International Journal of Molecular Sciences Article Obinutuzumab-Induced B Cell Depletion Reduces Spinal Cord Pathology in a CD20 Double Transgenic Mouse Model of Multiple Sclerosis Thomas Breakell 1, Sabine Tacke 1, Verena Schropp 1, Henrik Zetterberg 2,3,4,5, Kaj Blennow 2,3, Eduard Urich 6 and Stefanie Kuerten 1,* 1 Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
[email protected] (T.B.);
[email protected] (S.T.);
[email protected] (V.S.) 2 Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, 43141 Mölndal, Sweden;
[email protected] (H.Z.);
[email protected] (K.B.) 3 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden 4 Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 5 UK Dementia Research Institute at UCL, London WC1E 6BT, UK 6 Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center, 4070 Basel, Switzerland;
[email protected] * Correspondence:
[email protected]; Tel.: +49-9131-8522264 Received: 26 August 2020; Accepted: 16 September 2020; Published: 18 September 2020 Abstract: B cell-depleting therapies have recently proven to be clinically highly successful in the treatment of multiple sclerosis (MS). This study aimed to determine the effects of the novel type II anti-human CD20 (huCD20) monoclonal antibody (mAb) obinutuzumab (OBZ) on spinal cord degeneration in a B cell-dependent mouse model of MS. Double transgenic huCD20xHIGR3 (CD20dbtg) mice, which express human CD20, were immunised with the myelin fusion protein MP4 to induce experimental autoimmune encephalomyelitis (EAE).