Amphipholis Squamata (Delle Chiaje, 1828)

Total Page:16

File Type:pdf, Size:1020Kb

Amphipholis Squamata (Delle Chiaje, 1828) Amphipholis squamata (Delle Chiaje, 1828) AphiaID: 125064 OFIÚRO Animalia (Reino) >Echinodermata (Filo) >Asterozoa (Subfilo) >Ophiuroidea (Classe) >Myophiuroida (Subclasse) >Metophiurida (Infraclasse) > Ophintegrida (Superordem) > Amphilepidida (Ordem) > Gnathophiurina (Subordem) > Gnathophiurina (Infraordem) > Amphiuroidea (Superfamilia) > Amphiuridae (Familia) © Mike Weber © Marta Martins - CIIMAR © Marta Martins - CIIMAR Descrição Corpo com disco central até 5 mm de diâmetro e cinco braços de cerca de quatro vezes esse comprimento (até 20 mm de comprimento); de cor acinzentada ou branca azulada. Disco coberto em ambos os lados por escamas bastante pequenas; os escudos radiais são pequenos, com cerca de 1/3 de raio discal e contíguos em todo o comprimento. Espécie luminescente. 1 Distribuição geográfica Espécie cosmopolita em zonas de águas temperadas e temperadas a quentes. Habitat e ecologia Encontra-se frequentemente na região intertidal até profundidades de cerca de 250 m, entre algas, briozoários, em águas pouco profundas e debaixo de conchas ou pedras. Características identificativas Estrela de pequenas dimensões; Disco circular de 3-5 mm de diâmetro, com pequenas escamas cobrindo a superfície dorsal; Braços finos de 20 mm de comprimento; Cor cinzenta/azulada-branca. Estatuto de Conservação Sinónimos Amphioplus squamata (Delle Chiaje, 1828) Amphipholis appressa Ljungman, 1872 Amphipholis australiana H.L. Clark, 1909 Amphipholis elegans (Farquhar, 1897) Amphipholis japonica Matsumoto, 1915 Amphipholis kinbergi Ljungman, 1872 Amphipholis lineata Ljungman, 1872 Amphipholis minor (Döderlein, 1910) Amphipholis patagonica Ljungman, 1872 2 Amphipholis squamata tenuispina (Ljungman, 1865) Amphipholis tenera (Lütken, 1856) Amphipholis tenuispina (Ljungman, 1865) Amphipholis tissieri Reys, 1961 Amphiura elegans (Leach, 1815) Amphiura neglecta Forbes, 1843 Amphiura parva Hutton, 1878 Amphiura squamata (Delle Chiaje, 1828) Amphiura tenera Lütken, 1856 Amphiura tenuispina Ljungman, 1865 Asteria squamata Delle Chiaje, 1828 Asterias noctiluca Viviani, 1805 Asterias squamata Delle Chiaje, 1828 Axiognathus squamata (Delle Chiaje, 1829) Ophiactis minor Döderlein, 1910 Ophiolepis tenuis Ayres, 1852 Ophiura elegans Leach, 1815 Ophiura elegans Leach, 1815 Informação Adicional Pesquise mais sobre Amphipholis squamata > ~ sealifebase ~ Marine Species Identification Portal ~Habitas ~ MarLIN ~Biorede Referências MADEIRA P.; KROH A.; CORDEIRO R.; MARTINS A. & ÁVILA S. (2019) The Echinoderm Fauna of the Azores (NE Atlantic Ocean) 231 pp.; Magnolia Press, New Zealand (https://biotaxa.org/Zootaxa/article/view/zootaxa.4639.1.1/49235) Rowley, S.J. 2006. Amphipholis squamata Small brittle star. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: https://www.marlin.ac.uk/species/detail/2071 Picton, B.E. & Morrow, C.C. (2016). Amphipholis squamata (Chiaje, 1829). [In] Encyclopedia of Marine Life of Britain and Ireland. http://www.habitas.org.uk/marinelife/species.asp?item=ZB3000 additional source Hansson, H. (2004). North East Atlantic Taxa (NEAT): Nematoda. Internet pdf Ed. Aug 1998., available online at http://www.tmbl.gu.se/libdb/taxon/taxa.html [details] basis of record Hansson, H.G. (2001). Echinodermata, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to 3 their identification. Collection Patrimoines Naturels,. 50: pp. 336-351. [details] additional source Gosner, K. L. (1971). Guide to identification of marine and estuarine invertebrates: Cape Hatteras to the Bay of Fundy. John Wiley & Sons, Inc. 693 p. [details] additional source Linkletter, L. E. (1977). A checklist of marine fauna and flora of the Bay of Fundy. Huntsman Marine Laboratory, St. Andrews, N.B. 68: p. [details] additional source Pollock, L.W. (1998). A practical guide to the marine animals of northeastern North America. Rutgers University Press. New Brunswick, New Jersey & London. 367 pp., available online at http://books.google.com/books?id=i1AmT31cuR4C [details] additional source Clark, A.M. (1977). The South African Museum’s Meiring Naude cruises, part 4: Echinoderms. Ann. S. Afr. Mus. 73(6):; 133-147. [details] additional source Clark, A.M. & Courtman-Stock, J. (1976). The echinoderms of southern Africa. Publ. No. 766. British Museum (Nat. Hist), London. 277 pp. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56. Field Studies Council: Shrewsbury, UK. ISBN 1-85153-269-2. 272 pp. [details] additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France. 307 pp., available online at http://www.vliz.be/imisdocs/publications/145561.pdf [details] original description Delle Chiaje S. (1823-1831). Memorie sulla storia e notomia degli animali senza vertebre del regno di Napoli. Napoli: Fratelli Fernandes (vol. 1), and Società Tipografica (vol. 2-4). Vol. 1, pp. i-xii, 1-84 [1823], pp. 1-184 [1824]; vol. 2, pp. [1-4] + 185-224 [1825], pp. 225-444 [1826]; vol. 3, pp. i-xx, pp. 1-232 [1828]; vol. 4, pp. i-vii [1831], 1-116 [1830], pp. 117-214 [1831]; pl. 1-4; pl. 1-69 [date?], pl. 70-109 [1830][dates according to Sherborn, 1922]., available online at https://doi.org/10.5962/bhl.title.10021 [details] additional source Mah, C.L.; McKnight, D.G.; Eagle, M.K.; Pawson, D.L.; Améziane, N.; Vance, D.J.; Baker, A.N.; Clark, H.E.S.; Davey, N. (2009). Phylum Echinodermata: sea stars, brittle stars, sea urchins, sea cucumbers, sea lilies. In: Gordon, D.P. (Ed.) (2009). New Zealand inventory of biodiversity: 1. Kingdom Animalia: Radiata, Lophotrochozoa, Deuterostomia. pp. 371-400. [details] status source Hendler, G.; Peck, R.W. 1988. Ophiuroids off the deep end: Fauna of the Belizean fore- reef slope. In: Burke, R.D.; Mladenov, P.V.; Lambert, P.; Parsley, R.L. Echinoderm Biology, Proceedings of the sixth International Echinoderm Conference, 411-419. [details] additional source Pawson, D. L., D. J. Vance, C. G. Messing, F. A. Solis-Marin & C. L. Mah. (2009). Echinodermata of the Gulf of Mexico. Pp. 1177–1204 in Felder, D.L. and D.K. Camp (eds.), Gulf of Mexico–Origins, Waters, and Biota. Biodiversity. Texas A&M Press, College S. [details] additional source Liu J.Y. [Ruiyu] (ed.). (2008). Checklist of marine biota of China seas. China Science Press. 1267 pp. [details] 4 additional source Trott, T. J. (2004). Cobscook Bay inventory: a historical checklist of marine invertebrates spanning 162 years. Northeastern Naturalist. 11, 261-324., available online at http://www.gulfofmaine.org/kb/files/9793/TROTT-Cobscook%20List.pdf [details] context source (Deepsea) Intergovernmental Oceanographic Commission (IOC) of UNESCO. The Ocean Biogeographic Information System (OBIS), available online at http://www.iobis.org/ [details] context source (HKRMS) Wai, H.Y. (2009) Effects of Deployment of Artificial Reefs on the Marine Benthic Environment, with Special Reference to Sediment Physico-Chemical Chanracteristics. MPhil thesis. City University of Hong Kong. [details] additional source Gosner, K. L. (1971). Guide to identification of marine and estuarine invertebrates: Cape Hatteras to the Bay of Fundy. John Wiley & Sons, Inc. 693 p. [details] additional source Pollock, L.W. (1998). A practical guide to the marine animals of northeastern North America. Rutgers University Press. New Brunswick, New Jersey & London. 367 pp., available online at http://books.google.com/books?id=i1AmT31cuR4C [details] additional source Clark, A.M. & Courtman-Stock, J. (1976). The echinoderms of southern Africa. Publ. No. 766. British Museum (Nat. Hist), London. 277 pp. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56. Field Studies Council: Shrewsbury, UK. ISBN 1-85153-269-2. 272 pp. [details] additional source Pawson, D. L., D. J. Vance, C. G. Messing, F. A. Solis-Marin & C. L. Mah. (2009). Echinodermata of the Gulf of Mexico. Pp. 1177–1204 in Felder, D.L. and D.K. Camp (eds.), Gulf of Mexico–Origins, Waters, and Biota. Biodiversity. Texas A&M Press, College S. [details] context source (BeRMS 2020) Aquatic environment and quality group; Flanders research institute for agriculture, fisheries and food (ILVO), Belgium; (2017): Subtidal macrobenthos monitoring in function of a foreshore suppletion at the Belgian coast, period 2013-2016. [details] additional source Gosner, K. L. (1971). Guide to identification of marine and estuarine invertebrates: Cape Hatteras to the Bay of Fundy. John Wiley & Sons, Inc. 693 p. [details] additional source Pollock, L.W. (1998). A practical guide to the marine animals of northeastern North America. Rutgers University Press. New Brunswick, New Jersey & London. 367 pp., available online at http://books.google.com/books?id=i1AmT31cuR4C [details] additional source Clark, A.M. & Courtman-Stock, J. (1976). The echinoderms of southern Africa. Publ. No. 766. British Museum (Nat. Hist), London. 277 pp. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the
Recommended publications
  • Inventario De Invertebrados De La Zona Rocosa Intermareal De Montepío, Veracruz, México
    Revista Mexicana de Biodiversidad 85: 349-362, 2014 Revista Mexicana de Biodiversidad 85: 349-362, 2014 DOI: 10.7550/rmb.42628 DOI: 10.7550/rmb.42628349 Inventario de invertebrados de la zona rocosa intermareal de Montepío, Veracruz, México Inventory of invertebrates from the rocky intertidal shore at Montepío, Veracruz, Mexico Aurora Vassallo, Yasmín Dávila, Nelia Luviano, Sara Deneb-Amozurrutia, Xochitl Guadalupe Vital, Carlos Andrés Conejeros, Leopoldo Vázquez y Fernando Álvarez Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70-153, 04510 México, D. F., México. [email protected] Resumen. Se presenta el registro de las especies de invertebrados marinos que habitan la costa rocosa intermareal de Montepío, Veracruz, identificados hasta ahora. La información se obtuvo de las colectas realizadas en los últimos 10 años por parte de la Colección Nacional de Crustáceos y los registros adicionales se obtuvieron de la información publicada. El listado de especies incluye las formas de vida en relación con el sustrato, criptofauna o epifauna, así como su tipo de distribución en las 2 principales regiones zoogeográficas marinas para el golfo de México: Carolineana y Caribeña; se incluyen también las especies que sólo se encuentran en el golfo de México. El listado incluye 195 especies pertenecientes a 9 grupos, de los cuales Crustacea es el más diverso con 73 especies, seguido por Mollusca con 69 y Echinodermata con 18; los grupos con menor riqueza específica fueron: Chelicerata con 2 especies y Platyhelminthes y Sipuncula con una sola especie cada grupo. Del total de especies 74 son nuevos registros de localidad y 7 nuevos registros para Veracruz.
    [Show full text]
  • Amphipholis Squamata MICHAEL P
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1990, p. 2436-2440 Vol. 56, No. 8 0099-2240/90/082436-05$02.00/0 Copyright C) 1990, American Society for Microbiology Description of a Novel Symbiotic Bacterium from the Brittle Star, Amphipholis squamata MICHAEL P. LESSERt* AND RICHARD P. BLAKEMORE Department of Microbiology, University of New Hampshire, Durham, New Hampshire 03824 Received 8 November 1989/Accepted 3 June 1990 A gram-negative, marine, facultatively anaerobic bacterial isolate designated strain AS-1 was isolated from the subcuticular space of the brittle star, Amphipholis squamata. Its sensitivity to 0/129 and novobiocin, overall morphology, and biochemical characteristics and the moles percent guanine-plus-cytosine composition of its DNA (42.9 to 44.4) suggest that this isolate should be placed in the genus Vibrio. Strain AS-1 was not isolated from ambient seawater and is distinct from described Vibrio species. This symbiotic bacterium may assist its host as one of several mechanisms of nutrient acquisition during the brooding of developing embryos. The biology of bacterium-invertebrate symbiotic associa- isopropyl alcohol for 30 s and two rinses in sterile ASW. tions has elicited considerable interest, particularly since the Logarithmic dilutions were plated on Zobell modified 2216E discoveries during the past decade of chemoautotrophic medium (ASW, 1 g of peptone liter-1, 1 g of yeast extract symbiotic bacteria associated with several invertebrate spe- liter-' [pH 7.8 to 8.4]) (29), as were samples of ambient cies in sulfide-rich habitats (4, 5). Bacterial-invertebrate seawater from the site of collection and ASW controls. All symbioses (mutualistic) have been reported from many materials and equipment were sterilized, and all procedures invertebrate taxa, examples of which include cellulolytic were performed by aseptic techniques.
    [Show full text]
  • Isolation and Identification of Bacterial Endosymbionts in the Brooding Brittle Star Amphipholis Squamata
    University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2016 Isolation and identification of bacterial endosymbionts in the brooding brittle star Amphipholis squamata Abbey Rose Tedford University of New Hampshire - Main Campus Follow this and additional works at: https://scholars.unh.edu/honors Part of the Bacteriology Commons, Biodiversity Commons, Biology Commons, Environmental Microbiology and Microbial Ecology Commons, Marine Biology Commons, and the Organismal Biological Physiology Commons Recommended Citation Tedford, Abbey Rose, "Isolation and identification of bacterial endosymbionts in the brooding brittle star Amphipholis squamata" (2016). Honors Theses and Capstones. 273. https://scholars.unh.edu/honors/273 This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Isolation and identification of bacterial endosymbionts in the brooding brittle star Amphipholis squamata Abbey Rose Tedford, Kathleen M. Morrow, Michael P. Lesser Department of Molecular, Cellular and Biological Sciences, University of New Hampshire, Durham, NH 03824 Abstract: Symbiotic associations with subcuticular bacteria (SCB) have been identified and studied in numerous echinoderms, including the SCB of the brooding brittle star, Amphipholis squamata. These SCB, however, have not been studied using current next generation sequencing technologies. Previous studies on the SCB of A. squamata placed these bacteria in the genus Vibrio (γ-Proteobacteria), but subsequent studies suggested that the SCB are primarily composed of α-Proteobacteria.
    [Show full text]
  • Late Turonian Ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Republic
    Late Turonian ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Republic RICHARD TORC & JIØÍ ÍTT Diverse ophiuroid faunules from the basal Teplice Formation, of Late Turonian age, exposed at Úpohlavy in the north- western part of the Bohemian Cretaceous Basin, northwest Bohemia, are based on only dissociated lateral arm plates, vertebrae and some other skeletal elements of the disc. The material can be ascribed to ten species, including a new taxon named Stegophiura? nekvasilovae sp. nov. Three additional species are represented in the material but these are left in open nomenclature. Relative species abundance is evaluated and discussed. • Key words: Echinodermata, Ophiuroidea, Upper Cretaceous, taxonomy, Bohemian Cretaceous Basin, Czech Republic. ŠTORC,R.&ŽÍTT, J. 2008. Late Turonian ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Re- public. Bulletin of Geosciences 83(2), 123–140 (8 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manu- script received January 3, 2008; accepted in revised form February 27, 2008; issued June 30, 2008. Richard Štorc, Smetanova 380, CZ-251 64 Mnichovice, Czech Republic; [email protected] • Jiří Žítt, Institute of Geology of the Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 269, CZ-165 02 Praha 6, Czech Repub- lic; [email protected] Until recently, knowledge of ophiuroids from the Bohe- Geographical and stratigraphical setting mian Cretaceous Basin (BCB) was poor although skele- tal remains of such echinoderms had already been record- The material described here was collected from the large ed by Reuss (1845–46) and Frič (1895). Recent work by working quarry of Čížkovické cementárny, a.s.
    [Show full text]
  • Echinodermata, Ophiuroidea)
    Vol. 16: 105–113, 2012 AQUATIC BIOLOGY Published online July 19 doi: 10.3354/ab00435 Aquat Biol Slow arm regeneration in the Antarctic brittle star Ophiura crassa (Echinodermata, Ophiuroidea) Melody S. Clark*, Terri Souster British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Regeneration of arms in brittle stars is thought to proceed slowly in low temperature environments. Here a survey of natural arm damage and arm regeneration rates is documented in the Antarctic brittle star Ophiura crassa. This relatively small ophiuroid, a detritivore found amongst red macroalgae, displays high levels of natural arm damage and repair. This is largely thought to be due to ice damage in the shallow waters it inhabits. The time scale of arm regener- ation was measured in an aquarium-based 10 mo experiment. There was a delayed regeneration phase of 7 mo before arm growth was detectable in this species. This is 2 mo longer than the longest time previously described, which was in another Antarctic ophiuroid, Ophionotus victo- riae. The subsequent regeneration of arms in O. crassa occurred at a rate of approximately 0.16 mm mo−1. To date, this is the slowest regeneration rate known of any ophiuroid. The confir- mation that such a long delay before arm regeneration occurs in a second Antarctic species pro- vides strong evidence that this phenomenon is yet another characteristic feature of Southern Ocean species, along with deferred maturity, slowed growth and development rates. It is unclear whether delayed initial regeneration phases are adaptations to, or limitations of, low temperature environments.
    [Show full text]
  • Glossary for the Echinodermata
    February 2011 Christina Ball ©RBCM Phil Lambert GLOSSARY FOR THE ECHINODERMATA OVERVIEW The echinoderms are a globally distributed and morphologically diverse group of invertebrates whose history dates back 500 million years (Lambert 1997; Lambert 2000; Lambert and Austin 2007; Pearse et al. 2007). The group includes the sea stars (Asteroidea), sea cucumbers (Holothuroidea), sea lilies and feather stars (Crinoidea), the sea urchins, heart urchins and sand dollars (Echinoidea) and the brittle stars (Ophiuroidea). In some areas the group comprises up to 95% of the megafaunal biomass (Miller and Pawson 1990). Today some 13,000 species occur around the world (Pearse et al. 2007). Of those 13,000 species 194 are known to occur in British Columbia (Lambert and Boutillier, in press). The echinoderms are a group of almost exclusively marine organisms with the few exceptions living in brackish water (Brusca and Brusca 1990). Almost all of the echinoderms are benthic, meaning that they live on or in the substrate. There are a few exceptions to this rule. For example several holothuroids (sea cucumbers) are capable of swimming, sometimes hundreds of meters above the sea floor (Miller and Pawson 1990). One species of holothuroid, Rynkatorpa pawsoni, lives as a commensal with a deep-sea angler fish (Gigantactis macronema) (Martin 1969). While the echinoderms are a diverse group, they do share four unique features that define the group. These are pentaradial symmetry, an endoskeleton made up of ossicles, a water vascular system and mutable collagenous tissue. While larval echinoderms are bilaterally symmetrical the adults are pentaradially symmetrical (Brusca and Brusca 1990). All echinoderms have an endoskeleton made of calcareous ossicles (figure 1).
    [Show full text]
  • Ophiuroidea: Amphilepidida: Amphiuridae), from Geoje Island, Korea
    -페이지 연속.(가능한한 짝수되게). -표 선: 맨위,맨아래 1pt / 중간 0.3pt -표 내부여백 : 선 있는 곳 2, 선 없는 곳 0.7 -et al. Journal of Species Research 9(3):273-279, 2020 A newly recorded brittle star, Amphiura (Amphiura) digitula (H.L. Clark, 1911) (Ophiuroidea: Amphilepidida: Amphiuridae), from Geoje Island, Korea Taekjun Lee1 and Sook Shin1,2 1Marine Biological Resource Institute, Sahmyook University, Seoul 01795, Republic of Korea 2Department of Animal Biotechnology and Resource, Sahmyook University, Seoul 01795, Republic of Korea *Correspondent: [email protected] We describe a newly recorded brittle star to South Korea, Amphiura (Amphiura) digitula (H.L. Clark, 1911), that was collected from Geoje Island, at a depth of 47 m. The species is characterized by a small disk, covered by numerous fine scales, small radial shields that are wider than long, a small stumpy hook at the distal end of the radial shield, two tooth papilla, two adoral shield spines, 2nd adoral shield spine longer than other, tapered dramatically toward dull tip, five arms with four proximal arm spines, and two tentacle scales. We also obtained a 657 bp sequence from COI gene and the amplified sequence matched the general DNA barcoding region. The NJ and ML phylogenetic analyses revealed A. (A.) digitula as monophyletic in the Amphiura clade. This species is clearly distinguished from other Amphiura species by morphological characteristics and the mitochondrial COI sequence, and thus represents the sixth Amphiura species reported to occur in Korea. Keywords: Echinodermata, mitochondrial COI, morphology, ophiuroid, taxonomy Ⓒ 2020 National Institute of Biological Resources DOI:10.12651/JSR.2020.9.3.273 INTRODUCTION al., 2016; Boissin et al., 2017; Knott et al., 2018; Paw- son, 2018).
    [Show full text]
  • The First Report of Amphipholis Squamata (Delle Chiaje, 1829) (Echinodermata: Ophiuroidea) from Chabahar Bay – Northern Oman Sea
    Short communication: The first report of Amphipholis squamata (Delle Chiaje, 1829) (Echinodermata: Ophiuroidea) from Chabahar Bay – northern Oman Sea Item Type article Authors Attaran-Fariman, G.; Beygmoradi, A. Download date 03/10/2021 21:12:16 Link to Item http://hdl.handle.net/1834/37693 Iranian Journal of Fisheries Sciences 15(3)1254-1261 2016 The first report of Amphipholis squamata (Delle Chiaje, 1829) (Echinodermata: Ophiuroidea) from Chabahar Bay – northern Oman Sea Attaran-Fariman G. *; Beygmoradi A. Received: December 2014 Accepted: April 2016 Chabahar Maritime University, Faculty of Marine Sciences, Department of Marine Biology, Daneshgah Avenue, 99717-56499, Chabahar, Iran. *Corresponding author's email: [email protected] Keywords: Echinoderms, Amphiuridae, Morphology, Taxonomy, Chabahar Bay; Oman Sea Introduction the cognates of this species (Deheyn Amphipholis squamata is an important and Jangoux, 1999). Also, this species Ophiuroid species belonging to the is one of the most important family Amphiuridae which is widely echinoderms in terms of used in biotechnological and molecular bioluminescence (Deheyn et al., 1997). studies. It is a cosmopolitan species and Bioluminescence echinoderms were capable to inhabit a wide variety of identified about two centuries ago habitats except the polar regions, from (Viviani, 1805), consisting 4 out of 5 subtidal zone to the depth of 2000 class of Echinodermata (Herring, 1987). meters (Hendler, 1995). According to The only class without bioluminescence Fell (1962) its widespread distribution ability is Echinoidea (Herring, 1987). all over the world is the result of its In the present study, Amphipholis costal migration. A. squamata is squamata was reported for the first time characterized by its small body size, from the subtidal zone of Chabahar Bay hermaphroditic reproduction, lack of in northern part of the Oman Sea.
    [Show full text]
  • Occurrence of Amphipholis Squamata (Echinodermata: Ophiuroidea) In
    Journal of the Royal Society of Western Australia, 83: 475-480, 2000 Occurrence of Amphipholis squamata (Echinodermata: Ophiuroidea) in relation to habitat in the Leschenault Inlet estuary J Unno V & C Semeniuk Research Group 21 Glenmere Road Warwick WA 6024 Abstract The occurrence of a cosmopolitan ophiuroid echinoderm, Amphipholis squamata (Delle-Chiaje) in the Leschenault Inlet estuary of south-western Australia has been recorded at varying intervals over a period of 17 years (1982- 1999). This occurrence is noteworthy because the ophiuroid is inhabiting an estuary whereas most other records of the species in Western Australia are oceanic, and because the biogeographic range of the species is extended. During 1982-1987, A. squamata generally had sporadic low density populations in the Leschenault Inlet estuary, in restricted habitats mostly in areas with mud to muddy-sand substrate, moderate detritus levels, usually some seagrass and/or algae present, at the boundary between the middle to upper estuarine salinity fields, well-oxy- genated water, and water temperature range of ca 15-30 °C. However, during August 1984 and September 1986 to March 1987, and in October 1990, A. squamata populations were dense, mainly located at the boundary between the middle to upper estuary. Since 1990, the species appears to have returned to its sporadic low density and restricted occurrence. Keywords: ophiuroid, Amphipholis squamata, Leschenault Inlet, estuary, south-western Australia. Introduction Setting The brittle star, Amphipholis squamata (Delle-Chiaje Leschenault Inlet estuary is located on the coast of the 1828), is a cosmopolitan ophiuroid echinoderm found in southern Swan Coastal Plain, south-western Australia.
    [Show full text]
  • Large Genetic Distances Within a Population of Amphipholis Squamata (Echinodermata; Ophiuroidea) Do Not Support Colour Varieties As Sibling Species
    MARINE ECOLOGY PROGRESS SERIES Vol. 219: 169–175, 2001 Published September 10 Mar Ecol Prog Ser Large genetic distances within a population of Amphipholis squamata (Echinodermata; Ophiuroidea) do not support colour varieties as sibling species Renate Sponer1, Dimitri Deheyn2,*, Michael S. Roy1,** 1Evolutionary Genetics Laboratory, Zoology Department, University of Otago, PO Box 56, Dunedin, New Zealand 2Laboratoire de Biologie marine, Université de Mons-Hainaut, Pentagone, 6 av. du Champs de Mars, 7000 Mons, Belgium ABSTRACT: The brittle star Amphipholis squamata is paradoxical in that it lacks an obvious disper- sive phase yet has a world-wide distribution. Although individuals from distant populations are mor- phologically similar, a recent phylogenetic analysis found multiple clades separated by large genetic divergences. These clades were not phylogeographically structured and genetic divergences within populations were typically as high as those amongst populations. The recent suggestion that the sym- patric colour varieties ‘orange’, ‘dark brown’, ‘beige’, ‘black’ and ‘grey’ represent sibling species, led us to test whether colour variety and phylogeny were congruent. Genetic distances among sequences of the mitochondrial gene 16S rRNA from the colour varieties were surprisingly high (up to 13% uncorrected distance) and phylogenetic analyses using maximum parsimony, maximum likelihood and neighbour joining gave well supported, congruent phylogenies. However, the clades were not consistent with colour variety. When clades were constrained to make colour varieties monophyletic, tree scores were always significantly worse. We conclude from the results of this study that colour varieties do not represent distinct phylogenetic lineages. We discuss the implications of our results in the light of the possibility of clonality or self-fertilization in this species.
    [Show full text]
  • DNA Barcoding of Reef Brittle Stars (Ophiuroidea
    DNA barcoding of reef brittle stars (Ophiuroidea, Echinodermata) from the southwestern Indian Ocean evolutionary hot spot of biodiversity Emilie Boissin, Thierry Hoareau, Gustav Paulay, J. Henrich Bruggemann To cite this version: Emilie Boissin, Thierry Hoareau, Gustav Paulay, J. Henrich Bruggemann. DNA barcoding of reef brittle stars (Ophiuroidea, Echinodermata) from the southwestern Indian Ocean evolutionary hot spot of biodiversity. Ecology and Evolution, Wiley Open Access, 2017, 7 (24), pp.11197 - 11203. 10.1002/ece3.3554. hal-01907132 HAL Id: hal-01907132 https://hal.univ-reunion.fr/hal-01907132 Submitted on 28 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Received: 4 August 2017 | Revised: 26 September 2017 | Accepted: 28 September 2017 DOI: 10.1002/ece3.3554 ORIGINAL RESEARCH DNA barcoding of reef brittle stars (Ophiuroidea, Echinodermata) from the southwestern Indian Ocean evolutionary hot spot of biodiversity Emilie Boissin1,2 | Thierry Bernard Hoareau3 | Gustav Paulay4 | J. Henrich Bruggemann2,5 1PSL Research University: EPHE-UPVD- CNRS, USR 3278 CRIOBE, Université de Abstract Perpignan, Perpignan Cedex, France In anticipation of the current biodiversity crisis, it has become critical to rapidly and 2 Laboratoire d’Excellence “CORAIL”, Papetoai, accurately assess biodiversity.
    [Show full text]
  • Early View Version) a New S Pecies of the Genus Ophiomonas Djakonov (Echinodermata: Ophiuroidea: Amphilepididae) from Sthe Deep- Ea of Japan
    Zoological Studies 60:59 (2021) (early view version) A New S pecies of the G enus Ophiomonas Djakonov (Echinodermata: Ophiuroidea: Amphilepididae) from theS Deep- ea of Japan Masanori Okanishi1,*, Takumi Matsuo2,3 , and Toshihiko Fujita2,3 1Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura 238-0225, Japan. * Correspondence: E-mail: mokanishi@tezuru- mozuru.com (Okanishi) 2National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan. E-mail: apo- [email protected] (Matsuo); [email protected] (Fujita) 3Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654 Japan. (Received 2 March 2021 / Accepted 12 July 2021 / Published xx August 2021) Communicated by James D. Reimer A new species, Ophiomonas shinseimaruae is described based on five specimens collected from deep water settings, southeast of Cape Erimo, Hokkaido, Japan. Ophiomonas shinseimaruae sp. n. is distinguished from other congeners based on the following characters: elongate semi-circular and separated radial shields; triangular oral shields; flat and broad tentacle scales on the second tentacle pore; octagonal dorsal arm plates, approximately three times wider than long on proximal portion of the arm; and three arm spines present proximally on the arm. This is the first record of the genus Ophiomonas from Japanese waters. The COI nucleotide sequence for Ophiomonas shinseimaruae sp. n. is provided. Key words: Brittle star, COI, DNA barcoding, Abyssal zone, Gnathophiurina, Taxonomy, Ophiomonas shinseimaruae sp. n. Citation: Okanishi M, Matsuo T, Fujita T. 2021. A new species of the genus Ophiomonas Djakonov (Echinodermata: Ophiuroidea: Amphilepididae) from the deep-sea of Japan.
    [Show full text]