Hazardous Substance Fact Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Hazardous Substance Fact Sheet Right to Know Hazardous Substance Fact Sheet Common Name: PARAQUAT Synonyms: Dimethyl Viologen; Pathclear; Sweep CAS Number: 4685-14-7 Chemical Name: 4,4'-Bipyridinium, 1,1’-Dimethyl- RTK Substance Number: 1458 Date: September 1999 Revision: August 2008 DOT Number: UN 2781 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Paraquat is a colorless to yellow, odorless solid. It is used as Hazard Summary a quick-acting herbicide and a plant dessicant. Hazard Rating NJDOH NFPA HEALTH 3 - FLAMMABILITY 0 - REACTIVITY 0 - CARCINOGEN POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE Reasons for Citation DOES NOT BURN f Paraquat is on the Right to Know Hazardous Substance List Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; because it is cited by OSHA, ACGIH, DOT, NIOSH, DEP, 4=severe IRIS and EPA. f This chemical is on the Special Health Hazard Substance f Paraquat can affect you when inhaled. List. f Paraquat should be handled as a CARCINOGEN--WITH EXTREME CAUTION. f Contact can severely irritate and burn the skin and eyes with possible eye damage. f Inhaling Paraquat can irritate the nose and throat. f Paraquat can cause nausea, vomiting, diarrhea and SEE GLOSSARY ON PAGE 5. abdominal pain. f Inhaling Paraquat can irritate the lungs. Higher exposures FIRST AID may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. Eye Contact f Repeated exposure to Paraquat may cause scarring of the f Immediately flush with large amounts of cool water for at lungs (fibrosis) and reduce lung function with symptoms of least 15 minutes, lifting upper and lower lids. Remove coughing and shortness of breath. contact lenses, if worn, while flushing. Seek medical attention immediately. f Paraquat may damage the liver and kidneys and affect the heart. Skin Contact f Quickly remove contaminated clothing. Immediately wash contaminated skin with large amounts of water. Workplace Exposure Limits OSHA: The legal airborne permissible exposure limit (PEL) is Inhalation 3 f Remove the person from exposure. 0.5 mg/m (as respirable dust) averaged over an 8- f Begin rescue breathing (using universal precautions) if hour workshift. breathing has stopped and CPR if heart action has stopped. f Transfer promptly to a medical facility. NIOSH: The recommended airborne exposure limit (REL) is f Medical observation is recommended for 24 to 48 hours after 3 0.1 mg/m (as Paraquat Dichloride) averaged over a overexposure, as pulmonary edema may be delayed. 10-hour workshift. EMERGENCY NUMBERS ACGIH: The threshold limit value (TLV) is 0.5 mg/m3 (as total Poison Control: 1-800-222-1222 particulate) and 0.1 mg/m3 (as the respirable CHEMTREC: 1-800-424-9300 fraction), averaged over an 8-hour workshift. NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802 f Paraquat may be a CARCINOGEN in humans. There may be no safe level of exposure to a carcinogen, so all contact should be reduced to the lowest possible level. PARAQUAT Page 2 of 6 Determining Your Exposure Reproductive Hazard f There is limited evidence that Paraquat may damage the f Read the product manufacturer’s Material Safety Data developing fetus and the male reproductive system Sheet (MSDS) and the label to determine product (including decreasing the sperm count) in animals. ingredients and important safety and health information about the product mixture. Other Effects f Prolonged or repeated exposure can cause drying and f For each individual hazardous ingredient, read the New cracking of the skin with redness and blisters and can Jersey Department of Health Hazardous Substance Fact damage the fingernails. Sheet, available on the RTK website f Paraquat can irritate the lungs. Repeated exposure may (www.nj.gov/health/eoh/rtkweb) or in your facility’s RTK cause bronchitis to develop with coughing, phlegm, Central File or Hazard Communication Standard file. wheezing and difficulty in breathing. f Repeated exposure to Paraquat may cause scarring of the f You have a right to this information under the New Jersey lungs (fibrosis) and reduce lung function with symptoms of Worker and Community Right to Know Act, the Public coughing and shortness of breath. Employees Occupational Safety and Health (PEOSH) Act f Paraquat may damage the liver and kidneys and affect the if you are a public worker in New Jersey, and under the heart. federal Occupational Safety and Health Act (OSHA) if you are a private worker. f The New Jersey Right to Know Act requires most Medical employers to label chemicals in the workplace and Medical Testing requires public employers to provide their employees with For frequent or potentially high exposure (half the TLV or information concerning chemical hazards and controls. greater), the following are recommended before beginning The federal OSHA Hazard Communication Standard (29 work and at regular times after that: CFR 1910.1200) and the PEOSH Hazard Communication f Lung function tests Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees. If symptoms develop or overexposure is suspected, the following are recommended: This Fact Sheet is a summary of available information regarding the health hazards that may result from exposure. f Consider chest x-ray after acute overexposure Duration of exposure, concentration of the substance and other f Liver and kidney function tests factors will affect your susceptibility to any of the potential f EKG effects described below. Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for Health Hazard Information damage already done are not a substitute for controlling exposure. Acute Health Effects The following acute (short-term) health effects may occur Request copies of your medical testing. You have a legal right immediately or shortly after exposure to Paraquat: to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020). f Contact can severely irritate and burn the skin and eyes with possible eye damage. Mixed Exposures f Inhaling Paraquat can irritate the nose and throat causing coughing and wheezing, and can cause nosebleeds. f Smoking can cause heart disease, lung cancer, f Paraquat can cause nausea, vomiting, diarrhea and emphysema, and other respiratory problems. It may worsen abdominal pain. respiratory conditions caused by chemical exposure. Even if f Inhaling Paraquat can irritate the lungs causing coughing you have smoked for a long time, stopping now will reduce and/or shortness of breath. Higher exposures may cause a your risk of developing health problems. build-up of fluid in the lungs (pulmonary edema), a medical f More than light alcohol consumption can cause liver emergency, with severe shortness of breath. damage. Drinking alcohol may increase the liver damage caused by Paraquat. Chronic Health Effects The following chronic (long-term) health effects can occur at some time after exposure to Paraquat and can last for months or years: Cancer Hazard f Paraquat may be a CARCINOGEN in humans since it has been shown to cause skin cancer in animals. f Many scientists believe there is no safe level of exposure to a carcinogen. PARAQUAT Page 3 of 6 Workplace Controls and Practices Eye Protection Very toxic chemicals, or those that are reproductive hazards or f Wear eye protection with side shields or goggles. sensitizers, require expert advice on control measures if a less f Wear a face shield along with goggles when working with toxic chemical cannot be substituted. Control measures corrosive, highly irritating or toxic substances. include: (1) enclosing chemical processes for severely f Do not wear contact lenses when working with this irritating and corrosive chemicals, (2) using local exhaust substance. ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control Respiratory Protection exposures to skin and eye irritants. For further information on Improper use of respirators is dangerous. Respirators workplace controls, consult the NIOSH document on Control should only be used if the employer has implemented a written Banding at www.cdc.gov/niosh/topics/ctrlbanding/. program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and The following work practices are also recommended: medical exams, as described in the OSHA Respiratory f Label process containers. Protection Standard (29 CFR 1910.134). f Provide employees with hazard information and training. f Monitor airborne chemical concentrations. f For field applications check with your supervisor and your f Use engineering controls if concentrations exceed safety equipment supplier regarding the appropriate recommended exposure levels. respiratory equipment. 3 f Provide eye wash fountains and emergency showers. f Where the potential exists for exposure over 0.1 mg/m , use f Wash or shower if skin comes in contact with a hazardous a NIOSH approved respirator with an organic vapor cartridge material. and particulate prefilters. Increased protection is obtained f Always wash at the end of the workshift. from full facepiece powered-air purifying respirators. f Change into clean clothing if clothing becomes f Leave the area immediately if (1) while wearing a filter or contaminated. cartridge respirator you can smell, taste, or otherwise detect f Do not take contaminated clothing home. Paraquat, (2) while wearing particulate filters abnormal f Get special training to wash contaminated clothing. resistance to breathing is experienced, or (3) eye irritation f Do not eat, smoke, or drink in areas where chemicals are occurs while wearing a full facepiece respirator. Check to being handled, processed or stored. make sure the respirator-to-face seal is still good. If it is, f Wash hands carefully before eating, smoking, drinking, replace the filter or cartridge. If the seal is no longer good, applying cosmetics or using the toilet.
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Delayed Fluorescence Imaging of Photosynthesis Inhibitor and Heavy Metal Induced Stress in Potato
    Cent. Eur. J. Biol. • 7(3) • 2012 • 531-541 DOI: 10.2478/s11535-012-0038-z Central European Journal of Biology Delayed fluorescence imaging of photosynthesis inhibitor and heavy metal induced stress in potato Research Article Jaka Razinger1,*, Luka Drinovec2, Maja Berden-Zrimec3 1Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia 2Aerosol d.o.o., 1000 Ljubljana, Slovenia 3Institute of Physical Biology, 1000 Ljubljana, Slovenia Received 09 November 2011; Accepted 13 March 2012 Abstract: Early chemical-induced stress in Solanum tuberosum leaves was visualized using delayed fluorescence (DF) imaging. The ability to detect spatially heterogeneous responses of plant leaves exposed to several toxicants using delayed fluorescence was compared to prompt fluorescence (PF) imaging and the standard maximum fluorescence yield of PSII measurements (Fv/Fm). The toxicants used in the study were two photosynthesis inhibitors (herbicides), 100 μM methyl viologen (MV) and 140 μM diuron (DCMU), and two heavy metals, 100 μM cadmium and 100 μM copper. The exposure times were 5 and 72 h. Significant photosynthesis-inhibitor effects were already visualized after 5 h. In addition, a significant reduction in the DF/PF index was measured in DCMU- and MV-treated leaves after 5 h. In contrast, only DCMU-treated leaves exhibited a significant decrease in Fv/Fm after 5 h. All treatments resulted in a significant decrease in the DF/PF parameter after 72 h of exposure, when only MV and Cd treatment resulted in visible symptoms. Our study highlights the power of delayed fluorescence imaging. Abundant quantifiable spatial information was obtained with the instrumental setup. Delayed fluorescence imaging has been confirmed as a very responsive and useful technique for detecting stress induced by photosynthesis inhibitors or heavy metals.
    [Show full text]
  • Environmental Health Criteria 39 PARAQUAT and DIQUAT
    Environmental Health Criteria 39 PARAQUAT AND DIQUAT Please note that the layout and pagination of this web version are not identical with the printed version. Paraquat and diquat (EHC 39, 1984) INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ENVIRONMENTAL HEALTH CRITERIA 39 PARAQUAT AND DIQUAT This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Orgnization Geneva, 1984 The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination of laboratory testing and epidemiological studies, and promotion of research on the mechanisms of the biological action of chemicals. ISBN 92 4 154099 4 The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full. Applications and enquiries should be addressed to the Office of Publications, World Health Organization, Geneva, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available.
    [Show full text]
  • Classification of Herbicides
    Title of the course : Weed Management Credit: 3(2+1) Class : 3rd Year IInd Semester Title of the topic : Principles of weed management College : Krishi vigyan Kendra,College of Agriculture, Rewa, JNKVV, Jabalpur Name of Teacher : Dr. (Mrs.) Smita Singh Classification of Herbicides Herbicides: Chemical method of weed control is very effective in certain cases and have great scope provided the herbicides are cheap, efficient and easily available. The chemicals used for killing the weeds or inhibiting growth of weeds are called herbicides (Weedicides). Classification of Herbicides: Herbicides are classified in different ways: A) First Group Chemical Herbicides: I) Classification of herbicides according to chemical composition. II) Classification of herbicides according to their use. III) Classification of herbicides based on time of application. IV) Classification of herbicides according to Formulation. V) Classification of herbicides according to residual effect. B) Second Group – Bio herbicides C) Third Group herbicidal mixtures. Classification of herbicide I) Classification of Herbicide Based on Chemical Nature or Composition Compounds having chemical affinities are grouped together. This is useful in liting and characterising herbicides. i) Inorganic Herbicides:Contain no carbon actions in their molecules. These were the first chemicals used for weed control before the introduction of the organic compounds, example are: a) Acids:Arsenic acid, arsenious acid, arsenic trioxide sulphuric acid. b) Salts:Borax, copper sulphate, ammonium sulphate, Na chlorate , Na arsenite , copper nitrate. ii) Organic Herbicides:Oils and non oils contain carbon and hydrogen in their molecules. a) Oils: Diesel oil, standard solvent, xylene-type, aromatic oils, polycyclic , aromatic oils etc. b) Aliphatics:Dalapon, TCA, Acrolein, Glyphosphate methyl bromide.
    [Show full text]
  • Effects of Paraquat and Alachlor on Soil Microorganisms in Peat Soil
    Pertanika 15(2),121-125 (1992) Effects of Paraquat and Alachlor on Soil Microorganisms in Peat Soil ISMAIL SAHID, AINON HAMZAH and PARIDAH M. ARIS Faculty of Life Sciences Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia Keywords: AlacWor, paraquat, microbes, peat soil. ABSTRAK Satu kajian telah dijalankan untuk melihat kesan alachlor dan paraquat ke atas aktiviti mikrob dalam tanah gambut. Kesan racun rumpai ke atas pembebasan CO2 dan aktiviti phosphatase dimonitor selama 12 minggu. Hasil yang diperolehi menunjukkan paraquat dan alachlor yang disembur kepada tanah menyebabkan peningkatan pembebasan CO di peringkat awal pengeraman tetapi berkurangan selepas 53 han. Lebih banyak CO dibebaskan 2 2 dari tanah yang dirawat dengan alachlor berbanding dengan tanah yang dirawat dengan paraquat. Aktiviti phosphatase meningkat di peringkat awal pengeraman bagi tanah yang diperlakukan dengan sama ada alachlor atau paraquat. Aktiviti phosphatase meningkat di peringkat awal pengeraman bagi tanah yang diperlakukan dengan sama ada alachlor atau paraquat tetapi aktiviti phosphatase berkurangan seiepas 12 han eraman. Populasi kulat dan bakteria dipengaruhi oleh kedua-dua racun rumpai yang diuji. Pada kepekatan 250 ppm, alachlor dan paraquat, masing-masing menyebabkan pengurangan populasi bakteria kira-kira 78 dan 95%. Alachlor didapati lebih toksik terhadap kulat berbanding paraquat. ABSTRACT A study was carried out to investigate the effects ofalachlor and paraquat on microbial activities in peat soil. Effects ofthe herbicides on CO2 evolution and phosphatase activity were monitored for 12 weeks in ambient conditions. The results showed that paraquat and alachlor caused an initial increase in CO2 released and subsequently decreased after 53 days of incubation. Comparatively, more CO2 was released from the soil treated with alachlor than that treated with paraquat.
    [Show full text]
  • Pesticides EPA-738-F-96-018 Environmental Protection and Toxic Substances August 1997 Agency (7508W) R.E.D
    United States Prevention, Pesticides EPA-738-F-96-018 Environmental Protection And Toxic Substances August 1997 Agency (7508W) R.E.D. FACTS Paraquat Dichloride Pesticide All pesticides sold or distributed in the United States must be Reregistration registered by EPA, based on scientific studies showing that they can be used without posing unreasonable risks to people or the environment. Because of advances in scientific knowledge, the law requires that pesticides which were first registered before November 1, 1984, be reregistered to ensure that they meet today's more stringent standards. Under the Food Quality Protection Act of 1996, EPA must consider the increased susceptibility of infants and children to pesticide residues in food, as well as aggregate exposure of the public to pesticide residues from all sources, and the cumulative effects of pesticides and other compounds with a common mechanism of toxicity in establishing and reassessing tolerances. In evaluating pesticides for reregistration, EPA obtains and reviews a complete set of studies from pesticide producers, describing the human health and environmental effects of each pesticide. The Agency develops any mitigation measures or regulatory controls needed to effectively reduce each pesticide's risks. EPA then reregisters pesticides that can be used without posing unreasonable risks to human health or the environment. When a pesticide is eligible for reregistration, EPA explains the basis for its decision in a Reregistration Eligibility Decision (RED) document. This fact sheet summarizes the information in the RED document for reregistration case 0262, paraquat dichloride (commonly referred to as paraquat). Use Profile Paraquat dichloride is a herbicide currently registered to control weeds and grasses in many agricultural and non-agricultural areas.
    [Show full text]
  • HPPD) Inhibitor Herbicide Resistance in Waterhemp (Amaranthus Tuberculatus
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 5-6-2019 Using RNA-seq to characterize responses to 4 hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide resistance in waterhemp (Amaranthus tuberculatus) Daniel R. Kohlhase Iowa State University Jamie A. O’Rourke (USDA)–Agricultural Research Service Micheal D. K. Owen Iowa State University, [email protected] Michelle A. Graham (USDA)–Agricultural Research Service, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Kohlhase, Daniel R.; O’Rourke, Jamie A.; Owen, Micheal D. K.; and Graham, Michelle A., "Using RNA-seq to characterize responses to 4 hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide resistance in waterhemp (Amaranthus tuberculatus)" (2019). Publications from USDA-ARS / UNL Faculty. 2163. https://digitalcommons.unl.edu/usdaarsfacpub/2163 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Kohlhase et al. BMC Plant Biology (2019) 19:182 https://doi.org/10.1186/s12870-019-1795-x RESEARCH ARTICLE Open Access Using RNA-seq to characterize responses to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide resistance in waterhemp (Amaranthus tuberculatus) Daniel R. Kohlhase1, Jamie A. O’Rourke2, Micheal D. K. Owen1* and Michelle A. Graham2* Abstract Background: Waterhemp (Amaranthus tuberculatus (Moq.) J.D. Sauer) is a problem weed commonly found in the Midwestern United States that can cause crippling yield losses for both maize (Zea mays L.) and soybean (Glycine max L.
    [Show full text]
  • Atrazine 4L Herbicide
    RESTRICTED USE PESTICIDE (Ground and Surface Water Concerns) For retail sale to and use only by certified applicators or persons under their direct supervision and only for those uses covered by the certified applicator’s certification. This product is a restricted use herbicide due to ground and surface water concerns. Users must read and follow all precautionary statements and instructions for use in order to minimize potential for Atrazine to reach ground and surface water. GROUP 5 HERBICIDE Atrazine 4L Herbicide For season-long weed control in Chemical fallow, Conifers, PRECAUTIONARY STATEMENTS Corn, Fallowland, Guava, Lawns, Macadamia nuts, Sorghum, Hazards to Humans and Domestic Animals Sugarcane, and Turf. CAUTION: Harmful if swallowed or absorbed through skin. Causes ACTIVE INGREDIENTS: moderate eye irritation. Avoid contact with skin, eyes or clothing. Atrazine ................................................................ 42.2% Avoid breathing spray mist. Related compounds ............................................. 0.8% PERSONAL PROTECTIVE EQUIPMENT (PPE) OTHER INGREDIENTS: ......................................... 57.0% Some materials that are chemical-resistant to this product are poly- TOTAL: ............................................................ 100.0% ethylene or polyvinyl chloride. If you want more options, follow the This product contains 4 pounds of active ingredients per gallon. instructions for Category A on the EPA chemical-resistance cate- gory selection chart. KEEP OUT OF REACH OF CHILDREN Applicators
    [Show full text]
  • Using Countless Tons of Arsenic As a Non-Selective Contact and Soil Sterilant
    87 In addition to requiring the user to obtain a permit from, the agricultural commissioner, t4e regulations prescribe certain conditions to be met by those who possess or use sodium arsenite as follows: (a) No pesticide containing sodium arsenite shall be applied on exposed vegetation (other than dormant grapeviries) unless the vegetation to be treated is enclosed within a good and su£ficient fence or otherwis.e made inaccessible to grazing animals, pets, and children. (b) No pesticide containing sodium arsenite sha,11 be applied on soil or vegetation (other than dormant grapevines) in any area penetrated by roots of any plant of value, without the written consent of the owner of such plant. ( c) No pesticide containing sodium arsenite shall be kept or placed in drinking cups, pop bottles, or other containers of a type commonly used for food or drink. (d) No pesticide containing sodium arsenite, whether in concentrated or dilute form, shall be stored, placed, or transported in any container or receptacle which does not bear on the outside a conspicuous poison label which conforms to the label required to be placed on all packages of arsenic compounds and pre:parations sold or delivered within the State. These are only procedures that any careful person would observe in the use of a poisonous material like sodium arsenite. It is just over one year since the regulations became effective. In that time we have heard of no accidental deaths involving sodium arsenite in California and the regulations appear to be serving a good purpose. SUBSTITUTE HERBICIDES FOR SODIUM ARSENITE W.
    [Show full text]
  • California Turfgrass Culture
    California Turfgrass Culture FORMERLY, SOUTHERN CALIFORNIA TURFGRASS CULTURE OCTOBER 1963 VOLUME 13 - NUMBER 4 Regulation of Sodium Arsenite as an Injurious Material John C. Hillis California Department of Agriculture Sacramento Effective January 1, 1962, sodium arsenite was placed pest or vegetation which it is intended to destroy. Thus under regulation as an injurious material. Since then, an injurious material sold for weed control or control of a persons intending to use it in California have been re- plant disease or of a micro-organism is subject to the quired to obtain a permit from the county agricultural requirement of a permit. On the other hand, if sodium commissioner. In addition, it is illegal to sell or deliver arsenite is sold for a non-agricultural and non-pesticidal it to persons who do not have the required permit. use, for example, in metallurgy, or in drilling to facilitate the operation mechanically, the use would not be subject The regulation was adopted after public hearing and to the requirement of a permit. consideration of the history of accidental deaths over the years as well as injury to property. All sizes of sodium arsenite pesticide containers are subject to the requirement of a permit; however, there is Section 1080 of the Agricultural Code provides that an exemption in that no permit is required to use products “after investigation and hearing the Director shall adopt sold as dilute ready-to-use syrups or dry baits, registered rules and regulations governing the application, in pest and labeled for use as poison baits for the control of control or other agricultural operations, of any material he insects and other arthropods, snails and slugs, or rodents.
    [Show full text]
  • Physiological, Biochemical and Molecular Characterization of Multiple Herbicide Resistance in Palmer Amaranth (Amaranthus Palmeri)
    PHYSIOLOGICAL, BIOCHEMICAL AND MOLECULAR CHARACTERIZATION OF MULTIPLE HERBICIDE RESISTANCE IN PALMER AMARANTH (AMARANTHUS PALMERI) by SRIDEVI NAKKA M.S., Acharya N.G. Ranaga Agricultural University, 2005 M.S., University of Illinois, 2008 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Agronomy College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2016 Abstract Palmer amaranth (Amaranthus palmeri) is one of the most aggressive, troublesome and damaging broadleaf weeds in many cropping systems including corn, soybean, cotton, and grain sorghum causing huge yield losses across the USA. As a result of extensive and intensive selection of pre- and -post emergence herbicides, Palmer amaranth has evolved resistance to multiple herbicide modes of action, microtubule-, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)-, acetolactate synthase (ALS)-, photosystem II (PS II)-, hydroxyphenylpyruvate dioxygenase (HPPD)- and more recently to protoporphyrinogen oxidase (PPO)-inhibitors. A Palmer amaranth population from Kansas was found resistant to HPPD-, PS II-, and ALS- inhibitors. The overall objective of this research was to investigate the target-site and/or non- target-site resistance mechanisms in Palmer amaranth from KS (KSR) to mesotrione (HPPD- inhibitor), atrazine (PS II-inhibitor), and chlorsulfuron (ALS-inhibitor) relative to known susceptible Palmer amaranth from Mississippi (MSS) and KS (KSS). Whole plant dose-response assays showed high level of resistance in KSR to mesotrione, atrazine and chlorsulfuron. KSR was 10-18, 178-237 and >275 fold more resistant to mesotrione, atrazine, and chlorsulfuron, respectively, compared to MSS and KSS. Metabolism studies using [14C] labeled mesotrione and atrazine demonstrated non-target-site resistance to both herbicides, particularly, enhanced metabolism of [14C] mesotrione likely mediated by cytochrome P450 monooxygenases and rapid degradation of [14C] atrazine by glutathione S-transferases (GSTs).
    [Show full text]