Military Range
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1.1.3 Helicopters
Information on the Company’s Activities / 1.1 Presentation of the Company 1.1.3 Helicopters Airbus Helicopters is a global leader in the civil and military The HIL programme, for which the Airbus Helicopters’ H160 rotorcraft market, offering one of the most complete and modern was selected in 2017, was initially scheduled for launch range of helicopters and related services. This product range in 2022 by the current military budget law. Launching the currently includes light single-engine, light twin-engine, medium programme earlier will enable delivery of the fi rst H160Ms to and medium-heavy rotorcraft, which are adaptable to all kinds of the French Armed Forces to be advanced to 2026. The H160 mission types based on customer needs. See “— 1.1.1 Overview” was designed to be a modular helicopter, enabling its military for an introduction to Airbus Helicopters. version, with a single platform, to perform missions ranging from commando infi ltration to air intercept, fi re support, and anti-ship warfare in order to meet the needs of the army, the Strategy navy and the air force through the HIL programme. The new fi ve-bladed H145 is on track for EASA and FAA Business Ambition certifi cation in 2020. To ensure these certifi cations, two fi ve- bladed prototypes have clocked more than 400 fl ight hours Airbus Helicopters continues to execute its ambition to lead the in extensive fl ight test campaigns in Germany, France, Spain, helicopter market, build end-to-end solutions and grow new Finland, and in South America. First deliveries of the new H145 VTOL businesses, while being fi nancially sound. -
3.3.4 Changes in the Shareholding of the Company
General Description of the Company and its Share Capital / 3.3 Shareholdings and Voting Rights 3.3.4 Changes in the Shareholding of the Company The evolution in ownership of the share capital and voting rights of the Company over the past three years is set forth in the table below: Position as of Position as of Position as of 31 December 2018 31 December 2017 31 December 2016 % of % of % of % of voting Number of % of voting Number of % of voting Number of Shareholders capital rights shares capital rights shares capital rights shares SOGEPA 11.06% 11.06 % 85,835,477 11.08% 11.08% 85,835,477 11.11% 11.11% 85,835,477 GZBV(1) 11.04% 11.04 %85,709,82211.07% 11.07% 85,709,822 11.09% 11.09% 85,709,822 SEPI 4.16% 4.16 %32,330,381 4.17% 4.17% 32,330,381 4.18% 4.18% 32,330,381 Sub-total New Shareholder Agt. 26.26% 26.28% 203,875,680 26.32% 26.33% 203,875,680 26.38% 26.38% 203,875,680 Foundation “SOGEPA” 0.00% 0.00% 0 0.00% 0.00% - 0.00% 0.00% 0 Public(2) 73.66% 73.72% 571,855,277 73.66% 73.67% 570,550,857 73.60% 73.62% 568,853,019 Own share buyback(3) 0.08% - 636,924 0.02% - 129,525 0.02% - 184,170 Total 100% 100% 776,367,881 100% 100% 774,556,062 100% 100% 772,912,869 (1) KfW & other German public entities. -
Investor Guide FY 2019
Airbus - Investor Guide FY 2019 A Global Leader Key Financials Contact . A global leader in aeronautics, space and related services 2018 2019 Head of Investor Relations and Financial Communication: . 86% civil revenues, 14% defence . Three reportable segments: Airbus, Helicopters, Defence and Space Revenues (€ bn) 63.7 70.5 Thorsten Fischer [email protected] +33 5 67 19 02 64 . Robust and diverse backlog EBIT adjusted (€ bn) 5.8 6.9 Institutionals and Analysts: . Global footprint with European industrial roots RoSbased on EBIT adjusted 9.2% 9.9% 2019 Consolidated Airbus 2019 Consolidated Airbus EBIT reported (€ bn) 5.0 1.3 Mohamed Denden [email protected] +33 5 82 05 30 53 External Revenue by Division Order Book in value by Region Net Income/ loss (€ bn) 3.1 -1.4 Philippe Gossard [email protected] +33 5 31 08 59 43 EPS reported (€) 3.94 -1.75 Pierre Lu [email protected] +65 82 92 08 00 Dividend (€) 1.65 1.80* Net Cash Position (€bn) 13.3 12.5 Individual Investors : [email protected] +33 800 01 2001 FCF before M&A and Customer Financing (€bn) 2.9 3.5 € 70.5 bn € 471 bn t/o defence € 38 bn Further information on https://www.airbus.com/investors.html t/o defence € 10.1 bn Click here for guidance . * Board proposal to be submitted to the AGM 2020, subject to AGM approval. Airbus 2019 External Revenue Split 2019 Deliveries by Programme (units) 2019 Orders & Deliveries Airbus 77% Asia Pacific 31% Middle East 9% Key Financials Helicopters 8% Europe 28% Latin America 6% 2018 2019 Defence and Space 15% North America 18% Other 8% . -
Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks
Purdue University Purdue e-Pubs Department of Electrical and Computer Department of Electrical and Computer Engineering Technical Reports Engineering August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Purdue University School of Electrical Engineering Shaheen Ahmad Purdue University School of Electrical Engineering Follow this and additional works at: https://docs.lib.purdue.edu/ecetr Pallett, Tobias J. and Ahmad, Shaheen, "Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks" (1991). Department of Electrical and Computer Engineering Technical Reports. Paper 317. https://docs.lib.purdue.edu/ecetr/317 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Shaheen Ahmad TR-EE 91-35 August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Lineal-ization and Neural Networks Tobias J. Pallett and Shaheen Ahmad Real-Time Robot Control Laboratory, School of Electrical Engineering, Purdue University West Lafayette, IN 47907 USA ABSTRACT In this report we determine the dynamic model of a miniature helicopter in hovering flight. Identification procedures for the nonlinear terms are also described. The model is then used to design several linearized control laws and a neural network controller. The controllers were then flight tested on a miniature helicopter flight control test bed the details of which are also presented in this report. Experimental performance of the linearized and neural network controllers are discussed. -
Helicopter Physics by Harm Frederik Althuisius López
Helicopter Physics By Harm Frederik Althuisius López Lift Happens Lift Formula Torque % & Lift is a mechanical aerodynamic force produced by the Lift is calculated using the following formula: 2 = *4 '56 Torque is a measure of how much a force acting on an motion of an aircraft through the air, it generally opposes & object causes that object to rotate. As the blades of a Where * is the air density, 4 is the velocity, '5 is the lift coefficient and 6 is gravity as a means to fly. Lift is generated mainly by the the surface area of the wing. Even though most of these components are helicopter rotate against the air, the air pushes back on the rd wings due to their shape. An Airfoil is a cross-section of a relatively easy to measure, the lift coefficient is highly dependable on the blades following Newtons 3 Law of Motion: “To every wing, it is a streamlined shape that is capable of generating shape of the airfoil. Therefore it is usually calculated through the angle of action there is an equal and opposite reaction”. This significantly more lift than drag. Drag is the air resistance attack of a specific airfoil as portrayed in charts much like the following: reaction force is translated into the fuselage of the acting as a force opposing the motion of the aircraft. helicopter via torque, and can be measured for individual % & -/ 0 blades as follows: ! = #$ = '()*+ ∫ # 1# , where $ is the & -. Drag Force. As a result the fuselage tends to rotate in the Example of a Lift opposite direction of its main rotor spin. -
Helicopter Flying Handbook (FAA-H-8083-21B) Chapter 8
Chapter 8 Ground Procedures and Flight Preparations Introduction Once a pilot takes off, it is up to him or her to make sound, safe decisions throughout the flight. It is equally important for the pilot to use the same diligence when conducting a preflight inspection, making maintenance decisions, refueling, and conducting ground operations. This chapter discusses the responsibility of the pilot regarding ground safety in and around the helicopter and when preparing to fly. 8-1 Preflight There are two primary methods of deferring maintenance on rotorcraft operating under part 91. They are the deferral Before any flight, ensure the helicopter is airworthy by provision of 14 CFR part 91, section 91.213(d) and an FAA- inspecting it according to the rotorcraft flight manual (RFM), approved MEL. pilot’s operating handbook (POH), or other information supplied either by the operator or the manufacturer. The deferral provision of 14 CFR section 91.213(d) is Remember that it is the responsibility of the pilot in command widely used by most pilot/operators. Its popularity is due (PIC) to ensure the aircraft is in an airworthy condition. to simplicity and minimal paperwork. When inoperative equipment is found during preflight or prior to departure, the In preparation for flight, the use of a checklist is important decision should be to cancel the flight, obtain maintenance so that no item is overlooked. [Figure 8-1] Follow the prior to flight, determine if the flight can be made under the manufacturer’s suggested outline for both the inside and limitations imposed by the defective equipment, or to defer outside inspection. -
Investor Guide Value Drivers 2017
Airbus SE - Investor Guide Value Drivers 2017 Market Outlook Portfolio Highlights Investment Case . The world’s passenger air traffic is set to grow at 4.4% per year between A world leading manufacturer of aircraft in the category of 100 seats and more . products through continuous innovation (A320neo, A330neo, Market leading 2017 and 2036 supporting strong aircraft demand. Best-selling single-aisle – A320 Family with New Engine Option (neo) entry A350 XWB) . 34,899 new deliveries between 2017-2036 into service 2016. Backlog of 6,141 aircraft (December 2017) . Record backlog supporting ramp-up plans . Single-aisle: 71% of units, Wide-bodies: 54% of value . Versatile and complementary wide-body A330 Family with neo version to Revenue visibility: backlog represents ~9 years of production at current production rates be delivered in summer 2018. Backlog of 317 aircraft (December 2017) . on family aircraft to 60 per month by mid-2019, 20 Years New Deliveries of Passenger and Freighter Aircraft (units) . New generation A350 XWB: designed to reduce operating costs, fuel burn Production rate increase A320 and CO2 emissions. Backlog of 712 aircraft (December 2017) on A350 XWB to 10 per month by end of 2018 . The world´s largest commercial aircraft – A380: in service with 13 . Partnership with Bombardier on C Series bringing together two complementary operators. Backlog of 95 aircraft (December 2017) product lines to rapidly extend our product offering into a fast growing market sector (subject to regulatory approvals) Commercial Aircraft Source: Airbus Global Market Forecast Passenger aircraft (≥ 100 seats) | Jet freight aircraft (>10 tonnes), Rounded figures to the nearest 10 A380 A330neo A350 XWB A321neo A global leader in the civil and military helicopter market . -
Paper Helicopters Preparation
Paper Helicopters Preparation CLASS LEVEL First – sixth class OBJECTIVES Content Strand and Strand Unit Energy & forces, Forces Through investigation the child should be enabled to come to appreciate that gravity is a force, SESE: Science Curriculum page 87. In this activity children explore how some things fall and how varying the size of the rotor blades, the shape of the rotor blades and the weight of a paper helicopter affect the way a helicopter spins. Skill development Through completing the strand units of the science curriculum the child should be enabled to design, plan and carry out simple experiments, having regard to one or two variables and the need to sequence tasks and tests, SESE: Science Curriculum page 79. This activity helps them understand fair testing by changing only one variable (i.e. shape only or length only) at a time. Investigating; experimenting; observing; analysing; measuring/timing; recording and communicating. CURRICULUM LINKS Mathematics Data / representing and interpreting data SESE: History Continuity and change over time/ technological and scientific developments over long periods BACKGROUND A previous activity on how things fall (i.e. the weight of the object is not a factor – Galileo and the Leaning Tower of Pisa) would help understanding of this activity, but not essential. MATERIALS/EQUIPMENT Paper, Ruler, Paper Clips, Scissors Templates of different sizes PREPARATION Test out a few thicknesses of paper/cardboard first to see that some of them spin. BACKGROUND The shape of the helicopter rotor blades make it spin INFORMATION when dropped from a height. Gravity pulls the helicopter down. The air resists the movement and pushes up each rotor separately, causing the helicopter to spin. -
AED Fleet Contact List
AED Fleet Contact List September 2021 Make Model Primary Office Operations - Primary Operations - Secondary Avionics - Primary Avionics - Secondary Maintenance - Primary Maintenance - Secondary Air Tractor All Models MKC Persky, David (FAA) Hawkins, Kenneth (FAA) Marsh, Kenneth (FAA) Rockhill, Thane D (FAA) BadHorse, Jim (FAA) Airbus A300/310 SEA Hutton, Rick (FAA) Dunn, Stephen H (FAA) Gandy, Scott A (FAA) Watkins, Dale M (FAA) Patzke, Roy (FAA) Taylor, Joe (FAA) Airbus A318-321 CEO/NEO SEA Culet, James (FAA) Elovich, John D (FAA) Watkins, Dale M (FAA) Gandy, Scott A (FAA) Hunter, Milton C (FAA) Dodd, Mike B (FAA) Airbus A330/340 SEA Culet, James (FAA) Robinson, David L (FAA) Flores, John A (FAA) Watkins, Dale M (FAA) DiMarco, Joe (FAA) Johnson, Rocky (FAA) Airbus A350 All Series SEA Robinson, David L (FAA) Culet, James (FAA) Watkins, Dale M (FAA) Flores, John A (FAA) Dodd, Mike B (FAA) Johnson, Rocky (FAA) Airbus A380 All Series SEA Robinson, David L (FAA) Culet, James (FAA) Flores, John A (FAA) Watkins, Dale M (FAA) Patzke, Roy (FAA) DiMarco, Joe (FAA) Aircraft Industries All Models, L-410 etc. MKC Persky, David (FAA) McKee, Andrew S (FAA) Marsh, Kenneth (FAA) Pruneda, Jesse (FAA) Airships All Models MKC Thorstensen, Donald (FAA) Hawkins, Kenneth (FAA) Marsh, Kenneth (FAA) McVay, Chris (FAA) Alenia C-27J LGB Nash, Michael A (FAA) Lee, Derald R (FAA) Siegman, James E (FAA) Hayes, Lyle (FAA) McManaman, James M (FAA) Alexandria Aircraft/Eagle Aircraft All Models MKC Lott, Andrew D (FAA) Hawkins, Kenneth (FAA) Marsh, Kenneth (FAA) Pruneda, -
Over Thirty Years After the Wright Brothers
ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph). -
2021 AHNA Options Catalogue
OPTIONS CATALOGUE 2021 Return to the Table of Contents Contact and Order Information U.S.A: +1 800-COPTER-1 [email protected] Canada: +1 800-267-4999 [email protected] © July 2021 Airbus Helicopters, all rights reserved. 002 | Options Catalogue 2021 Options Catalogue INTRODUCTION At Airbus Helicopters in North America, our engineering excellence and completions capability is an integral part of meeting your operating requirements. We are committed to providing OEM approved equipment modifications that further enhance your experience with our product line. This catalogue illustrates a grouping of our most important and interesting options available for the H125, H130, H135, and H145 aircraft families. Airbus Helicopters, Inc. is a certified “Design Approval Organization” by the Federal Aviation Administration. Airbus Helicopters Canada is a certified “Design Approval Organization” by Transport Canada. As customer centers, we have also been recognized as an Authorized Design Organization by the Airbus Helicopters Group (AH Group). For more information, please visit Airbus World or see contact information on the next page. Airbus Helicopters' Airbus World customer portal simplifies customers’ daily operations and allows them to focus on what really matters: their business. Air- bus World is an innovative online platform for accessing technical publications, placing orders and quotations, managing fleet data as well as warranty claims, and receiving quick responses to support and services questions. Airbus Helicopters reserves the right to make configuration and data changes at any time without notice. Information contained in this document is expressed in good faith and does not constitute any offer or contract with Airbus Helicopters. -
Helicopter and Tiltrotor Noise Modeling Procedures Document
ACRP Problem Statement: 89 Recommended Allocation: $250,000 Helicopter and Tiltrotor Noise Modeling Procedures Document Click here to see problem statement in IdeaHub: http://ideascale.com/t/UKsrZBVBS (Note: you must be a registered user in myACRP/IdeaHub.) TAGS: Airport Planning, Environment, Noise Impacts, Operations, Policy, Public Relations STAFF COMMENTS No comments. AVERAGE INDUSTRY RATING SUMMARY Committees1 Airport Community2 Achievable 3.00 3.50 Applicable 2.50 3.50 Implementable 2.00 3.50 Understandable 2.50 3.00 OVERALL 2.50 3.38 Notes: 1. Includes TRB aviation committees and committees from ACI-NA and AAAE. 2. Includes airport employees serving on active ACRP project panels. CLICK HERE TO SEE DETAILED INDUSTRY RATINGS CLICK HERE TO SEE DETAILED INDUSTRY COMMENTS ACRP OVERSIGHT COMMITTEE (AOC) DISPOSITION The average AOC rating among its voting members was 2.1 on a scale of 1 to 5. There was on discussion. The problem statement was not selected for ACRP funding and will be returned to the idea collection phase of ACRP’s IdeaHub. ACRP Problem Statement: 89 Helicopter and Tiltrotor Noise Modeling Procedures Document TAGS: Airport Planning, Environment, Noise Impacts, Operations, Policy, Public Relations OBJECTIVE The objective of this research effort is to develop written documentation on best available methods to model community noise generated from helicopter and tiltrotor operations. The document should address integrated and simulation modeling techniques, and methods for collecting and analyzing noise source data, and outline noise source development protocols. The language and format of the document shall be suitable for standards submission. BACKGROUND Existing noise modeling standards [SAE-AIR-1845; ICAO, Doc-29] for prediction of fixed wing community noise have been promulgated internationally and serve as the technical justification and defensible rationale upon which numerous noise models such as the Aviation Environmental Design Tool (AEDT) and the Integrated Noise Model (INM) rely.