Alactic Observer Gjohn J

Total Page:16

File Type:pdf, Size:1020Kb

Alactic Observer Gjohn J alactic Observer GJohn J. McCarthy Observatory Volume 5, No. 4 April 2012 B “Sometime they'll send more astronauts to the Moon —and I want to be one of them!” The John J. McCarthy Observatory Galactic Observvvererer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 Allan Ostergren www.mccarthyobservatory.org Website Development John Gebauer JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory has Josh Reynolds established itself as a significant educational and recreational Technical Support resource within the western Connecticut community. Bob Lambert Steve Barone Allan Ostergren Dr. Parker Moreland Colin Campbell Cecilia Page Dennis Cartolano Joe Privitera Mike Chiarella Bruno Ranchy Jeff Chodak Josh Reynolds Route Bill Cloutier Barbara Richards Charles Copple Monty Robson Randy Fender Don Ross John Gebauer Ned Sheehey Elaine Green Gene Schilling Tina Hartzell Diana Shervinskie Tom Heydenburg Katie Shusdock Phil Imbrogno Jon Wallace Bob Lambert Bob Willaum Dr. Parker Moreland Paul Woodell Amy Ziffer In This Issue THE YEAR OF THE SOLAR SYSTEM .................................... 3 ASTRONOMICAL AND HISTORICAL EVENTS ...................... 11 OUT THE WINDOW ON YOUR LEFT ................................... 4 REFERENCES ON DISTANCES ........................................ 13 BILLY AND MONS HANSTEEN ............................................. 5 INTERNATIONAL SPACE STATION/IRIDIUM SATELLITES ..... 13 MISSED OPPORTUNITY .................................................... 6 SOLAR ACTIVITY ........................................................ 13 NEW LUNAR RESOURCES ................................................. 7 COVER PHOTO AND OTHER CREDITS ............................. 14 TWENTY-TWO YEARS IN SPACE ......................................... 8 SECOND SATURDAY STARS ............................................ 15 OUR MYSTERIOUS MOON ................................................ 8 APRIL CALENDAR ....................................................... 16 LIFE WITHOUT THE MOON ............................................... 9 APRIL HISTORY ............................................................. 10 APRIL SHOWERS ............................................................ 10 EASTER AND THE FULL MOON ......................................... 10 SUNRISE AND SUNSET ..................................................... 11 APRIL NIGHTS ............................................................... 11 COMET HISTORY ............................................................ 11 2 • Apr 2012 http://www.mccarthyobservatory.org The Year of the Solar System NASA announced on Oct. 7, 2010 that the upcoming year would be “The Year of the Solar System.” The “Year,” however, is a Martian year and, as such, 23 months in length. Some of the highlights of the “Year” of exploration are: Other notable events: • March 3, 2012 Mars at Opposition • April 15, 2012 Saturn at Opposition • May 20, 2012 Annular Solar Eclipse (visible in southwest U.S.) • June 5, 2012 Venus Transit (visible before sunset on the east coast) • July 2012 Dawn spacecraft leaves Vesta for Ceres http://www.mccarthyobservatory.org Apr 2012 • 3 “Out the Window on Your Left” T’S BEEN 40 YEARS SINCE we left the last footprint on the dusty lunar surface. Sadly, as a nation founded on exploration and the conquest Iof new frontiers, we appear to have lost our will to lead as a space-faring nation. But, what if the aver- age citizen had the means to visit our only natural sat- ellite; what would they see out the window of their spacecraft as they entered orbit around the Moon? This column may provide some thoughts to ponder when planning your visit (if only in your imagination). The view this month is of the southwestern region of Oceanus Procellarum (the Ocean of Storms). Among Portion of wrinkle ridge extending from Mons Hansteen to the northeast. Illumination is from left, incidence angle is 26°, im- age width is 550 m [NASA/GSFC/Arizona State University]. Photo: Hiroyuki Sato crater’s rim appears to be interrupted along the southern portion by a narrow break. Images from the Lunar Re- connaissance Orbiter show few craterlets on the floor of Billy (http://wms.lroc.asu.edu/lroc_browse/view/ wac_nearside); one with a bright halo indicating a rela- tively recent event. The most intriguing feature in the area is located to the southeast of Hansteen and north of Billy - Mons Hansteen, the battered landscape are two similarly sized craters or Hansteen Alpha. This bright, arrow-shaped mountain, – Hansteen and Billy. 15 miles on a side, is younger than either of the adjacent The crater Hansteen is named for Christopher craters (since the mountain rests on top the ejecta from Hansteen, a Norwegian geophysicist, astronomer and the impacts that created Hansteen or Billy, rather than physicist known for mapping the Earth’s magnetic field. being covered with it). The floor-fractured crater, thought to be caused by a Mons Hansteen appears to be a volcanic outcrop- ponding of magna underneath the floor, contains sev- ping; however, the chemical nature of the lava mound, eral ridges and grooves. The crater wall has an ap- as determined by spectral analysis, is much different pearance of a polygon rather than a circular ring and is than the surrounding mare basalt. As such, Hansteen interrupted by a collapsed portion along the northern Alpha is unique in that it is considered a non-mare vol- rim. Exterior to the southwestern rim is Rima Hansteen, canic landform. a short rille, or channel, approximately 15 miles in Hansteen Alpha is grouped along with non-mare domes length. Gruithuisen and Mairan as “red spots.” While similar in size, Billy has a much different ap- Red Spots most likely formed around the time of the pearance. Named for Jacques de Billy, a 17th century Imbrium impact and are characterized by high albedo French Jesuit mathematician, the crater has a dark, lava- (measure of reflected sunlight) and strong ultraviolet ab- covered floor, depressed below the surrounding plain. The sorption. 4 • Apr 2012 http://www.mccarthyobservatory.org P Billy and Mons Hansteen http://www.mccarthyobservatory.org Apr 2012 • 5 Missed Opportunity Less than six months after Neil Armstrong took the Albategnius and Hipparchusss first step onto the lunar surface, NASA began the diffi- cult task of canceling future flights to the Moon. While most of the hardware had been built, and the incremen- tal costs of flying the last three missions was relatively small, political and public support for the Moon pro- gram was already waning before Armstrong and his crew returned to Earth. Had we stayed the course, the final three flights (Apollo 18, 19 and 20) would have been the most am- bitious undertakings of the Apollo program. Although mission plans continued to evolve with each new flight, the areas of Moon targeted for exploration in late 1969, particularly after Apollo 12 demonstrated the ability to make precision landings, included the craters Copernicus and Tycho, and the Marius Hills. While crews were not officially assigned to the last three missions, the standard rotation of backup crews would have placed Richard Gordon (Gemini 11, Apollo 12) in command of the Apollo 18 mission with test pilot Vance Brand as the Command Module Pi- lot and geologist Harrison Schmitt as the Lunar Mod- ule Pilot. The mission was originally scheduled for February of 1972. Schmitt, the only scientist (geologist) to walk on the Moon, would later be reassigned to Apollo 17 after the cancellation of Apollo 18 in September 1970. Fred Haise (Apollo 13) would have likely com- manded Apollo 19 with test pilot William Pogue as the Command Module Pilot and Gerald Carr as the Lunar Module Pilot. Charles “Pete” Conrad (Apollo 12) would have been in line to command Apollo 20 with test pilot Paul Weitz as the Command Module Pilot and Jack Lousma as the Lunar Module Pilot. Copernicus was listed as either a prime or alterna- tive landing site at the meetings of the Apollo Site Selec- tion Board or the Group for Lunar Exploration Planning in 1969, despite the rough terrain and operational chal- lenges. Unfortunately, with the cancellation of three mis- sions and the failure of Apollo 13 to complete its objec- tives, this magnificent crater (as well as the volcanic domes of the Marius Hills) did not make the final cut. Tycho, possibly the most science-rich target, was the most difficult to reach and was also dropped from con- sideration. The view from inside Copernicus would have been breathtaking. Terraced walls reach more than two miles above the floor, low-lying hummocks of re- bounded rock huddle around its center, and the deep shadows that hide from the Sun create visual voids in the moonscape. 6 • Apr 2012 http://www.mccarthyobservatory.org New Lunar Resources NASA’s Goddard Space Flight Cen- ter has released a new tool to assist in planning your lunar observations and sev- eral new educational videos on the Moon. The planning tool (shown on the right) provides the user with the phase and li- bration of the Moon at hourly intervals for any date in 2012. The animation was developed from data gathered by the Lu- nar Reconnaissance Orbiter (LRO). While the same side of the Moon faces the Earth, we can actually see (over time) more than 50% of its surface. This is a result of the Moon’s elliptical orbit, tilt of its axis and inclination of its orbit around the Earth,
Recommended publications
  • OBSIDIAN: an INTERDISCIPLINARY Bffiliography
    OBSIDIAN: AN INTERDISCIPLINARY BffiLIOGRAPHY Craig E. Skinner Kim J. Tremaine International Association for Obsidian Studies Occasional Paper No. 1 1993 \ \ Obsidian: An Interdisciplinary Bibliography by Craig E. Skinner Kim J. Tremaine • 1993 by Craig Skinner and Kim Tremaine International Association for Obsidian Studies Department of Anthropology San Jose State University San Jose, CA 95192-0113 International Association for Obsidian Studies Occasional Paper No. 1 1993 Magmas cooled to freezing temperature and crystallized to a solid have to lose heat of crystallization. A glass, since it never crystallizes to form a solid, never changes phase and never has to lose heat of crystallization. Obsidian, supercooled below the crystallization point, remained a liquid. Glasses form when some physical property of a lava restricts ion mobility enough to prevent them from binding together into an ordered crystalline pattern. Aa the viscosity ofthe lava increases, fewer particles arrive at positions of order until no particle arrangement occurs before solidification. In a glaas, the ions must remain randomly arranged; therefore, a magma forming a glass must be extremely viscous yet fluid enough to reach the surface. 1he modem rational explanation for obsidian petrogenesis (Bakken, 1977:88) Some people called a time at the flat named Tok'. They were going to hunt deer. They set snares on the runway at Blood Gap. Adder bad real obsidian. The others made their arrows out of just anything. They did not know about obsidian. When deer were caught in snares, Adder shot and ran as fast as he could to the deer, pulled out the obsidian and hid it in his quiver.
    [Show full text]
  • Report Resumes
    REPORT RESUMES ED 019 218 88 SE 004 494 A RESOURCE BOOK OF AEROSPACE ACTIVITIES, K-6. LINCOLN PUBLIC SCHOOLS, NEBR. PUB DATE 67 EDRS PRICEMF.41.00 HC-S10.48 260P. DESCRIPTORS- *ELEMENTARY SCHOOL SCIENCE, *PHYSICAL SCIENCES, *TEACHING GUIDES, *SECONDARY SCHOOL SCIENCE, *SCIENCE ACTIVITIES, ASTRONOMY, BIOGRAPHIES, BIBLIOGRAPHIES, FILMS, FILMSTRIPS, FIELD TRIPS, SCIENCE HISTORY, VOCABULARY, THIS RESOURCE BOOK OF ACTIVITIES WAS WRITTEN FOR TEACHERS OF GRADES K-6, TO HELP THEM INTEGRATE AEROSPACE SCIENCE WITH THE REGULAR LEARNING EXPERIENCES OF THE CLASSROOM. SUGGESTIONS ARE MADE FOR INTRODUCING AEROSPACE CONCEPTS INTO THE VARIOUS SUBJECT FIELDS SUCH AS LANGUAGE ARTS, MATHEMATICS, PHYSICAL EDUCATION, SOCIAL STUDIES, AND OTHERS. SUBJECT CATEGORIES ARE (1) DEVELOPMENT OF FLIGHT, (2) PIONEERS OF THE AIR (BIOGRAPHY),(3) ARTIFICIAL SATELLITES AND SPACE PROBES,(4) MANNED SPACE FLIGHT,(5) THE VASTNESS OF SPACE, AND (6) FUTURE SPACE VENTURES. SUGGESTIONS ARE MADE THROUGHOUT FOR USING THE MATERIAL AND THEMES FOR DEVELOPING INTEREST IN THE REGULAR LEARNING EXPERIENCES BY INVOLVING STUDENTS IN AEROSPACE ACTIVITIES. INCLUDED ARE LISTS OF SOURCES OF INFORMATION SUCH AS (1) BOOKS,(2) PAMPHLETS, (3) FILMS,(4) FILMSTRIPS,(5) MAGAZINE ARTICLES,(6) CHARTS, AND (7) MODELS. GRADE LEVEL APPROPRIATENESS OF THESE MATERIALSIS INDICATED. (DH) 4:14.1,-) 1783 1490 ,r- 6e tt*.___.Vhf 1842 1869 LINCOLN PUBLICSCHOOLS A RESOURCEBOOK OF AEROSPACEACTIVITIES U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION K-6) THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY. 1919 O O Vj A PROJECT FUNDED UNDER TITLE HIELEMENTARY AND SECONDARY EDUCATION ACT A RESOURCE BOOK OF AEROSPACE ACTIVITIES (K-6) The work presentedor reported herein was performed pursuant to a Grant from the U.
    [Show full text]
  • Shadows of Being
    Shadows of Being Shadows of Being Four Philosophical Essays By Marko Uršič Shadows of Being: Four Philosophical Essays By Marko Uršič This book first published 2018 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2018 by Marko Uršič All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-1593-1 ISBN (13): 978-1-5275-1593-2 To my dear parents Mila and Stanko who gave me life Just being alive! —miraculous to be in cherry blossom shadows! Kobayashi Issa 斯う活て 居るも不思議ぞ 花の陰 一茶 Kō ikite iru mo fushigi zo hana no kage TABLE OF CONTENTS List of Figures............................................................................................. ix Acknowledgements .................................................................................... xi Chapter One ................................................................................................. 1 Shadows of Ideas 1.1 Metaphysical essence of shadow, Platonism.................................... 2 1.2 The Sun and shadows in Ancient Egypt .......................................... 6 1.3 From Homeric to Orphic shadows ................................................. 15 Chapter Two .............................................................................................
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • General Index
    General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Alactic Observer
    alactic Observer G John J. McCarthy Observatory Volume 14, No. 2 February 2021 International Space Station transit of the Moon Composite image: Marc Polansky February Astronomy Calendar and Space Exploration Almanac Bel'kovich (Long 90° E) Hercules (L) and Atlas (R) Posidonius Taurus-Littrow Six-Day-Old Moon mosaic Apollo 17 captured with an antique telescope built by John Benjamin Dancer. Dancer is credited with being the first to photograph the Moon in Tranquility Base England in February 1852 Apollo 11 Apollo 11 and 17 landing sites are visible in the images, as well as Mare Nectaris, one of the older impact basins on Mare Nectaris the Moon Altai Scarp Photos: Bill Cloutier 1 John J. McCarthy Observatory In This Issue Page Out the Window on Your Left ........................................................................3 Valentine Dome ..............................................................................................4 Rocket Trivia ..................................................................................................5 Mars Time (Landing of Perseverance) ...........................................................7 Destination: Jezero Crater ...............................................................................9 Revisiting an Exoplanet Discovery ...............................................................11 Moon Rock in the White House....................................................................13 Solar Beaming Project ..................................................................................14
    [Show full text]
  • Sky and Telescope
    SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history.
    [Show full text]
  • Lunar Trajectories
    Transportation for Exploration: New Thoughts About Orbital Dynamics Ed Belbruno Innovative Orbital Design, Inc & Courant Insitiute(NYU) January 4, 2012 NASA FISO 1 Evolution of Astrodynamics Conic; Stable (Hohmann, 20s) (Hohmann transfers, Gravity assist(Voyager, Galileo)) Nonlinear; Stable (Apollo, 60s) Nonlinear; Unstable (ISEE-3, 70s) (Transfer to and from halo orbits, no utilization of fuel savings via dynamics – Farquhar …) Nonlinear; Unstable; Low Energy/Fuel (Hiten, 91) (First use of utilization of chaotic dynamics/manifolds to achieve new approach to space travel for ballistic capture(EB, 86, 91) and for the study of halo orbit dynamics (Llibre-Simo, 85 – Genesis, 2001) Weak Stability Boundary Theory (EB 86) 2 Hohmann Transfer Conic, Stable – 2-body 3 Figure Eight(Apollo) Nonlinear, Stable – 3-body 4 ISEEC-3 Nonlinear-Unstable – 4 body 5 Ballistic Capture Transfers Weak Stability Boundary Theory(EB 86) • Way to transfer to the Moon, and other bodies, where no DeltaV is needed for capture • New methodology to trajectory design • Thought in 1985 to be impossible 6 Background • Capture Problem Earth -> Moon (LEO -> LLO) • Hohmann Transfer: Fast (3days), Fuel Hog (Need to slow down! 1 km/s to be captured – large maneuver ) Risky Used in Apollo 7 Idea of Achieving Ballistic Capture • Sneak up on Moon - very carefully (next figure A-B-C-D) • Like a surfer catching a wave • Want to ride the „gravity transition(weak stability) boundary‟ between the Earth-Moon-Sun 8 Top – Lagrange points Bottom – Sneaking up on Moon 9 Ballistic capture is chaotic (chaos – leaf blowing in wind) 10 • WSB – generalization of Lagrange points • Forces(GM, GE, CF) balance while spacecraft moving wrt Earth-Moon (L-points – forces balance for spacecraft fixed wrt Earth-Moon) • Get a multi-dimensional region about Moon.
    [Show full text]
  • JULY Roundup Working
    volume Number 43/7 One giant leap for mankind Roundup SPACE CENTER ROUNDUP Lyndon B. Johnson Space Center Scientist-astronaut Harrison H. Schmitt, Lunar Module pilot, is photographed next to the deployed United States flag during lunar surface extravehicular activity at the Taurus-Littrow landing site. The highest part of the flag appears to point toward our planet Earth in the distant background. This picture was taken by Astronaut Eugene A. Cernan, Apollo 17 commander. While Astronauts Cernan and Schmitt descended in the Lunar Module to explore the Moon, Astronaut Ronald E. Evans, command module pilot, remained with the Command and Service Modules in lunar orbit. NASA AS11-40-5880 NASA AS17-134-20384 Space Center Roundup PRSRT STD One small The Roundup is an official publication of the U.S. POSTAGE “Here men from the planet Earth first set foot National Aeronautics and Space Administration, PAID Johnson Space Center, Houston, Texas, and is WEBSTER, TX step for upon the Moon, July 1969 A.D. We came in published by the Public Affairs Office for all Space Permit No. G27 peace for all mankind.” Center employees. The Roundup office is in Bldg. 2, Quote from the plaque affixed to the Lunar Module Rm. 166A. The mail code is AP121. Visit our Web site at: www.jsc.nasa.gov/roundup/weekly/ man… and signed by Neil Armstrong, Michael Collins, For distribution questions or to suggest a story idea, Edwin (Buzz) Aldrin and President Richard Nixon. please call 281/244-6397 or send an e-mail to 35th anniversary coverage of the [email protected].
    [Show full text]
  • Waltham on the Moon, Apollo 15 and the Search for the Holy Grail
    Waltham on the Moon, Apollo 15 and the Search for the Holy Grail. Post contains Pict... Page 1 of 3 [ View Thread ] [ Return to Index ] [ Read Prev Msg ] [ Read Next Msg ] 'Poor Man's' Watch Forum ARCHIVE Waltham on the Moon, Apollo 15 and the Search for the Holy Grail. Posted By: Kelly M. Rayburn <[email protected]> Date: Wednesday, 27 August 2003, at 2:21 a.m. (Reto was kind enough to ask me to repost my earlier post on the above topic for the archives on the new server. It contains nothing new except the post script. If you have already read the post, please disregard.) Hi all: In preparation for purchasing an Omega Speedmaster Professional, I have done the obligatory research on the use of the Speedmaster in the NASA space program. Chuck Maddox's excellent article on Omega's history with the Apollo program revealed some interesting facts that I did not know. In brief: The cal. 321 Speedmasters were purchased by NASA for the astronauts' use prior to the introduction of the cal. 861 movement in 1968. Apparently it is generally accepted that only the cal. 321 Speedmasters were worn on the moon during the various moon missions, as the initial procurement of these watches around 1965 was distributed to all astonauts at that time (two each) with as many as twenty still left in inventory and never used following the final Apollo 17 mission in 1972. Apparently, there is no evidence that a cal. 861 Speedmaster was worn by any of the moonwalkers or that NASA had procured any cal.
    [Show full text]