Selection for Seed Size in Lotus Corniculatus L Arlen D

Total Page:16

File Type:pdf, Size:1020Kb

Selection for Seed Size in Lotus Corniculatus L Arlen D Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1964 Selection for seed size in Lotus corniculatus L Arlen D. Draper Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics Commons Recommended Citation Draper, Arlen D., "Selection for seed size in Lotus corniculatus L " (1964). Retrospective Theses and Dissertations. 2659. https://lib.dr.iastate.edu/rtd/2659 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 64—10,636 microfilmed exactly as received DRAPER, Arien D, 1930- SELECTION FOR SEED SIZE IN LOTUS CORNICULATUS L. Iowa State University of Science and Technology Ph.D., 1964 Biology-Genetic s University Microfilms, Inc., Ann Arbor, Michigan SELECTION FOR SEED SIZE IN LOTUS CORNICULATUS L. by Arien D Draper A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Crop Breeding Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State University . Of Science and Technology Ames, Iowa 1964 ii TABLE OF CONTENTS Page INTRODUCTION 1 REVIEW OF LITERATURE 3 Introduction 3 Classification 4 History 5 Description 6 Cytology 10 Seed Size 10 Recurrent Selection 18 MATERIALS AND METHODS 23 Preliminary Seed Size Study 23 Selection of Parental Clones 24 Recurrent Selection for Seed Size 25 Progeny Seedling Vigor Studies 28 S EXPERIMENTAL RESULTS 31 Preliminary Seed Size Study 31 Selection of Parental Clones 33 Recurrent Selection for Seed Size 35 Progeny Seedling Vigor Studies 55 DISCUSSION 62 SUMMARY AND CONCLUSIONS 67 LITERATURE CITED 70 ACKNOWLEDGEMENTS 76 1 INTRODUCTION Birdsfoot trefoil, Lotus corniculatus L., is a forage legume rela­ tively new to the United States and has received less attention from agricultural workers than many other legumes. It has some desirable characteristics of interest to those wanting a long-lived pasture species. Its major weakness is a lack of seedling vigor, which has created problems in obtaining good stands. Major emphasis of research with this crop has been directed toward methods of reducing competition from other species and increasing the yield of adult plants. Forage yields, however, are dependent on stand establishment and since there will be competition from other species, perhaps the logical approach to the problem is to increase the seedling vigor of birdsfoot trefoil. A relationship between seed size and seedling vigor has been noted by investigators in many crop species. Information regarding this rela­ tionship was meager for birdsfoot trefoil. This study consisted of a preliminary seed size test, seed size evaluations of 2 varieties, 3 cycles of simple recurrent selection for seed size, and a seedling vigor evalua­ tion of open pollination progenies of some cycle 3 lines. This was done with regard to the following objectives: 1. To determine whether differences could be detected in seedling vigor of plots established from large, medium, and small seed sizes of the same variety. 2. To determine whether forage yields of adult plants from large, medium, and small seed sizes of the variety were different. 3. To determine the range in seed size of Viking and Empire varieties 2 of birdsfoot trefoil. 4. To find the plants in each variety producing the largest seed for initiation of a recurrent selection program for seed size. 5. To determine whether the mean seed size of Viking and Empire could be increased by recurrent selection procedures. 6. To determine if the larger seed produced by recurrent selection would give rise to seedlings with greater seedling vigor. 3 REVIEW OF LITERATURE Introduction Birdsfoot trefoil (Lotus corniculatus L.) is a long-lived legume which, during the past 30 years, has come into extensive use as a forage species in North America. It has been used as a forage crop in Europe for over 200 years and has been recognized for almost 300 years. How and when it was introduced into the United States is unknown. However, it received no serious attention as a potential domesticated species until the late 1930's. It has come into prominence as a desirable forage species because it appears capable of filling a niche not filled by the other forage legumes. Birdsfoot trefoil is capable of reseeding itself even under quite severe grazing and will survive in soils that are imperfectly drain­ ed. It is winter hardy, has a long life potential, and a fair yield which is distributed fairly well over the growing season. It is comparable to alfalfa in feed value, but does not cause bloat in the grazing animals. It appears that birdsfoot trefoil may provide a forage species that will serve as a supplement to the other forage legumes rather than a replacement. A recent survey (completed in January 1964) by several agencies work­ ing cooperatively, indicated that the 1963 acreage of birdsfoot trefoil in Iowa was approximately 165,000 acres. This estimate included all pastures containing birdsfoot trefoil whether seeded alone, or in mixtures with other forage species. This estimate is a little more than double a similar estimate made five years ago. This is a small acreage when compar­ ed with the other legume forages but it does indicate that birdsfoot 4 trefoil is gaining acceptance among Iowa farmers. Along with its favorable attributes, birdsfoot trefoil has a weakness which limits its wider use. Its greatest weakness is that it lacks seed­ ling vigor. It is unable to withstand severe competition from weeds, companion crops, or other forage species when seeded in mixtures., -Stand establishment often is hazardous under present cultural practices. Studies of the relationship of seed size and subsequent seedling vigor, in this species and others, have shown that, in general, large seeds have an advantage over small seeds because a seedling tends to have a growth rate in proportion to its initial seed size. The faster growing seedling has a better opportunity to cope with its environment and attain successful establishment. The present study was an effort to increase the seed size of two com­ mon agronomic varieties (Empire and Viking) of birdsfoot trefoil by a recurrent selection breeding scheme with the hope that seedling vigor also would be increased. Classification The Leguminosae, one of the largest families of the Angiosperms, contains three subfamilies: Mimosoideae, Caesalpinioideae and Papili- onoideae. To the latter subfamily belong the tribes Trifolieae and Loteae. The important genera Trifolium, Melilotus, and Medicago belong to the Trifolieae and Lotus is a member of the Loteae. Isely (1951) reported that of the approximately 150 species comprising Loteae, 100 or more belong to the genus Lotus. Also, the natural range of some of the species has been broadened by the activities of man, particularly that of Lotus 5 corniculatus, which is now present on all the continents. The classification of L. corniculatus has been extended to subspecies or varieties to include the broad-leaved and narrow-leaved forms. The narrow-leaved form is referred to by MacDonald (1946) as L. corniculatus var. tenuifolius, et tenuis, Gaudien. However, Isely (1951) used a study by Tome and Johnson (1945) as justification for considering the narrow- leaved form as a separate species, Lotus tenuis Kit. Some refer to it as L. tenuifolius; it is considered by many others as a variety or subspecies, L. corniculatus var. tenuifolius L. To treat it as a separate species seems reasonable since Dawson (1941) reported the chromosome numbers as 2n = 24 and 2n = 12 for L. corniculatus and L. tenuis respectively, even though they are morphologically similar. In the broad-leaved form of L. corniculatus, MacDonald (1946) mention­ ed two distinct types. The erect form is common in Continental Europe and is referred to as common birdsfoot trefoil, L. corniculatus var. vul­ garis, Koch. The dwarf form of the British Isles is the second type and is referred to as L. corniculatus var. arvensis Pers. Many authors choose to ignore the varietal names when writing about L. corniculatus. History MacDonald (1946) made an extensive review of literature concerning all aspects of birdsfoot trefoil and cited evidence that it has been used as an agricultural crop plant to a varied extent for only about 200 years, but was recognized as early as 1597. Isely (1951) reported that L. comi culatus now occurs throughout Europe, with the exception of the northern extremity, in much of western. Asia, North Africa, Australia, New Zealand, 6 and scattered areas of North America. Its appearance in the United States however, was rather late. McKee and Schoth (1941) suggested that birdsfoot trefoil first became naturalized in eastern New York and western Oregon and spread over a relatively large area. Specimens in herbaria show that plants of birdsfoot trefoil were collected in New Jersey as early as 1876, in North Carolina and New York in 1885, and in Alabama in 1888. Nelson (1917) first mentioned it in the northwestern United States in 1917, where it occurred as an escape plant from ballast at Linnton, Oregon. Studies investigating the potentialities of birdsfoot trefoil have been conducted at experiment stations rather extensively for the past 20-25 years. It appears to be best adapted to and used in the northcentral region, pacific northwest, and northeast regions of the United States. It appears to have gained a permanent foothold as a forage species in these areas. Its particular value seems to be in association with certain grass species in pastures which are to be maintained for a relatively long period.
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Physiological and Molecular Basis of Salt and Waterlogging
    Comparative molecular physiology of salt and waterlogging tolerance in Lotus tenuis and L. corniculatus: towards a perennial pasture legume for saline land Natasha Lea Teakle This thesis is presented for the degree of Doctor of Philosophy The University of Western Australia School of Plant Biology Faculty of Natural and Agricultural Sciences June 2008 ABSTRACT Salinity and waterlogging interact to reduce the growth of most crop and pasture species. Species that are productive on saline-waterlogging land are needed for Australian farming systems. One option is Lotus tenuis, a perennial legume widely grown for pasture in the flood-prone and salt-affected Pampa region of Argentina. To identify mechanisms responsible for the adverse interaction between salinity and waterlogging, Lotus tenuis with a reputation for tolerance was compared with L. corniculatus, the most widely cultivated Lotus species. The physiology of salt and waterlogging tolerance in L. tenuis (4 cultivars) was evaluated, and compared with L. corniculatus (3 cultivars). Overall, L. tenuis cultivars accumulated less Na+ and Cl-, and more K+ in shoots than L. corniculatus cultivars, when exposed to 200 mM NaCl for 28 d in aerated or in anoxic (stagnant agar) solutions. In a NaCl dose response experiment (0 to 400 mM NaCl in aerated solution), Lotus tenuis (cv. Chaja) accumulated half as much Cl- in its shoots than L. corniculatus (cv. San Gabriel) at all external NaCl concentrations, and about 30% less shoot Na+ in treatments above 250 mM NaCl. Ion distributions in shoots were determined for plants at 200 mM NaCl; L. tenuis (cv. Chaja) accumulated about half as much Cl- in old leaves, young leaves and stems, compared with concentrations in L.
    [Show full text]
  • Redmond Watershed Preserve King County, Washington
    Vascular Plant List: Redmond Watershed Preserve King County, Washington Partial list covers plants found in the 800-acre watershed managed by the city of Redmond primarily as a nature preserve. Habitats include shady 90-year old forest, sunny disturbed utility corridors, ephemeral drainages, perennial streams, ponds and other wetlands. The preserve has 7 miles of trails (see external links below), most of which are multi-use and a couple of which are ADA accessible. List originally compiled by Fred Weinmann in February 2002. Ron Bockelman made additions in 2018. 128 species (83 native, 45 introduced) Directions: 21760 NE Novelty Hill Rd, Redmond, WA 98052 is the physical address. Drive 2.3 miles east on Novelty Hill Rd from its junction with Avondale Rd. Turn left at the entrance across from 218 Ave NE and continue to the parking lot, information kiosk, and restrooms. Ownership: City of Redmond Access: Open during daylight hours. No pets allowed. Permits: None External Links: https://www.wta.org/go-hiking/hikes/redmond-watershed-preserve https://www.alltrails.com/parks/us/washington/redmond-watershed-preserve Coordinates: 47.695943°, -122.051161° Elevation: 300 - 700 feet Key to symbols: * = Introduced species. ? = Uncertain identification. + = Species is represented by two or more subspecies or varieties in Washington; the species in this list has not been identified to subspecies or variety. ! = Species is not known to occur near this location based on specimen records in the PNW Herbaria database, and may be misidentified. # = Species name could not be resolved to an accepted name; the name may be misspelled. Numeric superscripts after a scientific name indicates the name was more broadly circumscribed in the past, and has since been split into two or more accepted taxa in Washington.
    [Show full text]
  • Atlas of the Flora of New England: Fabaceae
    Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states.
    [Show full text]
  • Oregon City Nuisance Plant List
    Nuisance Plant List City of Oregon City 320 Warner Milne Road , P.O. Box 3040, Oregon City, OR 97045 Phone: (503) 657-0891, Fax: (503) 657-7892 Scientific Name Common Name Acer platanoides Norway Maple Acroptilon repens Russian knapweed Aegopodium podagraria and variegated varieties Goutweed Agropyron repens Quack grass Ailanthus altissima Tree-of-heaven Alliaria officinalis Garlic Mustard Alopecuris pratensis Meadow foxtail Anthoxanthum odoratum Sweet vernalgrass Arctium minus Common burdock Arrhenatherum elatius Tall oatgrass Bambusa sp. Bamboo Betula pendula lacinata Cutleaf birch Brachypodium sylvaticum False brome Bromus diandrus Ripgut Bromus hordeaceus Soft brome Bromus inermis Smooth brome-grasses Bromus japonicus Japanese brome-grass Bromus sterilis Poverty grass Bromus tectorum Cheatgrass Buddleia davidii (except cultivars and varieties) Butterfly bush Callitriche stagnalis Pond water starwort Cardaria draba Hoary cress Carduus acanthoides Plumeless thistle Carduus nutans Musk thistle Carduus pycnocephalus Italian thistle Carduus tenufolius Slender flowered thistle Centaurea biebersteinii Spotted knapweed Centaurea diffusa Diffuse knapweed Centaurea jacea Brown knapweed Centaurea pratensis Meadow knapweed Chelidonium majou Lesser Celandine Chicorum intybus Chicory Chondrilla juncea Rush skeletonweed Cirsium arvense Canada Thistle Cirsium vulgare Common Thistle Clematis ligusticifolia Western Clematis Clematis vitalba Traveler’s Joy Conium maculatum Poison-hemlock Convolvulus arvensis Field Morning-glory 1 Nuisance Plant List
    [Show full text]
  • Floristic Discoveries in Delaware, Maryland, and Virginia
    Knapp, W.M., R.F.C. Naczi, W.D. Longbottom, C.A. Davis, W.A. McAvoy, C.T. Frye, J.W. Harrison, and P. Stango, III. 2011. Floristic discoveries in Delaware, Maryland, and Virginia. Phytoneuron 2011-64: 1–26. Published 15 December 2011. ISSN 2153 733X FLORISTIC DISCOVERIES IN DELAWARE, MARYLAND, AND VIRGINIA WESLEY M. KNAPP 1 Maryland Department of Natural Resources Wildlife and Heritage Service Wye Mills, Maryland 21679 [email protected] ROBERT F. C. NACZI The New York Botanical Garden Bronx, New York 10458-5126 WAYNE D. LONGBOTTOM P.O. Box 634 Preston, Maryland 21655 CHARLES A. DAVIS 1510 Bellona Ave. Lutherville, Maryland 21093 WILLIAM A. MCAVOY Delaware Natural Heritage and Endangered Species Program 4876 Hay Point, Landing Rd. Smyrna, Delaware 19977 CHRISTOPHER T. FRYE Maryland Department of Natural Resources Wildlife and Heritage Service Wye Mills, Maryland 21679 JASON W. HARRISON Maryland Department of Natural Resources Wildlife and Heritage Service Wye Mills, Maryland 21679 PETER STANGO III Maryland Department of Natural Resources, Wildlife and Heritage Service, Annapolis, Maryland 21401 1 Author for correspondence ABSTRACT Over the past decade studies in the field and herbaria have yielded significant advancements in the knowledge of the floras of Delaware, Maryland, and the Eastern Shore of Virginia. We here discuss fifty-two species newly discovered or rediscovered or whose range or nativity is clarified. Eighteen are additions to the flora of Delaware ( Carex lucorum var. lucorum, Carex oklahomensis, Cyperus difformis, Cyperus flavicomus, Elymus macgregorii, Glossostigma cleistanthum, Houstonia pusilla, Juncus validus var. validus, Lotus tenuis, Melothria pendula var. pendula, Parapholis incurva, Phyllanthus caroliniensis subsp.
    [Show full text]
  • Flavonoids and Isoflavonoids Biosynthesis in the Model
    plants Review Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration Margarita García-Calderón 1, Carmen M. Pérez-Delgado 1, Peter Palove-Balang 2, Marco Betti 1 and Antonio J. Márquez 1,* 1 Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; [email protected] (M.G.-C.); [email protected] (C.M.P.-D.); [email protected] (M.B.) 2 Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +34-954557145 Received: 28 April 2020; Accepted: 18 June 2020; Published: 20 June 2020 Abstract: Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase.
    [Show full text]
  • Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S
    Prepared in cooperation with the U.S. Department of Agriculture Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S. Department of Agriculture Conservation Programs Open-File Report 2020–1037 U.S. Department of the Interior U.S. Geological Survey A B C D E F G H I Cover. A, Bumble bee (Bombus sp.) visiting a locowood flower. Photograph by Stacy Simanonok, U.S. Geological Survey (USGS). B, Honey bee (Apis mellifera) foraging on yellow sweetclover (Melilotus officinalis). Photograph by Sarah Scott, USGS. C, Two researchers working on honey bee colonies in a North Dakota apiary. Photograph by Elyssa McCulloch, USGS. D, Purple prairie clover (Dalea purpurea) against a backdrop of grass. Photograph by Stacy Simanonok, USGS. E, Conservation Reserve Program pollinator habitat in bloom. Photograph by Clint Otto, USGS. F, Prairie onion (Allium stellatum) along the slope of a North Dakota hillside. Photograph by Mary Powley, USGS. G, A researcher assesses a honey bee colony in North Dakota. Photograph by Katie Lee, University of Minnesota. H, Honey bee foraging on alfalfa (Medicago sativa). Photograph by Savannah Adams, USGS. I, Bee resting on woolly paperflower (Psilostrophe tagetina). Photograph by Angela Begosh, Oklahoma State University. Front cover background and back cover, A USGS research transect on a North Dakota Conservation Reserve Program field in full bloom. Photograph by Mary Powley, USGS. Forage and Habitat for Pollinators in the Northern Great Plains—Implications for U.S. Department of Agriculture Conservation Programs By Clint R.V. Otto, Autumn Smart, Robert S. Cornman, Michael Simanonok, and Deborah D. Iwanowicz Prepared in cooperation with the U.S.
    [Show full text]
  • On the Polymorphism of Cyanogenesis in Lotus Corniculatus L
    Heredity (1983) 51 (3), 537—547 1983. The Genetical Society of Great Britain ONTHE POLYMORPHISM OF CYANOGENESIS IN LOTUS CORNICULATUS L. IX. SELECTIVE HERBIVORY IN NATURAL POPULATIONS AT PORTHDAFARCH, ANGLESEY S. G. COMPTON, S. G. BEESLEY AND DAVID A. JONES Unit of Genetics, University of Hull, Hull HU6 lAX Received1O.iii.83 SUMMARY The L. corniculatus populations at Porthdafarch are polymorphic for the charac- ters of leaf cyanogenesis, petal cyanogenesis and keel petal colour. Plants with cyanogenic leaves and petals occur less frequently on the sea cliffs than inland and previous studies have obtained circumstantial evidence of a link between the dine in leaf cyanogenesis and the distribution of selectively grazing molluscs. Counts of leaf and petal damage have confirmed that plants on the cliffs are grazed less heavily than those growing inland and have demonstrated that individuals with acyanogenic leaves or petals are liable to be chewed more heavily than their cyanogenic neighbours. Most of the damage was attributable to feeding by molluscs and it is concluded that herbivorous insects have only a minor role in the maintenance of the dines. 1. INTRODUCTION The population of Lotus corniculatus L. on the cliff along the S. W. facing coast of Porthdafarch, Holy Island, Anglesey contains a lower proportion of plants with cyanogenic leaves than two nearby populations less than 200 metres inland (Jones, 1962). Because this dine appeared to have been stable for several years and the two inland sites had essentially the same proportions of cyanogenic plants, in spite of being topographically very different, Ellis et a!., (1977) sought those environmental factors common to the inland sites by which they differed from the cliff site.
    [Show full text]
  • Original Research Paper R Lavanya Pharmacy
    VOLUME-7, ISSUE-4, APRIL-2018 • PRINT ISSN No 2277 - 8160 Original Research Paper Pharmacy LOTUS CORNICULATUS L.- A REVIEW Department of Pharmacy, Government Polytechnic for women, Nizamabad, R Lavanya Telangana, India. ABSTRACT : Lotus corniculatus L. (Fabaceae), commonly known as bird's foot trefoil, is a forage plant. It possesses cytotoxic, anti-inammatory, antibacterial and antifungal activity. The plant contains benzoic acid, transilin, isosalicin, soyasaponin I, dehydrosoyasaponin I, medicarpin-3-O-β-D-glucopyranoside, pharbitoside A and p-coumaric acid. This review article provides information on the pharmacological activities of Lotus corniculatus L. KEYWORDS : Lotus corniculatus L, Bird's-foot, cytotoxic. INTRODUCTION Lotus corniculatus L. is a perennial legume, popular in temperate leaets obovate–elliptic, usually blunt. Stipules vestigial. climates for pasture, hay and silage production[1]. All the parts of the plant contain cyanogenic glycosides(hydrogen cyanide)[2]. In Fruit:Straight,narrow,round,brown,opening,spreadingpod small quantities, hydrogen cyanide has been shown to stimulate (legume). respiration and improve digestion, it is also claimed to be of benet in the treatment of cancer. In excess, however, it can cause respiratory failure and even death. The owers of some forms of the plant contain traces of prussic acid and so the plants can become mildly toxic when owering[3]. Bird's-foot-trefoil grows to between 5 and 35 cm (2 and 13.5 inches) high, and from June to September produces bright yolk-yellow pea- like blooms that are often patterned with streaks of red (hence the “bacon and eggs” reference in one of its many common names). The “birds-foot” in the plant's most common name refers to the claw- like arrangement of its black seed pods, while trefoil comes from the leaves, which at rst glance appear to consist of three separate Figure 1: Lotus corniculatusL.
    [Show full text]
  • Biolology, Ecology and Relationships Between the Biological Cycles of Polyommatus Icarus with Lasius Niger, Lotus Corniculatus and Trifolium Repens
    Biolology, ecology and relationships between the biological cycles of Polyommatus icarus with Lasius niger, Lotus corniculatus and Trifolium repens Fanny Mallard* The table of contents Biology and ecology of the Common Blue butterfly Polyommatus icarus (Rottemburg, 1775) (Lepidoptera, Lycaenidae) .................................................... 1 Biology and ecology of the Small Black Ant Lasius niger (Linnaeus, 1758) (Hymenoptera, Formicidae) ..................................................................................................... 9 Biology and ecology of host plants of Polyommatus icarus butterfly : Lotus corniculatus (Linnaeus, 1753), Trifolium repens (Linnaeus, 1753) (Fabale, Fabaceae) .................................................................................................................... 14 Relationships between the biological cycles of Polyommatus icarus with Lasius niger, Lotus corniculatus and Trifolium repens .............................................................. 21 * F. Mallard Exploratory Ecology e-mail : [email protected] Reference of this article : Mallard F., 2019. Biolology, ecology and relationships between the biological cycles of Polyommatus icarus with Lasius niger, Lotus corniculatus and Trifolium repens. Exploratory Ecology, 1-22. F. Mallard - Exploratory Ecology – www.explorecology.com Biology and ecology of the Common Blue butterfly Polyommatus icarus (Rottemburg, 1775) (Lepidoptera, Lycaenidae) Latin name : Polyommatus icarus (Rottemburg, 1775) Vernacular names: Common
    [Show full text]
  • Birdsfoot Trefoil Lotus Corniculatus L
    birdsfoot trefoil Lotus corniculatus L. Synonyms: Lotus corniculatus var. arvensis (Schkuhr) Ser. ex DC., L. rechingeri Chrtkova-Zertova Other common names: birdfoot deervetch, bloomfell, cat’s clover, crowtoes, eggs-and-bacon, ground honeysuckle Family: Fabaceae Invasiveness Rank: 65 The invasiveness rank is calculated based on a species’ ecological impacts, biological attributes, distribution, and response to control measures. The ranks are scaled from 0 to 100, with 0 representing a plant that poses no threat to native ecosystems and 100 representing a plant that poses a major threat to native ecosystems. Description Similar species: Birdsfoot trefoil can be confused with Birdsfoot trefoil is a perennial plant that grows from a yellow sweetclover (Melilotus officinalis), which is an deep taproot. Stems are erect to trailing, branched, introduced legume. Yellow sweetclover can be glabrous to sparsely hairy, and 10 to 80 cm long. Leaves distinguished from birdsfoot trefoil by the presence of are alternate and pinnately compound with five leaflets trifoliate leaves, flowers that are arranged in many- each, resembling the foot of a bird. Leaf axes are 2 to 5 flowered terminal and axillary racemes, and corollas that mm long. Leaflets are asymmetrical, elliptic to obovate, are 4 to 7 mm long (DiTomaso and Healy 2007, 5 to 20 mm long, and 4 to 10 mm wide with pointed tips Klinkenberg 2010). and minutely toothed margins. The lowest pair of leaflets are basal and somewhat reduced in size. The three terminal leaflets arise from the tip of the main axis. Flowers are arranged in axillary umbels in groups of two to eight.
    [Show full text]