Outsource Tests List Compilation (2020 to July 2021) 1 17 OHP

Total Page:16

File Type:pdf, Size:1020Kb

Outsource Tests List Compilation (2020 to July 2021) 1 17 OHP Outsource Tests List compilation (2020 to July 2021) 1 17 OHP-ACTH Stimulation 2 17-Ketosteroids 3 24 Hrs Metanephrines 4 24 Hrs urine MMA (methylmalonic acid) 5 24 Hrs Normetanephrines 6 5 Alpha - Dihydrotestosterone 7 5-Hydroxyindoleacetic Acid 8 Acetyl Choline Receptor Binding Antibody 9 Acute Leukemia Panel 10 Adenovirus Ag(In Stool) 11 Adenovirus IgG 12 Adenovirus IgM 13 Adrenaline, Plasma 14 Aldolase 15 Aldosterone Renin Ratio 16 Alkaptonuria, random urine 17 Alpha Thalassemia Mutation Detection 18 Amebiasis Antigen ,Stool 19 Amino acids, random urine 20 AML FISH Panel 21 AML with normal cytogenetics 22 Angiotensin Coverting Enzyme (ACE Level) 23 Annexin V Level 24 Anti Aquaporin 25 Anti Beta 2 Glycoprotein 1 IgM. IgG 26 Anti Centromere Antibody 27 Anti Diuretic Hormone (Vasopressin), Plasma 28 Anti DNASE B Serum 29 Anti Endomysial Antibody-IgA 30 Anti Ethanolamine Antibody IgG 31 Anti Ethanolamine Antibody IgM 32 Anti Gastric Parietal Cell Antibody 33 Anti Gliadin Antibody IgA 34 Anti Gliadin Antibody IgG 35 Anti Gliadin Antibody IgM 36 Anti Histone Antibody 37 Anti Inositol Antibody IgG 38 Anti Inositol Antibody IgM 39 Anti Insulin Antibody 40 Anti Intrinsic Factor Antibody (AIFA) 41 Anti Jo1 Antibody 42 Anti Liver Kidney Microsomal Antibody 43 Anti MuSK Antibody 44 Anti Nuclear Antibody -IFA (Hep-2 ) 45 Anti Parietal cell Antibody 46 Anti Phosphatidylserine Antibody IgG 47 Anti Phosphatidylserine Antibody IgM 48 Anti Phospholipase A2 Receptor (PLA2R) IgG Serum 49 Anti phosphatidylcholine Antibody IgG 50 Anti phosphatidylcholine Antibody IgM 51 Anti PM / Scl Antibodies 52 Anti Saccharomyces cerevisiae IgA 53 Anti Saccharomyces cerevisiae IgG 54 Anti Scl-70 Antibody( ELISA) 55 Anti Single Stranded DNA Antibody 56 Anti Sm Immunoblot 57 Anti Sm/ RNP Antibody 58 Anti Sperm Antibody 59 Anti Striated/Skeletal Muscle Antibody 60 Anti U1- RNP Immunoblot 61 Anti U1-Sn RNP /Sm RNP 62 Anti-NMDA Receptor Encephalitis IgG ABS By IFA 63 APC Gene mutation detection 64 Arsenic Level 65 Aspergillus Fumigatus IgA 66 Aspergillus Fumigatus IgG 67 Aspergillus Fumigatus IgM 68 Aspergillus specific IgE Autoimmune Liver Profile : AMA M2, CENPB, SP 100, GP 210, LKM1, LC1, SLA /LP SSA /55 KD 69 70 Beta Thalassemia Mutation Detection 71 Beta 2 Microglobulin 72 Borrelia Burgdorferi IgM, IgG 73 Buprenorphine(Urine) 74 C1 Esterase inhibitor, Serum 75 C1Q Antibody 76 CALR Gene Mutation 77 Campylobacter Ag 78 Candida Albicans IgA 79 Candida Albicans IgG 80 Candida Albicans IgM 81 Catecholamine,Plasma 82 Catecholamines (24 Hrs Urine) 83 Catecholamines Spot Urine 84 CD58 85 CEBPA Mutation Detection 86 CFTR Gene Mutation 87 Chimerism Pre-Transplantation 88 Chromosome analysis - Hematological disorder 89 Chronic Lymphoproliferative Disorders 90 CLL Panel by FISH 91 Clonidine GH Stimulation Test 92 Coeliac Fusion TTG+DGP 93 Complement 2 94 CD-55 95 CD-59 96 Corticosterone 97 Cortisol-ACTH Stimulation 98 Cryptococcal DNA PCR 99 Crytosporidium Antigen ,Stool 100 CSF Measles Antibody IgM, IgG 101 CSF Oligoclonal Bands 102 CYFRA 21.1 (Lung) 103 Cystatin C 104 Cystic Fibrosis Delta Gene Mutation 105 Delta Bilirubin 106 Dengue PCR 107 DHEAS-ACTH Stimulation 108 Diabetic Autoimmune Panel 109 Digitoxine 110 Diphtheria IgG 111 DNA-Ploidy S-Phase 112 Dopamine 113 Duchenne/Becker Muscular Dystrophy Gene Mutation 114 Ecstasy/MDMA (Urine) 115 EGFR Mutation Detection 116 Enzymatic CO2 117 Epinephrine 118 Factor II, Functional 119 Factor VIII and Factor IX activity (Hemophilia) 120 Factor X, Functional 121 Factor XI, Functional 122 Factor XII, Functional 123 Factor XIII, Clot Solubility 5M Urea 124 Factor-V Leiden Mutation 125 Fecal Calprotectin, Stool 126 Fecal Elastase 127 Filaria PCR 128 FLT3 Mutation Detection 129 Fluorescent Treponemal IgM By IFA 130 Food Intolerance Test 131 Free Androgen Index 132 Fructosamine 133 Galactomanan ( Serum) 134 Giardia Antigen ,Stool 135 Gliadin II IgA/IgG 136 Glutamic Acid Decarboxylase (GAD-65) 137 Gycosaminoglycan, Urine 138 HCV Genotyping 139 Hepatitis Delta Virus Antibody (Total) 140 Hepatitis Delta IgG 141 Hepcidin 142 Herpes PCR (CSF) 143 Heterophile Antibody ( Infectious Monospot.) 144 HFE Gene Mutation 145 H1N1 PCR 146 HLA B-27 (OS) Flow cytometry 147 HLA-A B C DRB1 DQB1 HR Loci Typing 148 HOMA-IR 149 Human Epididymis Protein 4 150 Human IFN gamma protein 151 Human Neuron Specific Enolase (NSE) 152 Anti-Tyrosine Phosphatase IgG 153 Insulin Autoantibody IgG 154 Islet Cell Antibody 155 IGF Binding Protein-3 156 IgG Index (CSF) 157 IgG4 Serum 158 IGRA ( interferon gamma release assay) Test 159 IL-6 Serum 160 Immunofixation Electrophoresis 161 Immunofluorescence Assay IgG, IgA, IgM, C3 (Tissue) 162 Inorganic Phosphorus 163 Insulin , Fasting 164 Insulin , Post Prandial ,2Hr 165 Insulin Random 166 Insulin Resistance 167 Interluekin 6( IL - 6) 168 Interlukin-10 169 Intrensic factor Ab. 170 Intrinsic Factor IGG Antibody 171 Japanese Encephalitis Virus RT-PCR 172 JO-1 Antibody 173 Kappa/Lambda Light Chain Quantitative, Random Urine 174 Lead, blood 175 Legionella Pneumophila Antigen Detection Urine 176 Leptospira DNA PCR 177 Leucocyte Alkaline Phosphatase 178 Leukemia Translocation Panel 179 Lung Markers - EGFR, KRAS, ALK, BRAF, ROS 180 Lymphoma IHC 181 Malaria PCR 182 Metabolic Screen 183 Metanephrine Free, Plasma 184 Microsatellite Instability (MSI) 185 MPL Mutation Detection 186 Mycoreal 187 Myelin Basic Protein (MBP ) 188 Myelodysplastic Syndrome 189 Neisseria Gonorrhoea DNA PCR 190 Neonatal Karyotyping 191 Neurotropic Virus Panel 192 New born screening for Acylcarnitine and amino acids 193 Nicotine/Cotinine (Urine) 194 NK Cell evaluation blood 195 Nor-Adrenaline, Plasma 196 Norepinephrine 197 NPM1 Mutation Detection 198 Parvo Virus B19 DNA 199 Parvo Virus B-19 IgG Antibody 200 Parvo Virus B-19 IgM 201 Paul Bunnel Test, Serum 202 Phencyclidine Urine 203 Placental Alkaline Phosphatase 204 Plasma Renin Level 205 PML RARA T(15:17) By FISH 206 Porphyrins Quantitative 207 Prealbumin 208 Precipitating antibodies ( IgG ) 209 Prothrombin 20210 mutation 210 Pyruvate / Pyruvic Acid 211 Quantiferon Gold test IT (QFT) 212 RA Factor Quantitative Analysis 213 RA Factor-IgA 214 RA Factor-IgG 215 RA Factor-IgM 216 RAAS Screening Serum 217 ROMA (Risk Of Ovarian Malignancy Algorithm ) 218 ROMA index With HE4 219 ROMA Test 220 Rotavirus Antigen ,Stool 221 Rubella PCR 222 Scl-70 223 Semen Fructose Level 224 Serum Immunofixation Electrophoresis 225 Stool for Calprotectin level 226 Stool for Rota Virus 227 Streptococcus Group B Antigen 228 Sulphur Level 229 T. Hexosaminidase A. 230 Tetanus Toxoid IgG Quantitative 231 Thiopurine Methyltransferase 232 Thrombocheck Acquired Panel 233 Thrombocheck Hereditary Panel 234 TNF Alpha/ IL-1O Ratio 235 Toxocara Antibody 236 Toxoplasma PCR 237 TPMT Genotyping 238 Trichinella Antibody 239 Tricylcic Antidepressants(TCA) 240 Tryptase Serum 241 TSH Receptor 242 Tumor Necrosis Factor (TNF) -Alpha 243 Urine Immunofixation Electrophoresis 244 Urine Phosphourea 245 Vitamin A ( Retinol ) 246 Vitamin B1 ( Thiamine ) 247 Vitamin C ( Ascorbic Acid ) 248 Vitamin E ( Tocopherol ) 249 Vitamin K 250 Zinc, Serum 251 B Type Natriuretic Peptide (BNP) 252 Beta 2 Glycoprotein IgG, IgM 253 Beta 2 Microglobulin (Serum) 254 Beta 2 Microglobulin (Urine) 255 Citrate 24 hr urine 256 Factor VIII Functional 257 Factor VIII Inhibitor 258 Factor VII 259 Inhibin B 260 Oxalate 24 hr urine 261 Anti Platelet Antibody 262 Anti RNP Antibody 263 Anti - U1 RNP.
Recommended publications
  • The Intrinsically Disordered Proteins of Myelin in Health and Disease
    cells Review Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease Arne Raasakka 1 and Petri Kursula 1,2,* 1 Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway; [email protected] 2 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland * Correspondence: [email protected] Received: 30 January 2020; Accepted: 16 February 2020; Published: 18 February 2020 Abstract: Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins have common attributes, including small size, hydrophobic segments, multifunctionality, longevity, and regions of intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin, and we correlate these with their various functions, including susceptibility to post-translational modifications, function in protein–protein and protein–membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved. Keywords: myelin; intrinsically disordered protein; multiple sclerosis; peripheral neuropathies; myelination; protein folding; protein–membrane interaction; protein–protein interaction 1.
    [Show full text]
  • How Does Protein Zero Assemble Compact Myelin?
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2020 doi:10.20944/preprints202005.0222.v1 Peer-reviewed version available at Cells 2020, 9, 1832; doi:10.3390/cells9081832 Perspective How Does Protein Zero Assemble Compact Myelin? Arne Raasakka 1,* and Petri Kursula 1,2 1 Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway 2 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland; [email protected] * Correspondence: [email protected] Abstract: Myelin protein zero (P0), a type I transmembrane protein, is the most abundant protein in peripheral nervous system (PNS) myelin – the lipid-rich, periodic structure that concentrically encloses long axonal segments. Schwann cells, the myelinating glia of the PNS, express P0 throughout their development until the formation of mature myelin. In the intramyelinic compartment, the immunoglobulin-like domain of P0 bridges apposing membranes together via homophilic adhesion, forming a dense, macroscopic ultrastructure known as the intraperiod line. The C-terminal tail of P0 adheres apposing membranes together in the narrow cytoplasmic compartment of compact myelin, much like myelin basic protein (MBP). In mouse models, the absence of P0, unlike that of MBP or P2, severely disturbs the formation of myelin. Therefore, P0 is the executive molecule of PNS myelin maturation. How and when is P0 trafficked and modified to enable myelin compaction, and how disease mutations that give rise to incurable peripheral neuropathies alter the function of P0, are currently open questions. The potential mechanisms of P0 function in myelination are discussed, providing a foundation for the understanding of mature myelin development and how it derails in peripheral neuropathies.
    [Show full text]
  • Pathological Relationships Involving Iron and Myelin May Constitute a Shared Mechanism Linking Various Rare and Common Brain Diseases
    Rare Diseases ISSN: (Print) 2167-5511 (Online) Journal homepage: http://www.tandfonline.com/loi/krad20 Pathological relationships involving iron and myelin may constitute a shared mechanism linking various rare and common brain diseases Moones Heidari, Sam H. Gerami, Brianna Bassett, Ross M. Graham, Anita C.G. Chua, Ritambhara Aryal, Michael J. House, Joanna F. Collingwood, Conceição Bettencourt, Henry Houlden, Mina Ryten , John K. Olynyk, Debbie Trinder, Daniel M. Johnstone & Elizabeth A. Milward To cite this article: Moones Heidari, Sam H. Gerami, Brianna Bassett, Ross M. Graham, Anita C.G. Chua, Ritambhara Aryal, Michael J. House, Joanna F. Collingwood, Conceição Bettencourt, Henry Houlden, Mina Ryten , John K. Olynyk, Debbie Trinder, Daniel M. Johnstone & Elizabeth A. Milward (2016) Pathological relationships involving iron and myelin may constitute a shared mechanism linking various rare and common brain diseases, Rare Diseases, 4:1, e1198458, DOI: 10.1080/21675511.2016.1198458 To link to this article: http://dx.doi.org/10.1080/21675511.2016.1198458 © 2016 The Author(s). Published with View supplementary material license by Taylor & Francis Group, LLC© Moones Heidari, Sam H. Gerami, Brianna Bassett, Ross M. Graham, Anita C.G. Chua, Ritambhara Aryal, Michael J. House, Joanna Accepted author version posted online: 22 Submit your article to this journal JunF. Collingwood, 2016. Conceição Bettencourt, PublishedHenry Houlden, online: Mina 22 Jun Ryten, 2016. for the UK Brain Expression Consortium (UKBEC), John K. Olynyk, Debbie Trinder, Daniel M. Johnstone,Article views: and 541 Elizabeth A. Milward. View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=krad20 Download by: [University of Newcastle, Australia] Date: 17 May 2017, At: 19:57 RARE DISEASES 2016, VOL.
    [Show full text]
  • Myelination Is Delayed During Postnatal Brain Development in the Mdx Mouse Model of Duchenne Muscular Dystrophy Azeez Aranmolate, Nathaniel Tse and Holly Colognato*
    Aranmolate et al. BMC Neurosci (2017) 18:63 DOI 10.1186/s12868-017-0381-0 BMC Neuroscience RESEARCH ARTICLE Open Access Myelination is delayed during postnatal brain development in the mdx mouse model of Duchenne muscular dystrophy Azeez Aranmolate, Nathaniel Tse and Holly Colognato* Abstract Background: In Duchenne muscular dystrophy (DMD), the loss of the dystrophin component of the dystrophin- glycoprotein complex (DGC) compromises plasma membrane integrity in skeletal muscle, resulting in extensive muscle degeneration. In addition, many DMD patients exhibit brain defcits in which the cellular etiology remains poorly understood. We recently found that dystroglycan, a receptor component of the DGC that binds intracellularly to dystrophin, regulates the development of oligodendrocytes, the myelinating glial cells of the brain. Results: We investigated whether dystrophin contributes to oligodendroglial function and brain myelination. We found that oligodendrocytes express up to three dystrophin isoforms, in conjunction with classic DGC components, which are developmentally regulated during diferentiation and in response to extracellular matrix engagement. We found that mdx mice, a model of DMD lacking expression of the largest dystrophin isoform, have delayed myelination and inappropriate oligodendrocyte progenitor proliferation in the cerebral cortex. When we prevented the expression of all oligodendroglial dystrophin isoforms in cultured oligodendrocytes using RNA interference, we found that later stages of oligodendrocyte maturation
    [Show full text]
  • Can the Fact That Myelin Proteins Are Old and Break Down Explain the Origin of Multiple Sclerosis in Some People?
    Journal of Clinical Medicine Review Can the Fact That Myelin Proteins Are Old and Break down Explain the Origin of Multiple Sclerosis in Some People? Roger J. W. Truscott * and Michael G. Friedrich Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-2-4298-3503; Fax: +61-2-4221-8130 Received: 11 July 2018; Accepted: 12 September 2018; Published: 14 September 2018 Abstract: Recent discoveries may change the way that multiple sclerosis (MS) is viewed, particularly with regard to the reasons for the untoward immune response. The fact that myelin proteins are long-lived, and that by the time we are adults, they are extensively degraded, alters our perspective on the reasons for the onset of autoimmunity and the origin of MS. For example, myelin basic protein (MBP) from every human brain past the age of 20 years, is so greatly modified, that it is effectively a different protein from the one that was laid down in childhood. Since only a subset of people with such degraded MBP develop MS, a focus on understanding the mechanism of immune responses to central nervous system (CNS) antigens and cerebral immune tolerance appear to be worthwhile avenues to explore. In accord with this, it will be productive to examine why all people, whose brains contain large quantities of a “foreign antigen”, do not develop MS. Importantly for the potential causation of MS, MBP from MS patients breaks down differently from the MBP in aged controls. If the novel structures formed in these MS-specific regions are particularly antigenic, it could help explain the origin of MS.
    [Show full text]
  • LRP1 Regulates Peroxisome Biogenesis and Cholesterol
    RESEARCH ARTICLE LRP1 regulates peroxisome biogenesis and cholesterol homeostasis in oligodendrocytes and is required for proper CNS myelin development and repair Jing-Ping Lin1, Yevgeniya A Mironova2, Peter Shrager3, Roman J Giger1,2,4,5* 1Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, United States; 2Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States; 3Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States ; 4Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; 5Interdepartmental Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States Abstract Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling molecule broadly expressed by neurons and glia. In adult mice, global inducible (Lrp1flox/ flox;CAG-CreER) or oligodendrocyte (OL)-lineage specific ablation (Lrp1flox/flox;Pdgfra-CreER) of Lrp1 attenuates repair of damaged white matter. In oligodendrocyte progenitor cells (OPCs), Lrp1 is required for cholesterol homeostasis and differentiation into mature OLs. Lrp1-deficient OPC/ OLs show a strong increase in the sterol-regulatory element-binding protein-2 yet are unable to maintain normal cholesterol levels, suggesting more global metabolic deficits. Mechanistic studies revealed a decrease in peroxisomal biogenesis factor-2 and fewer peroxisomes in OL processes. / *For correspondence: Treatment of Lrp1À À OPCs with cholesterol or activation of peroxisome proliferator-activated [email protected] receptor-g with pioglitazone alone is not sufficient to promote differentiation; however, when combined, cholesterol and pioglitazone enhance OPC differentiation into mature OLs. Collectively, Competing interests: The our studies reveal a novel role for Lrp1 in peroxisome biogenesis, lipid homeostasis, and OPC authors declare that no competing interests exist.
    [Show full text]
  • Impaired Expression of Tetraspanin 32 (TSPAN32) in Memory T Cells of Patients with Multiple Sclerosis
    brain sciences Article Impaired Expression of Tetraspanin 32 (TSPAN32) in Memory T Cells of Patients with Multiple Sclerosis Maria Sofia Basile 1, Emanuela Mazzon 2 , Katia Mangano 1 , Manuela Pennisi 1, Maria Cristina Petralia 2, Salvo Danilo Lombardo 1 , Ferdinando Nicoletti 1 , Paolo Fagone 1,* and Eugenio Cavalli 2 1 Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; sofi[email protected] (M.S.B.); [email protected] (K.M.); [email protected] (M.P.); [email protected] (S.D.L.); [email protected] (F.N.) 2 IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; [email protected] (E.M.); [email protected] (M.C.P.); [email protected] (E.C.) * Correspondence: [email protected] Received: 29 November 2019; Accepted: 14 January 2020; Published: 17 January 2020 Abstract: Tetraspanins are a conserved family of proteins involved in a number of biological processes. We have previously shown that Tetraspanin-32 (TSPAN32) is significantly downregulated upon activation of T helper cells via anti-CD3/CD28 stimulation. On the other hand, TSPAN32 is marginally modulated in activated Treg cells. A role for TSPAN32 in controlling the development of autoimmune responses is consistent with our observation that encephalitogenic T cells from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mice exhibit significantly lower levels of TSPAN32 as compared to naïve T cells. In the present study, by making use of ex vivo and in silico analysis, we aimed to better characterize the pathophysiological and diagnostic/prognostic role of TSPAN32 in T cell immunity and in multiple sclerosis (MS).
    [Show full text]
  • Identification of Three Forms of Human Myelin Basic Protein by Cdna Cloning
    Proc. Nail. Acad. Sci. USA Vol. 83, pp. 4962-4966, July 1986 Neurobiology Identification of three forms of human myelin basic protein by cDNA cloning (myelin proteins/oligodendroglia/alternative splicing) JOHN KAMHOLZ*, FRANCESCA DE FERRAt, CARMIE PUCKETT*, AND ROBERT LAZZARINI* *Laboratory of Molecular Genetics, National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892; and tThe Wistar Institute, 36th Street and Spruce, Philadelphia, PA 19104 Communicated by Roscoe 0. Brady, March 10, 1986 ABSTRACT We have isolated cDNA clones encoding three Unlike the case in the mouse, only a single MBP species separate forms of human myelin basic protein (MBP), 21.5, has been identified in human myelin. The human 18.5-kDa 18.5, and 17.2 kDa, and have determined the nucleotide MBP has been well characterized, and its amino acid se- sequence of each. The three forms share a common sequence quence has been determined directly (6). Although minor but differ by the inclusion of a 26-residue amino acid sequence bands, both larger (7) and smaller (8), are sometimes seen on near the N terminus of the 21.5-kDa protein or by the absence protein gels of human MBP, these forms have not been ofan 11-residue amino acid sequence near the C terminus ofthe isolated or characterized. 17.2-kDa protein. The sequences either added to or deleted We have examined the question ofmultiple forms ofhuman from the major 18.5-kDa MBP correspond exactly to exons 2 MBP by assembling a large collection of human MBP cDNA and 5 of the mouse MBP gene, suggesting that the human and clones and examining their structure by restriction endonu- mouse genes have similar exon structures.
    [Show full text]
  • Obinutuzumab-Induced B Cell Depletion Reduces Spinal Cord Pathology in a CD20 Double Transgenic Mouse Model of Multiple Sclerosis
    International Journal of Molecular Sciences Article Obinutuzumab-Induced B Cell Depletion Reduces Spinal Cord Pathology in a CD20 Double Transgenic Mouse Model of Multiple Sclerosis Thomas Breakell 1, Sabine Tacke 1, Verena Schropp 1, Henrik Zetterberg 2,3,4,5, Kaj Blennow 2,3, Eduard Urich 6 and Stefanie Kuerten 1,* 1 Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; [email protected] (T.B.); [email protected] (S.T.); [email protected] (V.S.) 2 Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, 43141 Mölndal, Sweden; [email protected] (H.Z.); [email protected] (K.B.) 3 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden 4 Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 5 UK Dementia Research Institute at UCL, London WC1E 6BT, UK 6 Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center, 4070 Basel, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-9131-8522264 Received: 26 August 2020; Accepted: 16 September 2020; Published: 18 September 2020 Abstract: B cell-depleting therapies have recently proven to be clinically highly successful in the treatment of multiple sclerosis (MS). This study aimed to determine the effects of the novel type II anti-human CD20 (huCD20) monoclonal antibody (mAb) obinutuzumab (OBZ) on spinal cord degeneration in a B cell-dependent mouse model of MS. Double transgenic huCD20xHIGR3 (CD20dbtg) mice, which express human CD20, were immunised with the myelin fusion protein MP4 to induce experimental autoimmune encephalomyelitis (EAE).
    [Show full text]
  • Neurofibromatosis Type 2 Tumor Suppressor Protein Is Expressed in Oligodendrocytes and Regulates Cell Proliferation and Process Formation
    RESEARCH ARTICLE Neurofibromatosis type 2 tumor suppressor protein is expressed in oligodendrocytes and regulates cell proliferation and process formation Andrea Toledo1,2☯, Elena Grieger1☯, Khalad Karram3, Helen Morrison4, Stephan L. Baader1* a1111111111 1 Institute of Anatomy, Anatomy and Cell Biology, Bonn, Germany, 2 Laboratorio de Cultivo de Tejidos, SeccioÂn BiologõÂa Celular, Facultad de Ciencias, UdelaR, Montevideo, Uruguay, 3 Institute for Molecular a1111111111 Medicine, Johannes Gutenberg University Mainz, Mainz, Germany, 4 Leibniz Institute for Age Research, a1111111111 Fritz Lipmann Institute, Jena, Germany a1111111111 a1111111111 ☯ These authors contributed equally to this work. * [email protected] Abstract OPEN ACCESS Citation: Toledo A, Grieger E, Karram K, Morrison The neurofibromatosis type 2 (NF2) tumor suppressor protein Merlin functions as a negative H, Baader SL (2018) Neurofibromatosis type 2 regulator of cell growth and actin dynamics in different cell types amongst which Schwann tumor suppressor protein is expressed in cells have been extensively studied. In contrast, the presence and the role of Merlin in oligo- oligodendrocytes and regulates cell proliferation dendrocytes, the myelin forming cells within the CNS, have not been elucidated. In this and process formation. PLoS ONE 13(5): e0196726. https://doi.org/10.1371/journal. work, we demonstrate that Merlin immunoreactivity was broadly distributed in the white mat- pone.0196726 ter throughout the central nervous system. Following Merlin expression during development Editor: Fernando de Castro, Instituto Cajal-CSIC, in the cerebellum, Merlin could be detected in the cerebellar white matter tract at early post- SPAIN natal stages as shown by its co-localization with Olig2-positive cells as well as in adult brain Received: June 2, 2017 sections where it was aligned with myelin basic protein containing fibers.
    [Show full text]
  • Oligodendrocytes Secrete Exosomes Containing Major Myelin and Stress-Protective Proteins: Trophic Support for Axons?
    1446 DOI 10.1002/prca.200700522 Proteomics Clin. Appl. 2007, 1, 1446–1461 RESEARCH ARTICLE Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Eva-Maria Krämer-Albers1, Niko Bretz1*, Stefan Tenzer2*, Christine Winterstein1*, Wiebke Möbius3, Hendrik Berger2, Klaus-Armin Nave3, Hansjörg Schild2 and Jacqueline Trotter1 1 Department of Biology, Unit of Molecular Cell Biology, University of Mainz, Germany 2 Institute for Immunology, University of Mainz, Germany 3 Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany Oligodendrocytes synthesize the CNS myelin sheath by enwrapping axonal segments with Received: June 1, 2007 elongations of their plasma membrane. Spatial and temporal control of membrane traffic is a Revised: July 14, 2007 prerequisite for proper myelin formation. The major myelin proteolipid protein (PLP) accumu- Accepted: August 1, 2007 lates in late endosomal storage compartments and multivesicular bodies (MVBs). Fusion of MVBs with the plasma membrane results in the release of the intralumenal vesicles, termed exosomes, into the extracellular space. Here, we show that cultured oligodendrocytes secrete exosomes carrying major amounts of PLP and 2030-cyclic-nucleotide-phosphodiesterase (CNP). These exosomes migrated at the characteristic density of 1.1021.14 g/mL in sucrose density gradients. Treatment of primary oligodendrocytes with the calcium-ionophore ionomycin mark- edly increased the release of PLP-containing exosomes, indicating that oligodendroglial exosome secretion is regulated by cytosolic calcium levels. A proteomic analysis of the exosomal fraction isolated by sucrose density centrifugation revealed in addition to PLP and CNP, myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) as constituents of oligoden- droglial exosomes, together with a striking group of proteins with proposed functions in the relief of cell stress.
    [Show full text]
  • An Immunological Perspective Glatiramer Acetate Treatment Of
    Glatiramer Acetate Treatment of Multiple Sclerosis: An Immunological Perspective Michael K. Racke and Amy E. Lovett-Racke This information is current as J Immunol 2011; 186:1887-1890; ; of September 23, 2021. doi: 10.4049/jimmunol.1090138 http://www.jimmunol.org/content/186/4/1887 Downloaded from References This article cites 41 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/186/4/1887.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 23, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Glatiramer Acetate Treatment of Multiple Sclerosis: An Immunological Perspective Michael K. Racke*,† and Amy E. Lovett-Racke‡ Glatiramer acetate (GA) has been used as an immuno- Early studies modulatory agent for the treatment of relapsing-remit- GA, a random polymer of glutamic acid, lysine, alanine, and ting multiple sclerosis (MS) in the United States since tyrosine, was initially examined by Michael Sela, Ruth Arnon, 1996.
    [Show full text]