Amphipholis Squamata (Delle Chiaje, 1828)

Total Page:16

File Type:pdf, Size:1020Kb

Amphipholis Squamata (Delle Chiaje, 1828) Amphipholis squamata (Delle Chiaje, 1828) AphiaID: 125064 DWARF BRITTLE STAR Myophiuroida (Subclasse) > Metophiurida (Infraclasse) > Ophintegrida (Superordem) > Amphilepidida (Ordem) > Gnathophiurina (Subordem) © Mike Weber © Marta Martins - CIIMAR © Marta Martins - CIIMAR Sinónimos Amphioplus squamata (Delle Chiaje, 1828) Amphipholis appressa Ljungman, 1872 Amphipholis australiana H.L. Clark, 1909 Amphipholis elegans (Farquhar, 1897) 1 Amphipholis japonica Matsumoto, 1915 Amphipholis kinbergi Ljungman, 1872 Amphipholis lineata Ljungman, 1872 Amphipholis minor (Döderlein, 1910) Amphipholis patagonica Ljungman, 1872 Amphipholis squamata tenuispina (Ljungman, 1865) Amphipholis tenera (Lütken, 1856) Amphipholis tenuispina (Ljungman, 1865) Amphipholis tissieri Reys, 1961 Amphiura elegans (Leach, 1815) Amphiura neglecta Forbes, 1843 Amphiura parva Hutton, 1878 Amphiura squamata (Delle Chiaje, 1828) Amphiura tenera Lütken, 1856 Amphiura tenuispina Ljungman, 1865 Asteria squamata Delle Chiaje, 1828 Asterias noctiluca Viviani, 1805 Asterias squamata Delle Chiaje, 1828 Axiognathus squamata (Delle Chiaje, 1829) Ophiactis minor Döderlein, 1910 Ophiolepis tenuis Ayres, 1852 Ophiura elegans Leach, 1815 Ophiura elegans Leach, 1815 Referências MADEIRA P.; KROH A.; CORDEIRO R.; MARTINS A. & ÁVILA S. (2019) The Echinoderm Fauna of the Azores (NE Atlantic Ocean) 231 pp.; Magnolia Press, New Zealand (https://biotaxa.org/Zootaxa/article/view/zootaxa.4639.1.1/49235) Rowley, S.J. 2006. Amphipholis squamata Small brittle star. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: https://www.marlin.ac.uk/species/detail/2071 Picton, B.E. & Morrow, C.C. (2016). Amphipholis squamata (Chiaje, 1829). [In] Encyclopedia of Marine Life of Britain and Ireland. http://www.habitas.org.uk/marinelife/species.asp?item=ZB3000 additional source Hansson, H. (2004). North East Atlantic Taxa (NEAT): Nematoda. Internet pdf Ed. Aug 1998., available online at http://www.tmbl.gu.se/libdb/taxon/taxa.html [details] basis of record Hansson, H.G. (2001). Echinodermata, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels,. 50: pp. 336-351. [details] 2 additional source Gosner, K. L. (1971). Guide to identification of marine and estuarine invertebrates: Cape Hatteras to the Bay of Fundy. John Wiley & Sons, Inc. 693 p. [details] additional source Linkletter, L. E. (1977). A checklist of marine fauna and flora of the Bay of Fundy. Huntsman Marine Laboratory, St. Andrews, N.B. 68: p. [details] additional source Pollock, L.W. (1998). A practical guide to the marine animals of northeastern North America. Rutgers University Press. New Brunswick, New Jersey & London. 367 pp., available online at http://books.google.com/books?id=i1AmT31cuR4C [details] additional source Clark, A.M. (1977). The South African Museum’s Meiring Naude cruises, part 4: Echinoderms. Ann. S. Afr. Mus. 73(6):; 133-147. [details] additional source Clark, A.M. & Courtman-Stock, J. (1976). The echinoderms of southern Africa. Publ. No. 766. British Museum (Nat. Hist), London. 277 pp. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56. Field Studies Council: Shrewsbury, UK. ISBN 1-85153-269-2. 272 pp. [details] additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France. 307 pp., available online at http://www.vliz.be/imisdocs/publications/145561.pdf [details] original description Delle Chiaje S. (1823-1831). Memorie sulla storia e notomia degli animali senza vertebre del regno di Napoli. Napoli: Fratelli Fernandes (vol. 1), and Società Tipografica (vol. 2-4). Vol. 1, pp. i-xii, 1-84 [1823], pp. 1-184 [1824]; vol. 2, pp. [1-4] + 185-224 [1825], pp. 225-444 [1826]; vol. 3, pp. i-xx, pp. 1-232 [1828]; vol. 4, pp. i-vii [1831], 1-116 [1830], pp. 117-214 [1831]; pl. 1-4; pl. 1-69 [date?], pl. 70-109 [1830][dates according to Sherborn, 1922]., available online at https://doi.org/10.5962/bhl.title.10021 [details] additional source Mah, C.L.; McKnight, D.G.; Eagle, M.K.; Pawson, D.L.; Améziane, N.; Vance, D.J.; Baker, A.N.; Clark, H.E.S.; Davey, N. (2009). Phylum Echinodermata: sea stars, brittle stars, sea urchins, sea cucumbers, sea lilies. In: Gordon, D.P. (Ed.) (2009). New Zealand inventory of biodiversity: 1. Kingdom Animalia: Radiata, Lophotrochozoa, Deuterostomia. pp. 371-400. [details] status source Hendler, G.; Peck, R.W. 1988. Ophiuroids off the deep end: Fauna of the Belizean fore- reef slope. In: Burke, R.D.; Mladenov, P.V.; Lambert, P.; Parsley, R.L. Echinoderm Biology, Proceedings of the sixth International Echinoderm Conference, 411-419. [details] additional source Pawson, D. L., D. J. Vance, C. G. Messing, F. A. Solis-Marin & C. L. Mah. (2009). Echinodermata of the Gulf of Mexico. Pp. 1177–1204 in Felder, D.L. and D.K. Camp (eds.), Gulf of Mexico–Origins, Waters, and Biota. Biodiversity. Texas A&M Press, College S. [details] additional source Liu J.Y. [Ruiyu] (ed.). (2008). Checklist of marine biota of China seas. China Science Press. 1267 pp. [details] additional source Trott, T. J. (2004). Cobscook Bay inventory: a historical checklist of marine 3 invertebrates spanning 162 years. Northeastern Naturalist. 11, 261-324., available online at http://www.gulfofmaine.org/kb/files/9793/TROTT-Cobscook%20List.pdf [details] context source (Deepsea) Intergovernmental Oceanographic Commission (IOC) of UNESCO. The Ocean Biogeographic Information System (OBIS), available online at http://www.iobis.org/ [details] context source (HKRMS) Wai, H.Y. (2009) Effects of Deployment of Artificial Reefs on the Marine Benthic Environment, with Special Reference to Sediment Physico-Chemical Chanracteristics. MPhil thesis. City University of Hong Kong. [details] additional source Gosner, K. L. (1971). Guide to identification of marine and estuarine invertebrates: Cape Hatteras to the Bay of Fundy. John Wiley & Sons, Inc. 693 p. [details] additional source Pollock, L.W. (1998). A practical guide to the marine animals of northeastern North America. Rutgers University Press. New Brunswick, New Jersey & London. 367 pp., available online at http://books.google.com/books?id=i1AmT31cuR4C [details] additional source Clark, A.M. & Courtman-Stock, J. (1976). The echinoderms of southern Africa. Publ. No. 766. British Museum (Nat. Hist), London. 277 pp. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56. Field Studies Council: Shrewsbury, UK. ISBN 1-85153-269-2. 272 pp. [details] additional source Pawson, D. L., D. J. Vance, C. G. Messing, F. A. Solis-Marin & C. L. Mah. (2009). Echinodermata of the Gulf of Mexico. Pp. 1177–1204 in Felder, D.L. and D.K. Camp (eds.), Gulf of Mexico–Origins, Waters, and Biota. Biodiversity. Texas A&M Press, College S. [details] context source (BeRMS 2020) Aquatic environment and quality group; Flanders research institute for agriculture, fisheries and food (ILVO), Belgium; (2017): Subtidal macrobenthos monitoring in function of a foreshore suppletion at the Belgian coast, period 2013-2016. [details] additional source Gosner, K. L. (1971). Guide to identification of marine and estuarine invertebrates: Cape Hatteras to the Bay of Fundy. John Wiley & Sons, Inc. 693 p. [details] additional source Pollock, L.W. (1998). A practical guide to the marine animals of northeastern North America. Rutgers University Press. New Brunswick, New Jersey & London. 367 pp., available online at http://books.google.com/books?id=i1AmT31cuR4C [details] additional source Clark, A.M. & Courtman-Stock, J. (1976). The echinoderms of southern Africa. Publ. No. 766. British Museum (Nat. Hist), London. 277 pp. [details] additional source Southward, E.C.; Campbell, A.C. (2006). [Echinoderms: keys and notes for the identification of British species]. Synopses of the British fauna (new series), 56. Field Studies Council: Shrewsbury, UK. ISBN 1-85153-269-2. 272 pp. [details] additional source Pawson, D. L., D. J. Vance, C. G. Messing, F. A. Solis-Marin & C. L. Mah. (2009). Echinodermata of the Gulf of Mexico. Pp. 1177–1204 in Felder, D.L. and D.K. Camp (eds.), Gulf of Mexico–Origins, Waters, and Biota. Biodiversity. Texas A&M Press, College S. [details] 4 additional source Liu, J.Y. [Ruiyu] (ed.). (2008). Checklist of marine biota of China seas. China Science Press. 1267 pp. [details] additional source Clark, A. M. (1977). The South African Museum’s Meiring Naude cruises, part 4: Echinoderms. Ann. S. Afr. Mus. 73(6):; 133-147. [details] Última atualização: 09 Dez. 2017 5.
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Inventario De Invertebrados De La Zona Rocosa Intermareal De Montepío, Veracruz, México
    Revista Mexicana de Biodiversidad 85: 349-362, 2014 Revista Mexicana de Biodiversidad 85: 349-362, 2014 DOI: 10.7550/rmb.42628 DOI: 10.7550/rmb.42628349 Inventario de invertebrados de la zona rocosa intermareal de Montepío, Veracruz, México Inventory of invertebrates from the rocky intertidal shore at Montepío, Veracruz, Mexico Aurora Vassallo, Yasmín Dávila, Nelia Luviano, Sara Deneb-Amozurrutia, Xochitl Guadalupe Vital, Carlos Andrés Conejeros, Leopoldo Vázquez y Fernando Álvarez Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70-153, 04510 México, D. F., México. [email protected] Resumen. Se presenta el registro de las especies de invertebrados marinos que habitan la costa rocosa intermareal de Montepío, Veracruz, identificados hasta ahora. La información se obtuvo de las colectas realizadas en los últimos 10 años por parte de la Colección Nacional de Crustáceos y los registros adicionales se obtuvieron de la información publicada. El listado de especies incluye las formas de vida en relación con el sustrato, criptofauna o epifauna, así como su tipo de distribución en las 2 principales regiones zoogeográficas marinas para el golfo de México: Carolineana y Caribeña; se incluyen también las especies que sólo se encuentran en el golfo de México. El listado incluye 195 especies pertenecientes a 9 grupos, de los cuales Crustacea es el más diverso con 73 especies, seguido por Mollusca con 69 y Echinodermata con 18; los grupos con menor riqueza específica fueron: Chelicerata con 2 especies y Platyhelminthes y Sipuncula con una sola especie cada grupo. Del total de especies 74 son nuevos registros de localidad y 7 nuevos registros para Veracruz.
    [Show full text]
  • Amphipholis Squamata MICHAEL P
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1990, p. 2436-2440 Vol. 56, No. 8 0099-2240/90/082436-05$02.00/0 Copyright C) 1990, American Society for Microbiology Description of a Novel Symbiotic Bacterium from the Brittle Star, Amphipholis squamata MICHAEL P. LESSERt* AND RICHARD P. BLAKEMORE Department of Microbiology, University of New Hampshire, Durham, New Hampshire 03824 Received 8 November 1989/Accepted 3 June 1990 A gram-negative, marine, facultatively anaerobic bacterial isolate designated strain AS-1 was isolated from the subcuticular space of the brittle star, Amphipholis squamata. Its sensitivity to 0/129 and novobiocin, overall morphology, and biochemical characteristics and the moles percent guanine-plus-cytosine composition of its DNA (42.9 to 44.4) suggest that this isolate should be placed in the genus Vibrio. Strain AS-1 was not isolated from ambient seawater and is distinct from described Vibrio species. This symbiotic bacterium may assist its host as one of several mechanisms of nutrient acquisition during the brooding of developing embryos. The biology of bacterium-invertebrate symbiotic associa- isopropyl alcohol for 30 s and two rinses in sterile ASW. tions has elicited considerable interest, particularly since the Logarithmic dilutions were plated on Zobell modified 2216E discoveries during the past decade of chemoautotrophic medium (ASW, 1 g of peptone liter-1, 1 g of yeast extract symbiotic bacteria associated with several invertebrate spe- liter-' [pH 7.8 to 8.4]) (29), as were samples of ambient cies in sulfide-rich habitats (4, 5). Bacterial-invertebrate seawater from the site of collection and ASW controls. All symbioses (mutualistic) have been reported from many materials and equipment were sterilized, and all procedures invertebrate taxa, examples of which include cellulolytic were performed by aseptic techniques.
    [Show full text]
  • Lack of Taxonomic Differentiation in An
    ARTICLE IN PRESS Molecular Phylogenetics and Evolution xxx (2005) xxx–xxx www.elsevier.com/locate/ympev Lack of taxonomic diVerentiation in an apparently widespread freshwater isopod morphotype (Phreatoicidea: Mesamphisopidae: Mesamphisopus) from South Africa Gavin Gouws a,¤, Barbara A. Stewart b, Conrad A. Matthee a a Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa b Centre of Excellence in Natural Resource Management, University of Western Australia, 444 Albany Highway, Albany, WA 6330, Australia Received 20 December 2004; revised 2 June 2005; accepted 2 June 2005 Abstract The unambiguous identiWcation of phreatoicidean isopods occurring in the mountainous southwestern region of South Africa is problematic, as the most recent key is based on morphological characters showing continuous variation among two species: Mesam- phisopus abbreviatus and M. depressus. This study uses variation at 12 allozyme loci, phylogenetic analyses of 600 bp of a COI (cyto- chrome c oxidase subunit I) mtDNA fragment and morphometric comparisons to determine whether 15 populations are conspeciWc, and, if not, to elucidate their evolutionary relationships. Molecular evidence suggested that the most easterly population, collected from the Tsitsikamma Forest, was representative of a yet undescribed species. Patterns of diVerentiation and evolutionary relation- ships among the remaining populations were unrelated to geographic proximity or drainage system. Patterns of isolation by distance were also absent. An apparent disparity among the extent of genetic diVerentiation was also revealed by the two molecular marker sets. Mitochondrial sequence divergences among individuals were comparable to currently recognized intraspeciWc divergences. Sur- prisingly, nuclear markers revealed more extensive diVerentiation, more characteristic of interspeciWc divergences.
    [Show full text]
  • Key to the Common Shallow-Water Brittle Stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228496999 Key to the common shallow-water brittle stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea Article · January 2007 CITATIONS READS 10 702 1 author: Christopher Pomory University of West Florida 34 PUBLICATIONS 303 CITATIONS SEE PROFILE All content following this page was uploaded by Christopher Pomory on 21 May 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. 1 Key to the common shallow-water brittle stars (Echinodermata: Ophiuroidea) of the Gulf of Mexico and Caribbean Sea CHRISTOPHER M. POMORY 2007 Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL 32514, USA. [email protected] ABSTRACT A key is given for 85 species of ophiuroids from the Gulf of Mexico and Caribbean Sea covering a depth range from the intertidal down to 30 m. Figures highlighting important anatomical features associated with couplets in the key are provided. 2 INTRODUCTION The Caribbean region is one of the major coral reef zoogeographic provinces and a region of intensive human use of marine resources for tourism and fisheries (Aide and Grau, 2004). With the world-wide decline of coral reefs, and deterioration of shallow-water marine habitats in general, ecological and biodiversity studies have become more important than ever before (Bellwood et al., 2004). Ecological and biodiversity studies require identification of collected specimens, often by biologists not specializing in taxonomy, and therefore identification guides easily accessible to a diversity of biologists are necessary.
    [Show full text]
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    National monitoring program for biodiversity and non-indigenous species in Egypt January 2016 1 TABLE OF CONTENTS page Acknowledgements 3 Preamble 4 Chapter 1: Introduction 8 Overview of Egypt Biodiversity 37 Chapter 2: Institutional and regulatory aspects 39 National Legislations 39 Regional and International conventions and agreements 46 Chapter 3: Scientific Aspects 48 Summary of Egyptian Marine Biodiversity Knowledge 48 The Current Situation in Egypt 56 Present state of Biodiversity knowledge 57 Chapter 4: Development of monitoring program 58 Introduction 58 Conclusions 103 Suggested Monitoring Program Suggested monitoring program for habitat mapping 104 Suggested marine MAMMALS monitoring program 109 Suggested Marine Turtles Monitoring Program 115 Suggested Monitoring Program for Seabirds 117 Suggested Non-Indigenous Species Monitoring Program 121 Chapter 5: Implementation / Operational Plan 128 Selected References 130 Annexes 141 2 AKNOWLEGEMENTS 3 Preamble The Ecosystem Approach (EcAp) is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way, as stated by the Convention of Biological Diversity. This process aims to achieve the Good Environmental Status (GES) through the elaborated 11 Ecological Objectives and their respective common indicators. Since 2008, Contracting Parties to the Barcelona Convention have adopted the EcAp and agreed on a roadmap for its implementation. First phases of the EcAp process led to the accomplishment of 5 steps of the scheduled 7-steps process such as: 1) Definition of an Ecological Vision for the Mediterranean; 2) Setting common Mediterranean strategic goals; 3) Identification of an important ecosystem properties and assessment of ecological status and pressures; 4) Development of a set of ecological objectives corresponding to the Vision and strategic goals; and 5) Derivation of operational objectives with indicators and target levels.
    [Show full text]
  • Isolation and Identification of Bacterial Endosymbionts in the Brooding Brittle Star Amphipholis Squamata
    University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2016 Isolation and identification of bacterial endosymbionts in the brooding brittle star Amphipholis squamata Abbey Rose Tedford University of New Hampshire - Main Campus Follow this and additional works at: https://scholars.unh.edu/honors Part of the Bacteriology Commons, Biodiversity Commons, Biology Commons, Environmental Microbiology and Microbial Ecology Commons, Marine Biology Commons, and the Organismal Biological Physiology Commons Recommended Citation Tedford, Abbey Rose, "Isolation and identification of bacterial endosymbionts in the brooding brittle star Amphipholis squamata" (2016). Honors Theses and Capstones. 273. https://scholars.unh.edu/honors/273 This Senior Honors Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Honors Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Isolation and identification of bacterial endosymbionts in the brooding brittle star Amphipholis squamata Abbey Rose Tedford, Kathleen M. Morrow, Michael P. Lesser Department of Molecular, Cellular and Biological Sciences, University of New Hampshire, Durham, NH 03824 Abstract: Symbiotic associations with subcuticular bacteria (SCB) have been identified and studied in numerous echinoderms, including the SCB of the brooding brittle star, Amphipholis squamata. These SCB, however, have not been studied using current next generation sequencing technologies. Previous studies on the SCB of A. squamata placed these bacteria in the genus Vibrio (γ-Proteobacteria), but subsequent studies suggested that the SCB are primarily composed of α-Proteobacteria.
    [Show full text]
  • Late Turonian Ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Republic
    Late Turonian ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Republic RICHARD TORC & JIØÍ ÍTT Diverse ophiuroid faunules from the basal Teplice Formation, of Late Turonian age, exposed at Úpohlavy in the north- western part of the Bohemian Cretaceous Basin, northwest Bohemia, are based on only dissociated lateral arm plates, vertebrae and some other skeletal elements of the disc. The material can be ascribed to ten species, including a new taxon named Stegophiura? nekvasilovae sp. nov. Three additional species are represented in the material but these are left in open nomenclature. Relative species abundance is evaluated and discussed. • Key words: Echinodermata, Ophiuroidea, Upper Cretaceous, taxonomy, Bohemian Cretaceous Basin, Czech Republic. ŠTORC,R.&ŽÍTT, J. 2008. Late Turonian ophiuroids (Echinodermata) from the Bohemian Cretaceous Basin, Czech Re- public. Bulletin of Geosciences 83(2), 123–140 (8 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manu- script received January 3, 2008; accepted in revised form February 27, 2008; issued June 30, 2008. Richard Štorc, Smetanova 380, CZ-251 64 Mnichovice, Czech Republic; [email protected] • Jiří Žítt, Institute of Geology of the Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 269, CZ-165 02 Praha 6, Czech Repub- lic; [email protected] Until recently, knowledge of ophiuroids from the Bohe- Geographical and stratigraphical setting mian Cretaceous Basin (BCB) was poor although skele- tal remains of such echinoderms had already been record- The material described here was collected from the large ed by Reuss (1845–46) and Frič (1895). Recent work by working quarry of Čížkovické cementárny, a.s.
    [Show full text]
  • The Echinoderm Fauna of Turkey with New Records from the Levantine Coast of Turkey
    Proc. of middle East & North Africa Conf. For Future of Animal Wealth THE ECHINODERM FAUNA OF TURKEY WITH NEW RECORDS FROM THE LEVANTINE COAST OF TURKEY Elif Özgür1, Bayram Öztürk2 and F. Saadet Karakulak2 1Faculty of Fisheries, Akdeniz University, TR-07058 Antalya, Turkey 2İstanbul University, Faculty of Fisheries, Ordu Cad.No.200, 34470 Laleli- Istanbul, Turkey Corresponding author e-mail: [email protected] ABSTRACT The echinoderm fauna of Turkey consists of 80 species (two Crinoidea, 22 Asteroidea, 18 Ophiuroidea, 20 Echinoidea and 18 Holothuroidea). In this study, seven echinoderm species are reported for the first time from the Levantine coast of Turkey. These are, five ophiroid species; Amphipholis squamata, Amphiura chiajei, Amphiura filiformis, Ophiopsila aranea, and Ophiothrix quinquemaculata and two echinoid species; Echinocyamus pusillus and Stylocidaris affinis. Turkey is surrounded by four seas with different hydrographical characteristics and Turkish Straits System (Çanakkale Strait, Marmara Sea and İstanbul Strait) serve both as a biological corridor and barrier between the Aegean and Black Seas. The number of echinoderm species in the coasts of Turkey also varies due to the different biotic environments of these seas. There are 14 echinoderm species reported from the Black Sea, 19 species from the İstanbul Strait, 51 from the Marmara Sea, 71 from the Aegean Sea and 42 from the Levantine coasts of Turkey. Among these species, Asterias rubens, Ophiactis savignyi, Diadema setosum, and Synaptula reciprocans are alien species for the Turkish coasts. Key words: Echinodermata, new records, Levantine Sea, Turkey. Cairo International Covention Center , Egypt , 16 - 18 – October , (2008), pp. 571 - 581 Elif Özgür et al.
    [Show full text]
  • Amphiura Filiformis, We First Highlighted a Blue-Green Light Sensitivity Using a Behavioural Approach
    High opsin diversity in a non-visual infaunal brittle star Delroisse et al. Delroisse et al. BMC Genomics 2014, 15:1035 http://www.biomedcentral.com/1471-2164/15/1035 Delroisse et al. BMC Genomics 2014, 15:1035 http://www.biomedcentral.com/1471-2164/15/1035 RESEARCH ARTICLE Open Access High opsin diversity in a non-visual infaunal brittle star Jérôme Delroisse1*, Esther Ullrich-Lüter2, Olga Ortega-Martinez3, Sam Dupont3, Maria-Ina Arnone4, Jérôme Mallefet5 and Patrick Flammang1 Abstract Background: In metazoans, opsins are photosensitive proteins involved in both vision and non-visual photoreception. Echinoderms have no well-defined eyes but several opsin genes were found in the purple sea urchin (Strongylocentrotus purpuratus) genome. Molecular data are lacking for other echinoderm classes although many species are known to be light sensitive. Results: In this study focused on the European brittle star Amphiura filiformis, we first highlighted a blue-green light sensitivity using a behavioural approach. We then identified 13 new putative opsin genes against eight bona fide opsin genes in the genome of S. purpuratus. Six opsins were included in the rhabdomeric opsin group (r-opsins). In addition, one putative ciliary opsin (c-opsin), showing high similarity with the c-opsin of S. purpuratus (Sp-opsin 1), one Go opsin similar to Sp-opsins 3.1 and 3.2, two basal-branch opsins similar to Sp-opsins 2 and 5, and two neuropsins similar to Sp-opsin 8, were identified. Finally, two sequences from one putative RGR opsin similar to Sp-opsin 7 were also detected. Adult arm transcriptome analysis pinpointed opsin mRNAs corresponding to one r-opsin, one neuropsin and the homologue of Sp-opsin 2.
    [Show full text]
  • Echinodermata, Ophiuroidea)
    Vol. 16: 105–113, 2012 AQUATIC BIOLOGY Published online July 19 doi: 10.3354/ab00435 Aquat Biol Slow arm regeneration in the Antarctic brittle star Ophiura crassa (Echinodermata, Ophiuroidea) Melody S. Clark*, Terri Souster British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Regeneration of arms in brittle stars is thought to proceed slowly in low temperature environments. Here a survey of natural arm damage and arm regeneration rates is documented in the Antarctic brittle star Ophiura crassa. This relatively small ophiuroid, a detritivore found amongst red macroalgae, displays high levels of natural arm damage and repair. This is largely thought to be due to ice damage in the shallow waters it inhabits. The time scale of arm regener- ation was measured in an aquarium-based 10 mo experiment. There was a delayed regeneration phase of 7 mo before arm growth was detectable in this species. This is 2 mo longer than the longest time previously described, which was in another Antarctic ophiuroid, Ophionotus victo- riae. The subsequent regeneration of arms in O. crassa occurred at a rate of approximately 0.16 mm mo−1. To date, this is the slowest regeneration rate known of any ophiuroid. The confir- mation that such a long delay before arm regeneration occurs in a second Antarctic species pro- vides strong evidence that this phenomenon is yet another characteristic feature of Southern Ocean species, along with deferred maturity, slowed growth and development rates. It is unclear whether delayed initial regeneration phases are adaptations to, or limitations of, low temperature environments.
    [Show full text]
  • Glossary for the Echinodermata
    February 2011 Christina Ball ©RBCM Phil Lambert GLOSSARY FOR THE ECHINODERMATA OVERVIEW The echinoderms are a globally distributed and morphologically diverse group of invertebrates whose history dates back 500 million years (Lambert 1997; Lambert 2000; Lambert and Austin 2007; Pearse et al. 2007). The group includes the sea stars (Asteroidea), sea cucumbers (Holothuroidea), sea lilies and feather stars (Crinoidea), the sea urchins, heart urchins and sand dollars (Echinoidea) and the brittle stars (Ophiuroidea). In some areas the group comprises up to 95% of the megafaunal biomass (Miller and Pawson 1990). Today some 13,000 species occur around the world (Pearse et al. 2007). Of those 13,000 species 194 are known to occur in British Columbia (Lambert and Boutillier, in press). The echinoderms are a group of almost exclusively marine organisms with the few exceptions living in brackish water (Brusca and Brusca 1990). Almost all of the echinoderms are benthic, meaning that they live on or in the substrate. There are a few exceptions to this rule. For example several holothuroids (sea cucumbers) are capable of swimming, sometimes hundreds of meters above the sea floor (Miller and Pawson 1990). One species of holothuroid, Rynkatorpa pawsoni, lives as a commensal with a deep-sea angler fish (Gigantactis macronema) (Martin 1969). While the echinoderms are a diverse group, they do share four unique features that define the group. These are pentaradial symmetry, an endoskeleton made up of ossicles, a water vascular system and mutable collagenous tissue. While larval echinoderms are bilaterally symmetrical the adults are pentaradially symmetrical (Brusca and Brusca 1990). All echinoderms have an endoskeleton made of calcareous ossicles (figure 1).
    [Show full text]