The Prairie Astronomer the Official Newsletter of the Prairie Astronomy Club

Total Page:16

File Type:pdf, Size:1020Kb

The Prairie Astronomer the Official Newsletter of the Prairie Astronomy Club August, 2013 Volume 54, Issue #8 The Prairie Astronomer The Official Newsletter of the Prairie Astronomy Club August Program IN THIS Nebraska Star Party Report and Photos ISSUE: What to View in September NGC Objects Nebraska Star Party Featured Photo By Brett Boller: 5 Minute shot of the Sagittarius arm of the Milky Way. Taken at NSP, Merritt Reservoir. MSRAL The Prairie Astronomer is published monthly by the Prairie Astronomy Club, Inc. Membership expiration date is listed on the mailing label. Membership dues are: Regular $30/yr, Family $35/yr. Address all new memberships and renewals to: The Prairie Astronomy Club, Inc., PO Box 5585, Lincoln, NE 68505-0585. For other club information, please contact one of the club officers listed to the right. Newsletter comments and articles should be submitted to: Mark Dahmke, P. O. Box 5585, Lincoln, NE 68505 or [email protected], no less than ten days prior to the club meeting. The Prairie Astronomy Club meets the last Tuesday of each month at Hyde Memorial Observatory in Lincoln, NE. Meeting Minutes Jason Noelle called meeting to order at 7:30 PM Tuesday July 30, 2013. No official other business. Some informal conversation about Nebraska Star Party prizes. Last meeting was the annual BBQ and social. No business meeting was held in June. Observing report was presented by Jim Kvasnicka. 3 dates in June. June 28 (9 Next meeting is August 27th with Nebraska Star attended), July 5 (1 attendee), July 12 (6 Party (NSP) recap and slideshow. attended). Next star parties August 2 and August 9, concurrent with Nebraska Star Party. Reminded August 4-9 Nebraska Star Party at Presented Messier List and evening and morning Snake River Campground and Merritt Reservoir. objects. Perseids will peak August 11-13. Detailed some Astronomical League observing Bob Kacvinsky presented treasurer’s report. programs available to members. Audit was completed. Reminded about keeping up to date on dues. Paid dues for insurance and Jason suggested an informal club meeting occur astronomical league. at NSP. Outreach opportunity September 7, 2013 at Business meeting portion concluded at 7:46 PM. Wildwood Historic House in Nebraska City. Dan Delzell was point person. Asked to 3-4 volunteer Program following the meeting was Emily telescopes. Suggested contacting Eugene Moravec presenting on undergraduate research Lanning. OAS may be attending. Will send out a experiences in astronomy at Maria Mitchell PAC list email with information. Association in Massachusetts. NSP Photos–John Reinert Left: A lighter moment shared at the PAC Club campsite Below: Bookended while waiting for the Sunday evening meal. Zach Thompson interviewing Tom Miller. Photos by John Reinert The Prairie Astronomer 2 ANNUAL 2013 PAC Star MEMBERSHIP Party Dates Events REGULAR MEMBER - Dates in bold are closest to PAC Meeting $30.00 per year. Includes club the new moon Tuesday August 27th, newsletter, and 1 vote at club meetings, plus all other January: 4, 11 2013 @Hyde standard club privileges. February: 1, 8 Observatory March: 1, 8 April: 5 , 12 FAMILY MEMBER - $35.00 PAC Meeting per year. Same as regular May 3, 10 member except gets 2 votes June: May 31, June 7 Tuesday Sept 24th, 2013 at club meetings. July: June 28, July 5 @Hyde Observatory NSP August 4-9 (Nominations for Club August: 2, 9 STUDENT MEMBER - $10.00 Officers) per year with volunteer September: Aug 30, Sept 6 requirement. October: Sept 27, Oct 4 November: Oct 25, Nov 1 PAC Meeting If you renew your December: Nov 29, Dec 6 Tuesday Oct 29th, 2013 membership prior to your and 27 @Hyde Observatory annual renewal date, you will (Election) receive a 10% discount. PAC E-Mail: Club members are also [email protected] PAC Meeting eligible for special Tuesday Nov 26th, 2013 subscription discounts on Sky PAC-LIST: @Hyde Observatory & Telescope Magazine. To subscribe send a request to PAC. To post messages to the Newsletter submission deadline list, send to the address: September 15, 2013 Club Telescopes pac-list@ prairieastronomyclub.org To check out one of the club telescopes, contact Ben Rush. If you keep a scope for more Links than a week, please check in once a week, to verify the loca- PAC: www.prairieastronomyclub.org tion of the telescope and how Night Sky Network: https://nightsky.jpl.nasa.gov/ long you plan to use it. The CafePress (club apparel) www.cafepress.com checkout time limit will be two weeks, but can be extended if www.hydeobservatory.info no one else has requested use www.nebraskastarparty.org of a club scope. www.OmahaAstro.com 100mm Orion refractor: Panhandleastronomyclub.com Available www.universetoday.com/ www.planetary.org/home/ 10 inch Meade Dobsonian: http://www.darksky.org/ Available Giant "Twisters" and Star Wisps in the Lagoon Nebula. 13 inch Truss Dobsonian: Credit: A. Caulet (ST-ECF, Available ESA) and NASA The Prairie Astronomer 3 September Observing: What to View—Jim Kvasnicka This is a partial list of objects visible for the M26, M55, M75 upcoming month. NGC and Other Deep Sky Objects Planets NGC 6826: The Blinking Planetary in Cygnus. Venus: Low in the WSW at magnitude -4.0 to NGC 6905: The Blue Flash Nebula, planetary -4.2 during September. nebula in Delphinus. Mercury: To the lower right of Venus, difficult to NGC 6934: Globular cluster in Delphinus. see. NGC 6960: The Veil Nebula western segment in Saturn: Starts the month 18º to the upper left of Cygnus, use an OIII filter. Venus. The gap closes between them and on the NGC 6974/6979: The Veil Nebula central evenings of September 18th and 19th Saturn is segment in Cygnus, use an OIII filter. 3½º above the brighter Venus. NGC 6992/6995: The Veil Nebula eastern Jupiter: Rises sooner and is high by the start of segment in Cygnus, use an OIII filter. dawn. Jupiter increases in brightness from a -2.0 NGC 7026: Bluish-green planetary nebula in to -2.2. Cygnus. Mars: Rises around 3 am all month. Mars will have two conjunctions in September. On Double Star Program List Otto Struve 525: Yellow and blue stars. September 8th and 9th it passes through M44. Gamma Delphinus: Yellow and yellow-green The second conjunction is with Comet ISON at pair. the end of September providing the comet is Zeta Aquarii: Yellow primary with a white bright enough. secondary. Uranus/Neptune: In Pisces and Aquarius. 94 Aquarii: Yellow and pale blue pair. Alpha Capricornus: Wide pair of yellow stars. Messier List Beta Capricornus: Yellow primary with a blue M13: The Great Hercules Cluster, Class V secondary. globular cluster. 36 Ophiuchi: Equal yellow-orange stars. M14: Class VIII globular cluster in Ophiuchus. Omicron Ophiuchi: Yellow and light yellow pair. M22: Class VII globular cluster in Sagittarius. 70 Ophiuchi: Yellow and orange stars. M28: Class IV globular cluster in Sagittarius. M54/M69/M70: Class III, V, and V globular Challenge Object clusters along the bottom of Sagittarius. Palomar 12: Class XII globular cluster in M92: Class IV globular cluster in Hercules. Capricornus. Visible in an 8” – 10” telescope in Last Month: M6, M7, M8, M9, M10, M12, M19, good seeing conditions. It appears as a faint, M20, M21, M23, M62, M107 small, unresolved haze. Next Month: M11, M16, M17, M18, M24, M25, NGC Objects—Jim Kvasnicka The Veil Nebula estimated to have occurred 30 to 40 thousand NGC 6960, NGC 6974, NGC 6979, NGC 6992, years ago. NGC 6995 The Veil Nebula is large, six times the diameter of The Veil Nebula was discovered by William the full Moon. It has a listed size of 230’ x 160’, Herschel in 1784 with his 18 inch refractor almost 4º wide. Because it is so large separate telescope. The Veil Nebula is located in the parts were given their own NGC number. constellation Cygnus and is 2,600 light years away. The Veil Nebula is part of the Cygnus NGC 6960 Loop, the remnants of a supernova explosion Western Segment of the Veil Nebula. The Prairie Astronomer 4 NGC Objects, continued The bright star you see is 52 Cygnus. Because the Veil Nebula is so large you need to NGC 6974/6979 use a low power eyepiece to observe it. An OIII Central Segment of the Veil Nebula. filter is a must when observing the Veil Nebula. The Central Segment contains Pickering’s You may be able to see it without an OIII filter but Triangle which does not have a NGC number. the OIII makes a real difference. NGC 6992/6995 Eastern Segment of the Veil Nebula. Nebraska Star Party—Clay Anderson As a native Nebraskan, I am extremely proud of But the people clearly illustrated why my pride in the state where I was born and raised. I am espe- Nebraska is so well-founded. From Omaha to cially proud of her people; hard working, benevo- Scottsbluff; from Valentine to Red Cloud, I don't lent and kind, with strong moral values that believe you can find a better representation of permeate their outgoing personalities. As an as- true Americans than those that inhabit the Corn- tronaut, many of my pilot colleagues liked to joke husker State. Her natural beauty was also on dis- about Nebraska being the epitome of "fly-over play as I got my first look at the Snake River Falls country," that part of our great nation that bores and the Merritt Reservoir, not to mention the those crossing in automobiles or speeding Black-eyed Susan laced rolling Sand Hills through her skies at 35,000 feet! through which our 5.5 hour drive (from Lincoln) was predominantly executed. Well, after my first trip to Valentine, Nebraska, to participate in the annual (and this time, 20th anni- To my dear friends Jack, Cassie, Zach and versary) Nebraska Star Party last week, I am here Mark..
Recommended publications
  • Messier Plus Marathon Text
    Messier Plus Marathon Object List by Wally Brown & Bob Buckner with additional objects by Mike Roos Object Data - Saguaro Astronomy Club Score is most numbered objects in a single night. Tiebreaker is count of un-numbered objects Observer Name Date Address Marathon Obects __________ Tiebreaker Objects ________ SEQ OBJECT TYPE CON R.A. DEC. RISE TRANSIT SET MAG SIZE NOTES TIME M 53 GLOCL COM 1312.9 +1810 7:21 14:17 21:12 7.7 13.0' NGC 5024, !B,vC,iR,vvmbM,st 12.. NGC 5272, !!,eB,vL,vsmbM,st 11.., Lord Rosse-sev dark 1 M 3 GLOCL CVN 1342.2 +2822 7:11 14:46 22:20 6.3 18.0' marks within 5' of center 2 M 5 GLOCL SER 1518.5 +0205 10:17 16:22 22:27 5.7 23.0' NGC 5904, !!,vB,L,eCM,eRi, st mags 11...;superb cluster M 94 GALXY CVN 1250.9 +4107 5:12 13:55 22:37 8.1 14.4'x12.1' NGC 4736, vB,L,iR,vsvmbM,BN,r NGC 6121, Cl,8 or 10 B* in line,rrr, Look for central bar M 4 GLOCL SCO 1623.6 -2631 12:56 17:27 21:58 5.4 36.0' structure M 80 GLOCL SCO 1617.0 -2258 12:36 17:21 22:06 7.3 10.0' NGC 6093, st 14..., Extremely rich and compressed M 62 GLOCL OPH 1701.2 -3006 13:49 18:05 22:21 6.4 15.0' NGC 6266, vB,L,gmbM,rrr, Asymmetrical M 19 GLOCL OPH 1702.6 -2615 13:34 18:06 22:38 6.8 17.0' NGC 6273, vB,L,R,vCM,rrr, One of the most oblate GC 3 M 107 GLOCL OPH 1632.5 -1303 12:17 17:36 22:55 7.8 13.0' NGC 6171, L,vRi,vmC,R,rrr, H VI 40 M 106 GALXY CVN 1218.9 +4718 3:46 13:23 22:59 8.3 18.6'x7.2' NGC 4258, !,vB,vL,vmE0,sbMBN, H V 43 M 63 GALXY CVN 1315.8 +4201 5:31 14:19 23:08 8.5 12.6'x7.2' NGC 5055, BN, vsvB stell.
    [Show full text]
  • Planetary Nebulae
    Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies.
    [Show full text]
  • SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
    THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close.
    [Show full text]
  • Ghost Hunt Challenge 2020
    Virtual Ghost Hunt Challenge 10/21 /2020 (Sorry we can meet in person this year or give out awards but try doing this challenge on your own.) Participant’s Name _________________________ Categories for the competition: Manual Telescope Electronically Aided Telescope Binocular Astrophotography (best photo) (if you expect to compete in more than one category please fill-out a sheet for each) ** There are four objects on this list that may be beyond the reach of beginning astronomers or basic telescopes. Therefore, we have marked these objects with an * and provided alternate replacements for you just below the designated entry. We will use the primary objects to break a tie if that’s needed. Page 1 TAS Ghost Hunt Challenge - Page 2 Time # Designation Type Con. RA Dec. Mag. Size Common Name Observed Facing West – 7:30 8:30 p.m. 1 M17 EN Sgr 18h21’ -16˚11’ 6.0 40’x30’ Omega Nebula 2 M16 EN Ser 18h19’ -13˚47 6.0 17’ by 14’ Ghost Puppet Nebula 3 M10 GC Oph 16h58’ -04˚08’ 6.6 20’ 4 M12 GC Oph 16h48’ -01˚59’ 6.7 16’ 5 M51 Gal CVn 13h30’ 47h05’’ 8.0 13.8’x11.8’ Whirlpool Facing West - 8:30 – 9:00 p.m. 6 M101 GAL UMa 14h03’ 54˚15’ 7.9 24x22.9’ 7 NGC 6572 PN Oph 18h12’ 06˚51’ 7.3 16”x13” Emerald Eye 8 NGC 6426 GC Oph 17h46’ 03˚10’ 11.0 4.2’ 9 NGC 6633 OC Oph 18h28’ 06˚31’ 4.6 20’ Tweedledum 10 IC 4756 OC Ser 18h40’ 05˚28” 4.6 39’ Tweedledee 11 M26 OC Sct 18h46’ -09˚22’ 8.0 7.0’ 12 NGC 6712 GC Sct 18h54’ -08˚41’ 8.1 9.8’ 13 M13 GC Her 16h42’ 36˚25’ 5.8 20’ Great Hercules Cluster 14 NGC 6709 OC Aql 18h52’ 10˚21’ 6.7 14’ Flying Unicorn 15 M71 GC Sge 19h55’ 18˚50’ 8.2 7’ 16 M27 PN Vul 20h00’ 22˚43’ 7.3 8’x6’ Dumbbell Nebula 17 M56 GC Lyr 19h17’ 30˚13 8.3 9’ 18 M57 PN Lyr 18h54’ 33˚03’ 8.8 1.4’x1.1’ Ring Nebula 19 M92 GC Her 17h18’ 43˚07’ 6.44 14’ 20 M72 GC Aqr 20h54’ -12˚32’ 9.2 6’ Facing West - 9 – 10 p.m.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Global Fitting of Globular Cluster Age Indicators
    A&A 456, 1085–1096 (2006) Astronomy DOI: 10.1051/0004-6361:20065133 & c ESO 2006 Astrophysics Global fitting of globular cluster age indicators F. Meissner1 and A. Weiss1 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany e-mail: [meissner;weiss]@mpa-garching.mpg.de Received 3 March 2006 / Accepted 12 June 2006 ABSTRACT Context. Stellar models and the methods for the age determinations of globular clusters are still in need of improvement. Aims. We attempt to obtain a more objective method of age determination based on cluster diagrams, avoiding the introduction of biases due to the preference of one single age indicator. Methods. We compute new stellar evolutionary tracks and derive the dependence of age indicating points along the tracks and isochrone – such as the turn-off or bump location – as a function of age and metallicity. The same critical points are identified in the colour-magnitude diagrams of globular clusters from a homogeneous database. Several age indicators are then fitted simultaneously, and the overall best-fitting isochrone is selected to determine the cluster age. We also determine the goodness-of-fit for different sets of indicators to estimate the confidence level of our results. Results. We find that our isochrones provide no acceptable fit for all age indicators. In particular, the location of the bump and the brightness of the tip of the red giant branch are problematic. On the other hand, the turn-off region is very well reproduced, and restricting the method to indicators depending on it results in trustworthy ages. Using an alternative set of isochrones improves the situation, but neither leads to an acceptable global fit.
    [Show full text]
  • Detection of New Emission Structures Around Planetary Nebulae?
    ASTRONOMY & ASTROPHYSICS DECEMBER II 1998, PAGE 361 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 133, 361–380 (1998) Detection of new emission structures around planetary nebulae? C.T. Hua1, M.A. Dopita2, and J. Martinis1 1 Laboratoire d’Astronomie Spatiale du CNRS, All´ee Peiresc, Traverse du Siphon, 13012 Marseille, France 2 Mt Stromlo & Siding Spring Observatories, Canberra, ACT, Australia Received April 30; accepted June 26, 1998 Abstract. Deep monochromatic observations are pre- models, much of the mass loss occurs in one or more su- sented for 22 galactic planetary nebulae (PNe) performed perwind phases which take place towards the end of the through narrow-band interference filters, in the direct quiescent phases of helium shell flash cycles. Therefore, we imaging mode with i) the New Zealand (MJUO) f/7.8 Mc- might expect that the mass lost and subsequently ionized Lellan telescope, ii) the Observatoire de Haute Provence during the PN phase would appear as a series of shells (OHP) f/6 120-cm telescope, and iii) and the Siding Spring around the main inner body of the PN. Observatory (SSO) ATT 2.3 metre telescope. Some of them are observed for the first time. Conspicuous sec- Such outer structures should be structurally modified ondary structures are detected far around the conventional in a rather profound way during the PN evolution itself. nebular pictures. Such features could be relics of early As a matter of fact, it is commonly accepted that plane- mass ejections during the post-AGB phase of the progeni- tary nebula shaping results from the interaction between tors.
    [Show full text]
  • Catalogue of Excitation Classes P for 750 Galactic Planetary Nebulae
    Catalogue of Excitation Classes p for 750 Galactic Planetary Nebulae Name p Name p Name p Name p NeC 40 1 Nee 6072 9 NeC 6881 10 IC 4663 11 NeC 246 12+ Nee 6153 3 NeC 6884 7 IC 4673 10 NeC 650-1 10 Nee 6210 4 NeC 6886 9 IC 4699 9 NeC 1360 12 Nee 6302 10 Nee 6891 4 IC 4732 5 NeC 1501 10 Nee 6309 10 NeC 6894 10 IC 4776 2 NeC 1514 8 NeC 6326 9 Nee 6905 11 IC 4846 3 NeC 1535 8 Nee 6337 11 Nee 7008 11 IC 4997 8 NeC 2022 12 Nee 6369 4 NeC 7009 7 IC 5117 6 NeC 2242 12+ NeC 6439 8 NeC 7026 9 IC 5148-50 6 NeC 2346 9 NeC 6445 10 Nee 7027 11 IC 5217 6 NeC 2371-2 12 Nee 6537 11 Nee 7048 11 Al 1 NeC 2392 10 NeC 6543 5 Nee 7094 12 A2 10 NeC 2438 10 NeC 6563 8 NeC 7139 9 A4 10 NeC 2440 10 NeC 6565 7 NeC 7293 7 A 12 4 NeC 2452 10 NeC 6567 4 Nee 7354 10 A 15 12+ NeC 2610 12 NeC 6572 7 NeC 7662 10 A 20 12+ NeC 2792 11 NeC 6578 2 Ie 289 12 A 21 1 NeC 2818 11 NeC 6620 8 IC 351 10 A 23 4 NeC 2867 9 NeC 6629 5 Ie 418 1 A 24 1 NeC 2899 10 Nee 6644 7 IC 972 10 A 30 12+ NeC 3132 9 NeC 6720 10 IC 1295 10 A 33 11 NeC 3195 9 NeC 6741 9 IC 1297 9 A 35 1 NeC 3211 10 NeC 6751 9 Ie 1454 10 A 36 12+ NeC 3242 9 Nee 6765 10 IC1747 9 A 40 2 NeC 3587 8 NeC 6772 9 IC 2003 10 A 41 1 NeC 3699 9 NeC 6778 9 IC 2149 2 A 43 2 NeC 3918 9 NeC 6781 8 IC 2165 10 A 46 2 NeC 4071 11 NeC 6790 4 IC 2448 9 A 49 4 NeC 4361 12+ NeC 6803 5 IC 2501 3 A 50 10 NeC 5189 10 NeC 6804 12 IC 2553 8 A 51 12 NeC 5307 9 NeC 6807 4 IC 2621 9 A 54 12 NeC 5315 2 NeC 6818 10 Ie 3568 3 A 55 4 NeC 5873 10 NeC 6826 11 Ie 4191 6 A 57 3 NeC 5882 6 NeC 6833 2 Ie 4406 4 A 60 2 NeC 5879 12 NeC 6842 2 IC 4593 6 A
    [Show full text]
  • Planetary Nebulas
    The History, Observation, and Science of Planetary Nebulas Plus: Mars Exploration Update (at end) Tuesday, February 5, 2013 What is a “Planetary” Nebula? Dark Nebula: We see it because of light it blocks. Emission Nebula: The cloud itself glows. Planetary Nebula Galaxies were once classed as nebulas, too. Supernova Remnant: Reflection Nebula: What’s left after a star goes “boom” Reflects light from a star. “nebula” is latin for mist, fog, or cloud. Tuesday, February 5, 2013 Origin of the Term ‘Planetary Nebula’ William Herschel: Philosophical Transactions of the Royal Society, 1785, Volume 75, Page 263 ff*: Planetary Nebulae “I shall conclude this paper with an account of a few heavenly bodies, that from their singular appearance leave me almost in doubt where to class them...being all over of an uniform brightness, which it differs from nebulae, it light seems however to be of the starry nature, which suffers not so much as the planetary disks are know to do, when much magnified. The planetary appearance of the first two is so remarkable that we can hardly suppose them to be nebulae; their light is so uniform, as well as vivid, the diameters so small and well defined as to make it almost improbable that they should belong to that species of bodies. On the other hand, the effect of different power seems to be much against their light’s being of a planetary nature, since it preserves its brightness nearly in the same manner as to the stars in similar trials.” He describes five planetaries (Six listed, 5 and 6 appear to be repeats): NGC 7293 (Helix), NGC 7662 (Blue Snowball), NGC 6369 (Little Ghost), NGC 6853 (Dumbbell), NGC 6894 (Diamond Ring) He makes two guesses in 1785 about what they are: Star clusters that can’t be resolved, or Dead or dying stars, possibly multiple stars falling into each other.
    [Show full text]
  • Introduction No. 104 July 2020
    No. 104 July 2020 Introduction I hope you are in good health as July’s Binocular Sky Newsletter reaches you. Although it is primarily targeted at binocular (and small telescope) observers in the UK, this particular community extends well south of the Equator. So welcome! Astronomical darkness, albeit short, return for locations south of about 53.5°N this month and, as binocular observers with our combination of maximum portability and minimal set-up time, we are well suited to take advantage of what this darkness reveals. I hesitate to write this, given recent history of our dashed expectations of “promising” comets, but we have another one, C/2020 F3 (NEOWISE). It’s visible in SOHO images and might just live up to expectations. (But it might not!) The binocular planets, Uranus and Neptune are becoming visible in the pre-dawn sky, as is Ceres but the short darkness means that there is only one suitable lunar occultations of a star, a dark-limb reappearance. If you would like to receive the newsletter automatically each month, please complete and submit the subscription form. You can get “between the newsletters” alerts, etc. via and . Binocular Sky Newsletter – July 2020 The Deep Sky (Hyperlinks will take you to finder charts and more information on the objects.) The all-sky chart on the next page reveals a lot about the structure of the Milky Way galaxy. Running in a strip down the middle, coinciding with the Milky Way itself, is the orange band of open clusters. Here, we are looking along the plane of the spiral arms which, of course, is where the star-forming (and, hence, open cluster forming) regions are.
    [Show full text]
  • Culmination of a Constellation
    Culmination of a Constellation Over any night, stars and constellations in the sky will appear to move from east to west due to the Earth’s rotation on its axis. A constellation will culminate (reach its highest point in the sky for your location) when it centres on the meridian - an imaginary line that runs across the sky from north to south and also passes through the zenith (the point high in the sky directly above your head). For example: When to Observe Constellations The taBle shows the approximate time (AEST) constellations will culminate around the middle (15th day) of each month. Constellations will culminate 2 hours earlier for each successive month. Note: add an hour to the given time when daylight saving time is in effect. The time “12” is midnight. Sunrise/sunset times are rounded off to the nearest half an hour. Sun- Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Rise 5am 5:30 6am 6am 7am 7am 7am 6:30 6am 5am 4:30 4:30 Set 7pm 6:30 6pm 5:30 5pm 5pm 5pm 5:30 6pm 6pm 6:30 7pm And 5am 3am 1am 11pm 9pm Aqr 5am 3am 1am 11pm 9pm Aql 4am 2am 12 10pm 8pm Ara 4am 2am 12 10pm 8pm Ari 5am 3am 1am 11pm 9pm Aur 10pm 8pm 4am 2am 12 Boo 3am 1am 11pm 9pm 7pm Cnc 1am 11pm 9pm 7pm 3am CVn 3am 1am 11pm 9pm 7pm CMa 11pm 9pm 7pm 3am 1am Cap 5am 3am 1am 11pm 9pm 7pm Car 2am 12 10pm 8pm 6pm Cen 4am 2am 12 10pm 8pm 6pm Cet 4am 2am 12 10pm 8pm Cha 3am 1am 11pm 9pm 7pm Col 10pm 8pm 4am 2am 12 Com 3am 1am 11pm 9pm 7pm CrA 3am 1am 11pm 9pm 7pm CrB 4am 2am 12 10pm 8pm Crv 3am 1am 11pm 9pm 7pm Cru 3am 1am 11pm 9pm 7pm Cyg 5am 3am 1am 11pm 9pm 7pm Del
    [Show full text]
  • Caldwell Catalogue - Wikipedia, the Free Encyclopedia
    Caldwell catalogue - Wikipedia, the free encyclopedia Log in / create account Article Discussion Read Edit View history Caldwell catalogue From Wikipedia, the free encyclopedia Main page Contents The Caldwell Catalogue is an astronomical catalog of 109 bright star clusters, nebulae, and galaxies for observation by amateur astronomers. The list was compiled Featured content by Sir Patrick Caldwell-Moore, better known as Patrick Moore, as a complement to the Messier Catalogue. Current events The Messier Catalogue is used frequently by amateur astronomers as a list of interesting deep-sky objects for observations, but Moore noted that the list did not include Random article many of the sky's brightest deep-sky objects, including the Hyades, the Double Cluster (NGC 869 and NGC 884), and NGC 253. Moreover, Moore observed that the Donate to Wikipedia Messier Catalogue, which was compiled based on observations in the Northern Hemisphere, excluded bright deep-sky objects visible in the Southern Hemisphere such [1][2] Interaction as Omega Centauri, Centaurus A, the Jewel Box, and 47 Tucanae. He quickly compiled a list of 109 objects (to match the number of objects in the Messier [3] Help Catalogue) and published it in Sky & Telescope in December 1995. About Wikipedia Since its publication, the catalogue has grown in popularity and usage within the amateur astronomical community. Small compilation errors in the original 1995 version Community portal of the list have since been corrected. Unusually, Moore used one of his surnames to name the list, and the catalogue adopts "C" numbers to rename objects with more Recent changes common designations.[4] Contact Wikipedia As stated above, the list was compiled from objects already identified by professional astronomers and commonly observed by amateur astronomers.
    [Show full text]