 Submitted on 27 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. e-Perimetron, Vol. 9, No. 1, 2014 [1-29] www.e-perimetron.org | ISSN 1790-3769 Luis A. Robles Macías* The longitude of the Mediterranean throughout history: facts, myths and surprises Keywords: History of longitude; cartographic errors; comparative studies of maps; tables of geographical coordinates; old maps of the Mediterranean Summary: Our survey of pre-1750 cartographic works reveals a rich and complex evolution of the longitude of the Mediterranean (LongMed). While confirming several previously docu- mented trends − e.g. the adoption of erroneous Ptolemaic longitudes by 15th and 16th-century European cartographers, or the striking accuracy of Arabic-language tables of coordinates−, we have observed accurate LongMed values largely unnoticed by historians in 16th-century maps and noted that widely diverging LongMed values coexisted up to 1750, sometimes even within the works of one same author. -
Geodetic Position Computations
GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem. -
The Evolution of Earth Gravitational Models Used in Astrodynamics
JEROME R. VETTER THE EVOLUTION OF EARTH GRAVITATIONAL MODELS USED IN ASTRODYNAMICS Earth gravitational models derived from the earliest ground-based tracking systems used for Sputnik and the Transit Navy Navigation Satellite System have evolved to models that use data from the Joint United States-French Ocean Topography Experiment Satellite (Topex/Poseidon) and the Global Positioning System of satellites. This article summarizes the history of the tracking and instrumentation systems used, discusses the limitations and constraints of these systems, and reviews past and current techniques for estimating gravity and processing large batches of diverse data types. Current models continue to be improved; the latest model improvements and plans for future systems are discussed. Contemporary gravitational models used within the astrodynamics community are described, and their performance is compared numerically. The use of these models for solid Earth geophysics, space geophysics, oceanography, geology, and related Earth science disciplines becomes particularly attractive as the statistical confidence of the models improves and as the models are validated over certain spatial resolutions of the geodetic spectrum. INTRODUCTION Before the development of satellite technology, the Earth orbit. Of these, five were still orbiting the Earth techniques used to observe the Earth's gravitational field when the satellites of the Transit Navy Navigational Sat were restricted to terrestrial gravimetry. Measurements of ellite System (NNSS) were launched starting in 1960. The gravity were adequate only over sparse areas of the Sputniks were all launched into near-critical orbit incli world. Moreover, because gravity profiles over the nations of about 65°. (The critical inclination is defined oceans were inadequate, the gravity field could not be as that inclination, 1= 63 °26', where gravitational pertur meaningfully estimated. -
Space Geodesy and Earth System (SGES 2012) Aug 18-25, 2012, Shanghai, China
International Symposium & Summer School on Space Geodesy and Earth System (SGES 2012) Aug 18-25, 2012, Shanghai, China http://www.shao.ac.cn/meetings; http://www.shao.ac.cn/schools Venue: 3rd floor of Astronomical Building Shanghai Astronomical Observatory, Chinese Academy of Sciences International Symposium on Space Geodesy and Earth Sytem (SGES2012) August 18-21, 2011, Shanghai, China http://www.shao.ac.cn/meetings Contact Information: Email: [email protected]; [email protected] Emergency Phone: 13167075822 Police: 110; Ambulance: 120 Venue: 3rd floor, Astronomical Building Shanghai Astronomical Observatory, Chinese Academy of Sciences 80 Nandan Road, Shanghai 200030, China Available WIFI at the workshop with the password at conference hall doors Sponsors • International Association of Geodesy (IAG) Commission 1, 3, 4 • International Association of Geodesy Sub-Commission 2.6 • Asia-Pacific Space Geodynamics Program (APSG) • Global Geodetic Observing System (GGOS) • Shanghai Astronomical Observatory (SHAO), CAS 1 Scientific Organizing Committee (SOC) • Zuheir Altamimi (IGN, France) • Jeff T. Freymueller (Uni. Alaska, USA) • Richard S. Gross (JPL, NASA, USA) • Manabu Hashimoto (Kyoto Uni., Japan) • Shuanggen Jin (SHAO, CAS, China) (Chair) • Roland Klees (TUDelft, Netherlands) • Christopher Kotsakis (AUTH, Greece) • Michael Pearlman (Harvard-CFA, USA) • Wenke Sun (Grad. Uni. of CAS, China) • Harald Schuh (TU-Vienna, Austria) • Tonie van Dam (Univ. Luxembourg) • Jens Wickert (GFZ Potsdam, Germany) • Shimon Wdowinski (Univ. Miami, USA) Local -
Ohio's Model Curriculum for Social Studies (Adopted June 2019)
Ohio’s Model Curriculum Social Studies ADOPTED JUNE 2019 OHIO’S MODEL CURRICULUM | SOCIAL STUDIES | ADOPTED JUNE 2019 2 Table of Contents Grade 6 ................................................................................................... 62 Table of Contents ..................................................................................... 2 Strand: History ....................................................................................... 62 Strand: Geography ................................................................................. 63 Introduction to Ohio’s Model Curriculum ................................................... 3 Strand: Government ............................................................................... 67 Strand: Economics ................................................................................. 69 Social Studies Model Curriculum, K-8 ........................................................ 4 Grade 7 ................................................................................................... 73 Kindergarten ............................................................................................. 4 Strand: History ....................................................................................... 73 Strand: History ......................................................................................... 4 Strand: Geography ................................................................................. 79 Strand: Geography .................................................................................. -
Coordinate Systems in Geodesy
COORDINATE SYSTEMS IN GEODESY E. J. KRAKIWSKY D. E. WELLS May 1971 TECHNICALLECTURE NOTES REPORT NO.NO. 21716 COORDINATE SYSTElVIS IN GEODESY E.J. Krakiwsky D.E. \Vells Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N .B. Canada E3B 5A3 May 1971 Latest Reprinting January 1998 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. TABLE OF CONTENTS page LIST OF ILLUSTRATIONS iv LIST OF TABLES . vi l. INTRODUCTION l 1.1 Poles~ Planes and -~es 4 1.2 Universal and Sidereal Time 6 1.3 Coordinate Systems in Geodesy . 7 2. TERRESTRIAL COORDINATE SYSTEMS 9 2.1 Terrestrial Geocentric Systems • . 9 2.1.1 Polar Motion and Irregular Rotation of the Earth • . • • . • • • • . 10 2.1.2 Average and Instantaneous Terrestrial Systems • 12 2.1. 3 Geodetic Systems • • • • • • • • • • . 1 17 2.2 Relationship between Cartesian and Curvilinear Coordinates • • • • • • • . • • 19 2.2.1 Cartesian and Curvilinear Coordinates of a Point on the Reference Ellipsoid • • • • • 19 2.2.2 The Position Vector in Terms of the Geodetic Latitude • • • • • • • • • • • • • • • • • • • 22 2.2.3 Th~ Position Vector in Terms of the Geocentric and Reduced Latitudes . • • • • • • • • • • • 27 2.2.4 Relationships between Geodetic, Geocentric and Reduced Latitudes • . • • • • • • • • • • 28 2.2.5 The Position Vector of a Point Above the Reference Ellipsoid . • • . • • • • • • . .• 28 2.2.6 Transformation from Average Terrestrial Cartesian to Geodetic Coordinates • 31 2.3 Geodetic Datums 33 2.3.1 Datum Position Parameters . -
The History of Geodesy Told Through Maps
The History of Geodesy Told through Maps Prof. Dr. Rahmi Nurhan Çelik & Prof. Dr. Erol KÖKTÜRK 16 th May 2015 Sofia Missionaries in 5000 years With all due respect... 3rd FIG Young Surveyors European Meeting 1 SUMMARIZED CHRONOLOGY 3000 BC : While settling, people were needed who understand geometries for building villages and dividing lands into parts. It is known that Egyptian, Assyrian, Babylonian were realized such surveying techniques. 1700 BC : After floating of Nile river, land surveying were realized to set back to lost fields’ boundaries. (32 cm wide and 5.36 m long first text book “Papyrus Rhind” explain the geometric shapes like circle, triangle, trapezoids, etc. 550+ BC : Thereafter Greeks took important role in surveying. Names in that period are well known by almost everybody in the world. Pythagoras (570–495 BC), Plato (428– 348 BC), Aristotle (384-322 BC), Eratosthenes (275–194 BC), Ptolemy (83–161 BC) 500 BC : Pythagoras thought and proposed that earth is not like a disk, it is round as a sphere 450 BC : Herodotus (484-425 BC), make a World map 350 BC : Aristotle prove Pythagoras’s thesis. 230 BC : Eratosthenes, made a survey in Egypt using sun’s angle of elevation in Alexandria and Syene (now Aswan) in order to calculate Earth circumferences. As a result of that survey he calculated the Earth circumferences about 46.000 km Moreover he also make the map of known World, c. 194 BC. 3rd FIG Young Surveyors European Meeting 2 150 : Ptolemy (AD 90-168) argued that the earth was the center of the universe.