Lithos 236–237 (2015) 46–73

Contents lists available at ScienceDirect

Lithos

journal homepage: www.elsevier.com/locate/lithos

Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China–Korea border

Jia-qi Liu a, Shuang-shuang Chen a,b,⁎,Zheng-fuGuoa, Wen-feng Guo a,b, Huai-yu He a, Hai-tao You c, Hang-min Kim d, Gun-ho Sung d,HaenamKimd a Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China b University of Chinese Academy of Sciences, Beijing 100049, China c Key Laboratory of Computational Geodynamics, Faculty of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China d Institute of Volcano, State Seismological Bureau, Democratic People's Republic of Korea article info abstract

Article history: The intense Cenozoic volcanism of Mt. Changbai provides a natural laboratory for investigating the characteristics Received 12 November 2014 of volcanism and the dynamical evolution of the Northeast Asian continental margin. Mt. Changbai volcanoes Accepted 3 August 2015 predominantly consist of Wangtian'e volcano in China, Tianchi volcano spanning China and DPR Korea, and Available online 28 August 2015 Namphothe volcano in DPR Korea. Geochronology data and historical records of volcanism indicate that the three eruption centers were formed in the following sequence: Wangtian'e volcano to Namphothe and Tianchi Keywords: volcano, advancing temporally and spatially from southwest to northeast. The three eruption centers of Mt. China and Korea Re-eruption Changbai volcano are located close together, have similar magma evolution trends, bimodal volcanic rock distri- Mt. Changbai bution, and an enriched mantle source, etc. Although the Cenozoic volcanism in Mt. Changbai is thought to be Northeast Asia somewhat related to the subduction of the Western Pacific Plate, the regularity of volcanic activity and petrogra- Volcanism phy characteristics have continental rift affinity. We therefore conclude that the occurrence of synchronous and similar volcanic activity on both sides of the Japan Sea (i.e., the Japan Arc and Northeast China) likely respond to the rift expansion and the back-arc spreading of Japan Sea. From many perspectives, Mt. Changbai volcano is a giant active volcano with hidden potentially eruptive risks. © 2015 Elsevier B.V. All rights reserved.

1. Introduction late Quaternary (e.g., Liu et al., 2001; Siebert et al., 2010; Wang et al., 2003; Wei et al., 2013). Geological investigations of Mt. Changbai can Mt. Changbai volcano (also named as Baitoushan, Baegdusan or be traced back to the 1980s, and since then the petrology, geochemistry, Paektusan volcano; E 127°00′–129°00′, N 41°20′–42°40′) predominant- and geochronology of the volcanic rocks have gradually been studied ly comprises Wangtian'e volcano (WV) in China, Tianchi volcano (TV) (Basu et al., 1991; Cao et al., 1998; Fan et al., 1998, 1999; Jin and Lin, on the China–DPR Korea (Democratic People's Republic of Korea) bor- 1995; Liu, 1983, 1999; Liu and Wang, 1982; Liu et al., 1996, 1998a,b; der, and Namphothe volcano (NV) in DPR Korea. Mt. Changbai volcano Ri, 1993; Wang et al., 1983; Xie et al., 1988). Although scientists have is one of the most typical, active, and dangerous volcanoes both in carried out a great deal of research on the Mt. Changbai volcanoes in northeast Asia and globally (Fan et al., 1998, 1999, 2007; Liu, 1983, China, the investigations of Mt. Changbai on the DPR Korean side have 1999; Stone, 2010, 2011; Wang et al., 1983; Wei et al., 2013). Although been very limited (Cao et al., 1998; Fan et al., 2005; Jin and Lin, 1995; the volcano has not erupted in the past 100 years, there is potential for Jin et al., 2000; Ri, 1993; Stone, 2010, 2011). However, an improved un- future eruptions because the dormancy time is now hundreds of years, derstanding of the DPR Korean part of Mt. Changbai is of prime impor- which is consistent with the volcanic eruption cycle (Chu et al., 2011; tance because the various regions of Mt. Changbai are closely related Guo et al., 2005; Horn and Schmincke, 2000; Oppenheimer, 2003; and the Namphothe and Tianchi eruption centers are located in the Stone, 2010, 2011; Taniguchi, 2004; Wei et al., 2013; Xu et al., 2012a; DPR Korea and possess good field outcrops and complete eruptive se- Yamada et al., 2007; Yin et al., 2012). Mt. Changbai area is characterized quences (Liu, 1999; Stone, 2010, 2011). Fortunately, thanks to the strong by the Tianchi-centered volcanic field, which comprises extensive support of both governments, our team established a cooperative agree- Cenozoic basalts that erupted between the early Paleogene and the ment for joint research on the Mt. Changbai volcanoes. In the early 21st century, at the invitation of DPR Korea, we were the first research team to carry out fieldwork and sampling in the DPR Korean part of the volca- ⁎ Corresponding author at: Key Laboratory of Cenozoic Geology and Environment, nic complex. So far, we have conducted three detailed field geological in- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China. Tel.: +86 10 82998626; fax: +86 10 62010846. vestigations and collected hundreds of volcanic samples, laying a solid E-mail address: [email protected] (S. Chen). foundation for further investigations of Mt. Changbai volcanoes.

http://dx.doi.org/10.1016/j.lithos.2015.08.011 0024-4937/© 2015 Elsevier B.V. All rights reserved. J. Liu et al. / Lithos 236–237 (2015) 46–73 47

In general, the products of the three volcanic centers (i.e., Wangtian'e, Tianchi and Namphothe) have similar materials and eruptive se- quences, suggesting that they were derived from a common source and/or had similar eruption processes (Chen et al., 2008; Fan et al., 1998, 1999, 2007; Ri, 1993). However, the diversity of the eruption age, scale, characteristics, and eruption products indicate distinct erup- tion styles and/or heterogeneity of the mantle source and magma as- cent process. Many key questions are not yet perfectly answered, such as the following: what is the relationship between these three eruption centers and the adjacent volcanoes? What was the eruptive sequence of the three centers? How did the volcanic activity migrate in time and space? What was the dynamic mechanism for the eruption of Mt. Changbai volcano? On the other hand, similarities in the frequency and intensity of Miocene–Holocene volcanism have been observed on both sides of the Japan Sea (e.g., northeast China and the Japan Arc; Liu, 1999; Liu et al., 2001). The reason for this similarity in volcanic activity in northeast China and the Japan Arc is another interesting research question (Liu, 1999). If this volcanism regularity (similar volcanic activities) is still ac- tive at the present day, does this volcanism reappear in a similar way on both sides of the Japan Sea (Liu et al., 2001)? Additionally, because Mt. Changbai region is inhabited by more than 100,000 people and is also an area of economic development for agriculture, forestry, and tourism, the possibility of a renewed eruption of the Mt. Changbai volca- noes and resulting potential damage are important issues (Stone, 2010, 2011; Wei et al., 2003, 2013). To solve these above questions, further re- search need to be conducted. Previous studies on Mt. Changbai focused mainly on the volcanic geology, rock type, petrogenesis, magma evolu- tion, and eruptive mechanisms (e.g., Cao et al., 1998; Chen et al., 2007, Chen et al., 2008; Fan et al., 1998,1999, 2001, 2006, 2007; Jin and Lin, 1995; Jin et al., 2000; Liu and Wang, 1982; Liu et al., 1996, 1998a,b; Ri, 1993; Wei et al., 2007, 2013), whereas there have been limited studies on the relationship between the Mt. Changbai volcanoes and the volca- nism of the NE China continental rift system and Japan Arc, deep asthenosphere process, dynamic mechanism of volcanic eruption in NE Asia as a whole, and potential future eruptions of Mt. Changbai volcanoes (Stone, 2010, 2011; Sun et al., 2014; Wei et al., 2003, 2013).

2. Geological background

Mt. Changbai volcano lies in the uplifted area between the Japan Sea back-arc basin and the Songliao Basin (Fig. 1a). The volcano covers an area of 12,000 km2 and is characterized by the presence of three main eruptive cones (i.e., Wangtian'e, Tianchi, and Namphothe), with the el- evation gradually decreasing from the crater to the surrounding area (Fig. 1b). Tianchi is located in the central zone of Mt. Changbai volcano, and Wangtian'e and Namphothe are 35 km southwest of Tianchi and 45 km southeast of Tianchi, respectively (Fig. 1b; Fan et al., 2007; Wei et al., 2003, 2004, 2007). The main peak of Tianchi (2749 m) is charac- terized by a large crater lake and a composite volcano, which was created by many volcanic eruptions. Compositionally, Tianchi mainly comprises basalts in the lava plateau, trachytes in the cone, and Fig. 1. a. Simplified geological map of northeast Asian continental margin. b. The full view of pantellerites at the summit (Fig. 1c; Fan et al., 2001, 2005, 2006, 2007; Mt. Changbai volcanoes, the landscape map of Wangtian'e, Tianchi and Namphothe Liu and Wang, 1982; Liu et al., 1996, 1998a,b; Wang et al., 1983, Wang volcanoes (WV, TV, NV), and the detailed sampling points. c. Different lithologies include ba- saltic flow, trachyte and pantellerite, and each kind of lithology represents different phases et al., 2003; Wei et al., 2004, 2007, 2013). Wangtian'e volcano of volcanic eruption, such as early basaltic flow as lava plateau, followed by trachyte com- (2051 m) consists of an early-stage basalt–trachybasalt platform, a posing of volcanic cones, and finally pyroclastic deposits covering the tops of the mountains. middle-stage trachyandesite–trachyte, and a late-stage pantellerite out- crops (Fig. 1c; Chen et al., 2008; Fan et al., 1998, 1999, 2007). The Changbai are the sources of the Songhua, Tumen and Yalu rivers (Fan Namphothe main peak (2343 m) is composed trachytes in the volcanic et al., 2001). Mt. Changbai is known for its attractive scenery, especially cone, and pantellerites and welded tuff in the upper part and large areas the crater lake and other natural features such as waterfalls, hot springs, of pumice in the surrounding area, which includes 81 smaller volcanic virgin forest and alpine tundra (Fan et al., 2007; Liu et al., 1998a,b). cones. The sequence of Namphothe volcanic products is similar to that of Tianchi volcano (Fig. 1c; Cao et al., 1998; Jin and Lin, 1995; Jin et al., 3. Petrography and mineralogy 2000; Ri, 1993). The volcanic cones in the DPR Korea, which are of dif- ferent sizes and lithologies, number approximately 380 and occupy an Petrography and mineralogy of vocanic rocks from three eruption area of 5350 km2 (Ri, 1993). Additionally, the main mountains of Mt. centers (Wangtian'e, Tianchi and Namphothe volcano) were detailedly 48 J. Liu et al. / Lithos 236–237 (2015) 46–73 analyzed. All the analyzed samples are relatively fresh and show mas- phenocrysts are mainly composed of quartz (30%, 1.5–2.5 mm) and sive structure and porphyritic texture, and their phenocrysts are mainly feldspar (15%, 0.1–0.5 mm). The matrix (55%) consists mainly of quartz, composed of plagioclase, augite, and minor olivine. feldspar and ilmenite microcrystal. Tianchi basalts in the lava plateau show porphyritic texture (Fig. 2a) Namphothe basalts in the lava shield display porphyritic texture with phenocryst of olivine (15%, 0.05–1 mm) and pyroxene (5%, 0.01– (Fig. 2g), and the phenocrysts are plagioclase (35%, 1.0–4.0 mm), olivine 0.1 mm). The matrix (80%) is mainly composed of basaltic glass, and and pyroxene (15%, 0.1–2.0 mm), and ilmenite. The matrix (50%) is some accessory minerals such as magnetite and apatite. Tianchi composed of feldspar, olivine, augite and ilmenite microcrystal. Most trachytes in the building cone show porphyritic texture (Fig. 2b) with of the olivines have been subjected to iddingsite alteration, and the pla- phenocryst of alkali feldspar (40%, 0.5–2.0 mm), pyroxene and ilmenite. gioclases are characterized by significantly zoned and corrosion texture. The matrix (60%) consists of alkali feldspar, ilmenite and quartz micro- Namphothe trachytes in volcanic cone are also featured by porphyritic crystal. Tianchi pantellerites in the top display porphyritic texture texture (Fig. 2h) with the phenocrysts of alkali feldspar (15%, 0.5– (Fig. 2c). The phenocrysts are alkali feldspar (30%, 0.1–1.0 mm), pyrox- 2.0 mm) and minor pyroxene, olivine and ilmenite (5%, 0.1–1.0 mm). ene (10%) and minor quartz and ilmenite. The matrix (60%) consists of The matrix (80%) is composed of feldspar and ilmenite. Namphothe ilmenite and volcanic glass. pantellerites at the upper part display porphyritic texture (Fig. 2i) Wangtian'e basalt–trachybasalt platform in the early stage occurs with the phenocrysts of alkali feldspar (35%, 1.5–4.0 mm) and pyroxene as black dense block and of porphyritic texture (Fig. 2d), with the (5%, 0.2–1.0 mm). The matrix (60%) consists of feldspar, quartz and phenocrysts of plagioclase (30%, 2.0–3.0 mm) and minor olivine and ilmenite microcrystal. The feldspar phenocrysts exhibit cribriform pyroxene. The matrix is mainly composed of plagioclase, pyroxene mi- corrosion structure. crocrystal and volcanic glass, displaying hyalopilitic texture. Wangtian'e trachyandesites–trachytes in the middle phase are brownness dense 4. Results block and porphyritic texture (Fig. 2e) with phenocryst of plagioclase (20%, 1.5–3.5 mm), alkali–feldspar (10%, 0.5–1.0 mm), pyroxene (5%) 4.1. 40Ar/39Ar and K–Ar dating results and minor olivine and ilmenite. The matrix (65%) is composed of feld- spar, ilmenite and volcanic glass. Plagioclase phenocryst displays obvi- The 40Ar/39Ar analytical results are shown in Table 1, and the ous zoned and melting corrosion texture. Wangtian'e pantellerite 40Ar/39Ar age spectrum diagrams are presented in Fig. 3.Thefour outcrops in the late phase exhibit porphyritic texture (Fig. 2f) and the analyzed samples show relatively good plateau ages. K02001 is a

Fig. 2. The micrograph of volcanic rocks from three eruption centers (Wangtian'e, Tianchi and Namphothe volcanoes). Panels a, b, and c are respectively basalts, trachytes, pantellerites from Tianchi volcano; panels d, e, and f are respectively trachybasalts, trachyandesites, pantellerites from Wangtian'e volcano; panels g, h, and i are respectively basalts, trachytes, pantellerites from Namphothe volcano. O1—olivine; Py—pyroxene; Pl—plagioclase; Q—quartz; Afs—Alkali feldspar. J. Liu et al. / Lithos 236–237 (2015) 46–73 49

Table 1 The age data of volcanism from Wangtian'e, Tianchi and Namphothe volcanoes (WV, TV, NV).

Type Sampling locations Sample number Lithology Age Source

Wangtian'e volcano Mt. Hongtou CB15-19 Pantellerite 2.1 ± 0.1 Ma Fan et al. (1998, 1999) Mt. Wangtian'e CB15-1 Pantellerite 2.4 ± 0.0 Ma Fan et al. (1998, 1999) Fifteen daogou 25 km CB15-12 Pantellerite 2.7 ± 0.1 Ma Fan et al. (1998, 1999) Changsong Load 40 km CB19-10 Trachyte 2.7 ± 0.1 Ma Fan et al. (1998, 1999) Southern hillside of fifty Gang 03WS01 Trachyte 2.8 ± 0.1 Ma Fan et al. (2006, 2007) Emmanuel tower 03LGT02 Trachyte 2.8 ± 0.1 Ma Fan et al. (2006, 2007) Fifteen daogou 10 km CB15-24 Potassium trachybasalt 2.9 ± 0.1 Ma Fan et al. (1998, 1999) 128°4.681′, 41°41.85′ WTE-3 Potassium trachybasalt 3.7 ± 0.1 Ma Wei et al. (2007) Shuangshan Road 03WS03 Potassium trachybasalt 4.8 ± 0.2 Ma Fan et al. (2006, 2007) Tianchi volcano Meteorological station TK13 Trachyte 87.6 ± 15 ka Liu, 1987, 1999 Tianchi Fengkou CT3-1 Trachyte 0.3 ± 0.0 Ma Liu and Wang (1982) Tianchi Fengkou TK25 Trachyte 0.2 ± 0.0 Ma Liu, 1987, 1999 Tianchi Fengkou TK06 Trachyte 0.3 ± 0.0 Ma Liu, 1987, 1999 Top of Tianwen Peak TK12-1 Trachyte 97.8 ± 2.4 ka Liu and Wang (1982) Middle of Tianwen Peak TK10 Trachyte 0.3 ± 0.0 Ma Liu, 1987, 1999 Top of Changbai Waterfall TK04 Trachyte 0.2 ± 0.0 Ma Liu, 1987, 1999 Middle of Changbai Waterfall TK03 Trachyte 0.4 ± 0.0 Ma Liu, 1987, 1999 The lower of Changbai Waterfall TK01 Trachyte 0.6 ± 0.0 Ma Liu, 1987, 1999 The bottom of Changbai Waterfall TK01-0 Trachyte 0.6 ± 0.0 Ma Liu and Wang (1982) Eighteen daogou Ch101 Alkali olivine basalt 2.2 ± 0.2 Ma Liu, 1987, 1999 The load of Tianchi Pantellerite 0.1 ± 0.0 Ma Liu et al. (1998a, 1998b) Red Forest Pantellerite 0.2 ± 0.1 Ma Liu et al. (1998a, 1998b) Blackstone River Pantellerite 0.2 ± 0.0 Ma Liu et al. (1998a, 1998b) Tianchi volcano K02001 Pyroclastic rock 12.7 ± 5.8 ka This study Tianchi volcano K02037 Pyroclastic rock 14.5 ± 4.2 ka This study Tianchi volcano QXZ Ignimbrites 12.2 ± 1.1 ka Zou et al. (2014) Tianchi volcano BYFX Ignimbrites 12.2 ± 1.7 ka Zou et al. (2014) Tianchi volcano NP Ignimbrites 2.6 ± 1.8 ka Zou et al. (2014) Tianchi volcano BGM Ignimbrites 130.0 ± 10.0 ka Zou et al. (2014) The load of Tianchi P38 Trachyte 0.3 ± 0.0 Ma Fan et al. (2006) Yokoyama forest 02YLJ-3 Trachybasalt 0.5 ± 0.0 Ma Fan et al. (2006) Yalu River Canyon 02YLJ-1 Trachyandesites 0.9 ± 0.0 Ma Fan et al. (2006) The load of Tianchi P44 Trachyandesites 1.2 ± 0.0 Ma Fan et al. (2006) Manjiang 01CHB-14 Tholeiitic 1.2 ± 0.0 Ma Fan et al. (2006) Lazi River 98T13-2 Trachybasalt 1.2 ± 0.0 Ma Fan et al. (2006) Toudao River 98T15-2 Trachybasalt 1.2 ± 0.0 Ma Fan et al. (2006) Quarry 98T14-2 Trachybasalt 1.6 ± 0.1 Ma Fan et al. (2006) Museum of Natural History LG98034 Trachybasalt 2.0 ± 0.1 Ma Fan et al. (2006) 128°4. 349′, 42°10.061′ I-99-1b Pantellerite 0.2 ± 0.0 Ma Wei et al. (2007) 128°10.384′, 42°4.44′ I-47-1 Pantellerite 0.2 ± 0.1 Ma Wei et al. (2007) 128°12.70′, 42°6.20′ T9-2 Pantellerite 0.3 ± 0.0 Ma Wei et al. (2007) 128°13.823′, 42°2.692′ I-50-1 Pantellerite 0.3 ± 0.0 Ma Wei et al. (2007) 128°14.929′, 42°3.344′ I-48-1 Pantellerite 0.4 ± 0.0 Ma Wei et al. (2007) 128°5.853′, 42°13.743′ I-69-1b Trachyte 0.4 ± 0.1 Ma Wei et al. (2007) 127°33.514′, 41°59.011′ JJ-2 Trachyte 0.4 ± 0.0 Ma Wei et al. (2007) 127°33.514′, 41°59.011′ JJ-3 Trachyte 0.4 ± 0.0 Ma Wei et al. (2007) 128°12.108′, 42°7.383′ I-34-1 Trachyte 0.5 ± 0.1 Ma Wei et al. (2007) 128°6.1′, 42°26.16′ T2-5 Trachyte 0.6 ± 0.0 Ma Wei et al. (2007) 128°11.75′, 42°12.497′ I-76-1 Trachyte 0.9 ± 0.1 Ma Wei et al. (2007) 128°12.515′, 42°7.426′ I-55-1 Trachyte 1.0 ± 0.0 Ma Wei et al. (2007) 128°1.981′, 42°34.709′ I-75-1 Trachyandesites 1.1 ± 0.1 Ma Wei et al. (2007) 128°5.609′, 42°10.417′ I-64-1 Trachyandesites 1.3 ± 0.1 Ma Wei et al. (2007) 128°9.48′, 42°14.122′ I-65-1 Trachyandesites 1.4 ± 0.1 Ma Wei et al. (2007) 128°6.1′, 42°26.16′ T2-2 Basalt–trachybasalt 1.6 ± 0.1 Ma Wei et al. (2007) 128°4.763′, 42°10.186′ I-98-1 Basalt–trachybasalt 1.9 ± 0.0 Ma Wei et al. (2007) 128°3.2′, 42°31′ 6-1.1 Basalt–trachybasalt 2.4 ± 0.0 Ma Wei et al. (2007) 128°3.5′, 42°31.5′ 3-2.1 Basalt–trachybasalt 2.3 ± 0.1 Ma Wei et al. (2007) 128°3.362′, 42°3.365′ ZK-17 Basalt–trachybasalt 2.0 ± 0.0 Ma Wei et al. (2007) 128°3.362′, 42°3.365′ ZK-14 Basalt–trachybasalt 2.2 ± 0.3 Ma Wei et al. (2007) 128°3.362′, 42°3.365′ ZK-6 Basalt–trachybasalt 2.1 ± 0.0 Ma Wei et al. (2007) 128°3.362′, 42°3.365′ ZK-1 Basalt–trachybasalt 2.8 ± 0.1 Ma Wei et al. (2007) Namphothe volcano Namphothe volcano K02037 Pyroclastic rock 14.5 ± 4.2 ka This study Namphothe volcano K02046 Trachybasalt 0.7 ± 0.1 Ma This study Namphothe volcano K02048 Trachyte 0.4 ± 0.2 Ma This study Laoping volcano Basalt–trachybasalt 2.43–2.50 Ma Jin et al. (2000) Lvfeng volcano Basalt–trachybasalt 1.98–2.20 Ma Jin et al. (2000) Bei paotai volcano Trachyte 0.39–0.58 Ma Jin et al. (2000) Xiangdaofeng volcano Trachyte 0.24 Ma Jin et al. (2000) Wutoufeng volcano Trachyte 0.17–0.19 Ma Jin et al. (2000) Jiangjunfeng volcano Pantellerite 0.06–0.08 Ma Jin et al. (2000)

pyroclastic rock from Tianchi volcano in DPR Korea (TVDPR), showing a and K02048 collected in the boundary range between TV and NV are py- plateau age of about 12.7 ± 5.8 ka. K02046 from Quaternary trachybasalt roclastic rocks and trachytes and display a plateau age of 14.5 ± 4.2 ka of Namphothe volcano (NV) has a plateau age of 0.7 ± 0.1 Ma. K02037 and 0.4 ± 0.2 Ma, respectively. On the basis of sample locations and 50 J. Liu et al. / Lithos 236–237 (2015) 46–73 lithologic characters, we suppose that 12.7 ± 5.8 ka (K02001) represents 4.3. Sr–Nd isotopic analyses the age of late Pleistocene pyroclastic rock of TVDPR, and 14.5 ± 4.2 ka (K02037) may be interpreted as the age of late Pleistocene pyroclastic TVDPR and NV have large variations of 87Sr/86Sr (0.7046–0.7101), rock from Namphothe volcano (NV) or Tianchi volcano (TV). Whereas whereas 143Nd/144Nd display a smaller range from 0.5125 to 0.5127. Rel- 0.7 ± 0.1 Ma (K02046) and 0.4 ± 0.2 Ma (K02048) are the ages of ative “enrichment” of Sr–Nd isotopic compositions indicates that the trachybasalt and trachyte of Namphothe volcano (NV), respectively. magma may be derived from a relatively enriched mantle, falling in a The parameters used for K–Ar age calculations are shown in Table 2, mixing trend along depleted mantle and EMI. Moreover, note that the including six samples from the Japan Sea (127-797C-9R, 127-797C-12R, ratios of 87Sr/86Sr increase from basaltic and trachytic (0.7046–0.7054) 127-797C-16R, 127-797C-27R, 127-797C-32R, 127-797C-44R). The K–Ar to pantelleritic rocks (0.7088–0.7101), likely due to the contributions age data of these six Japan Sea samples are listed in Table 2. Combined of crustal materials in the evolution of pantellerite magma (Fig. 7). with previous reliable Ar–Ar ages (Allan and Gorton, 1992; Barnes et al., 1992; Kaneoka et al., 1990, 1992; Nohda, 2009; Pouclet and 5. Discussion Bellon, 1992), it is apparent that our own age data are generally consis- tent with previous data, the age of volcanic activities of the Japan Sea 5.1. Temporal and spatial distribution of Mt. Changbai volcanoes vary between 15 Ma and 23 Ma with average at 17 Ma (Table 2). The spatial distribution of the three volcanic eruption centers 4.2. Major- and trace-element analyses (i.e., Tianchi, Wangtian'e and Namphothe) in Mt. Changbai is illustrated in Fig. 8a. Based on the geochronological data and magmatic evolution, On the basis of the field geology survey (Fig. 1) and the plot of volcanism in Mt. Changbai commenced in the Pliocene and continued

K2O+Na2O vs. SiO2 (Fig. 4), the lithological characteristics and until the late Pleistocene (Fan et al., 2007; Wang et al., 2003; Wei magma evolution series of Wangtian'e volcano (WV), Tianchi volcano et al., 2003, 2013; Xu et al., 2012a; Zou et al., 2010, 2014). All the volca- (China and DPR Korea; TVC and TVDPR) and Namphothe volcano nism appears to have shared a common multi-stage magma evolution (NV) fall along the variation of trachybasalts–trachyte–pantellerite (al- that involved the early formation of a shield of trachybasaltic magma, kaline rhyolite) (Fig. 4). Most SiO2 concentrations predominantly focus followed by the construction of a cone of trachyandesitic–trachytic on the ranges of 48%–55% and 61%–70%, with no or few samples plotting magma, and finally, the eruption of pantellerite and pyroclastic into the field of 55%–61%, bimodal volcanic rocks are therefore identi- deposits, displaying the characteristics of bimodal volcanic rocks 2 fied (Figs. 4, 5). Rittmann index (σ = (Na2O+K2O) / (SiO2 − 43)) (Fig. 8b; Chen et al., 2008; Fan et al., 1998, 1999, 2007; Ri, 1993; shows large range from 1.91 to 7.76, but its average value, about 4.26, Wang et al., 2003; Wei et al., 2007, 2013). is relatively high, suggesting alkaline magma series (Fig. 4). And the Combining the geochronological data (Table 1) and geological char- contents of Mg# (Mg# =Mg/(Mg+Fe2+)) of basaltic rocks also acteristics, we propose the following multi-stage evolutionary model # vary largely (Mg 0.37–0.01). SiO2 and most oxides show good for these three centers. (a) The formation of volcanism in Wangtian'e correlations in the Harker's plots (Fig. 5), which include the negative has been dated as Pliocene–early Pleistocene (i.e., 4.77–2.12 Ma). correlations between SiO2 and TiO2,Al2O3,FeOT,MgO,andCaO(Al2O3 During the period of 4.77–2.80 Ma, potassic trachybasalt formed a decrease with increasing SiO2 when 55%–80% SiO2). shield covering the Mesozoic granite. The eruption of trachyte With the exception of samples K02009 and K02035, the trace element (i.e., 2.7–2.69 Ma) and alkali rhyolite (i.e., 2.67–2.12 Ma) accompanied concentrations of rocks from TVDPR and NV are all relatively high, and by the building of the cone marked the gradual cessation of volcanism their chondrite-normalized rare earth element distribution pattern and (Fig. 8b; Table 1; Chen et al., 2008; Fan et al., 1998, 1999, 2007). (b) Jin primitive mantle-normalized spider diagram are similar to Oceanic Island and Lin (1995), Jin et al. (2000),andRi (1993) proposed that the forma- Basalt (OIB) (Fig. 6c). These rocks are characterized by extreme enrich- tion of volcanoes in the DPR Korea, such as Mt. Namphothe and Peak ment of light rare earth elements (LREE) and large ion lithophile ele- Hwang, occurred during the late Pliocene–Pleistocene, and were the ments (LILE) and slight depletion of heavy rare earth elements (HREE) products of the following multi-stage volcanism. The formation of the on the chondrite-normalized REE (Fig. 6c) and the spider diagram trachybasalt shield commenced as early as 2.5 Ma; subsequently, the

(Fig. 6c), with relatively high ratios of (La/Yb)N (6.48–13.54), (La/Sm)N construction of the trachyte cone lasted until the late Pleistocene, (1.62–3.56) and negative Ti anomalies and positive Pb anomalies. And which can also be determined from 0.7 ± 0.1 Ma and 0.4 ± 0.2 Ma pantellerites show significant Eu, Ba, and Sr negative anomalies (Table 1); finally, evolution from trachyte to pantellerite occured during (Wangtian'e pantellerites do not show Ba negative anomaly). the late period of the late Pleistocene (Table 1). (c) Tianchi volcanic

Fig. 3. Ar–Ar dating results of samples K02001 and K02037 (late Pleistocene clasolite) and samples K02046 and K02048 (Quaternary trachybasalt and trachyte) from Tianchi volcano in DPR Korea (TVDPR) and Namphothe volcano (NV). J. Liu et al. / Lithos 236–237 (2015) 46–73 51

activity was posterior to Wangtian'e volcanism but was contemporane- ous with Namphothe volcanism (Fig. 8b; Table 1). Similarly, the Tianchi magmatism underwent a multi-stage evolution (Fan et al., 2005, 2007; Liu and Wang, 1982; Wang et al., 2003; Wei et al., 2007): the building of the trachybasalt shield started in the early period of the early Pleisto- cene (i.e., approximately 2.77 Ma) followed by magma evolution from trachybasalt to trachyandesite, and then trachyte during the late period Source This study This study This study This study This study This study Pouclet and Bellon (1992) Pouclet and Bellon (1992) Pouclet and Bellon (1992) Pouclet and Bellon (1992) Kaneoka et al. (1992) Kaneoka et al. (1992) Kaneoka et al. (1992) Kaneoka et al. (1992) Kaneoka et al. (1992) Kaneoka et al. (1992) Kaneoka et al. (1992) Kaneoka et al. (1992) Kaneoka et al. (1992) of the early Pleistocene (i.e., approximately 1 Ma). The middle Pleisto- cene was the major period of the formation of the trachyte cone (i.e., 1.179 ± 0.033 Ma and 0.85 ± 0.02 Ma). Finally, magma evolution to pantellerite occured in the late Pleistocene (approximately 0.1 Ma) (i.e., 14.5 ± 4.2Ka and 12.7 ± 5.8Ka) (Fig. 8; Table 1; Fan et al., 2001, 2005, 2006, 2007; Liu and Wang, 1982; Liu, 1987, 1999; Liu et al., 1998a,b; Wang et al., 1983; Wei et al., 2004, 2007). Thus, the volcanism 17.2 ± 0.7 15.1 ± 0.9 15.7 ± 1.9 23.3 ± 0.9 18.6 ± 0.5 17.2 ± 0.5 Plateau age (Ma)19.0 ± 1.1 19.9 ± 1.1 Source 19.0 ± 0.3 17.7 ± 0.5 20.6 ± 0.6 20.0 ± 2.0 19.9 ± 0.7 20.6 ± 2.9 18.3 ± 1.3 18.1 ± 1.2 23.7 ± 5.0 21.2 ± 0.8 in the Mt. Changbai occurred in the following sequence: Wangtian'e vol- cano (in China) → Namphothe volcano (in DPR Korea) and Tianchi volca- no (astride China and DPR Korea), displaying temporal and spatial advancements from southwest to northeast (Fig. 8). mol/g) Age (Ma) 12

− 5.2. Petrogenesis Ar (10 5.69 4.48 3.84 5.2.1. Crustal assimilation and fractional crystallization 40 14.67 13.30 29.30 20.3 21.7 20.8 19.9 18.6 20.9 24.0 39.9 31.2 Volcanism in continental settings is thought to include crustal contamination that affects the contents of trace elements and isotope, thus, discussion on the degree of crustal contamination before Ar* Total age (Ma)

39 determining the nature of the magma source is necessary. The N –

Ar* (%) Ar*/ incompatible-element ratios of Nb/Ta ( 15) and Zr/Hf (33.0 45.9) 6.902 3.238 3.059 2.991 3.230 2.908 2.990 4.202 5.125 4.998 20.39 13.73 58.25 79.84 34.52 40 40 are significantly higher than those of continental crust (Nb/Ta = 12.1, Zr/Hf = 11.0), and are similar to those of mantle-derived magmas which have relatively high Nb/Ta (=17.5) and Zr/Hf (=36.3), indica- ) 2

− tive of little crustal contamination (Table A2; Su et al., 2012; Sun and

mol/g) McDonough, 1989; Zhao and Zhou, 2007; Zhao et al., 2010). Additional- 9 − Ar (10 ly, with the exception of some pantellerites, all of intermediate and 40 basic rocks have relatively low 87Sr/86Sr and high 144Nd/143Nd values, K (10 Ar/ 5.67 5.07 4.18 9.173 3.081 9.980 4.838 1.772 2.103 10.74 12.24 29.30 40 36 22.10 13.56 27.00 falling into the field of OIB and without the crustal contamination (Fig. 7). Thus, we consider that geochemical characteristics of all inter- mediate and basic rocks can be used to constrain the nature of the man- Ar

40 tle source (e.g., Basu et al., 1991; Peng et al., 1986; Zhang et al., 1991;

K (%) Ar/ Zhou and Armstrong, 1982). 0.19 0.17 0.14 0.36 0.41 0.98 40 36 0.349 0.121 1.299 0.420 0.339 1.753 2.334 0.479 0.850 The low values of Mg# (b0.37), Cr, Ni and compatible elements (Tables A1, A2) in all the basalts indicate that they were not derived

) from a primary mantle, but underwent the process of fractional crystal- 3

− lization (Fig. 5). Their obvious evolutionary trends (Fig. 5) also indicate that fractional crystallization may play a key role in the magma reser- Ar (10

40 voir or during the magma ascent. The obvious Eu (δEu = 0.03–0.44) Ar/

2.710 3.142 negative anomaly, the conspicuous depletion of Ba and Sr, and the neg- 36 ative correlation between SiO2 and CaO, all display significant fractional crystallization of plagioclase. Similarly, the negative correlations be-

tween SiO2 and MgO, FeOT,andTiO2 show olivine and Fe–Ti oxide frac- tionation, and between SiO2 and Al2O3, Cr, and Ni (not shown) suggest 1). fractional crystallization of clinopyroxene (Fig. 5;Al2O3 decrease with − t λ increasing SiO2 when 55%–80% SiO2). Thus, we conclude that fractional

K(e crystallization of minerals such as plagioclase, clinopyroxene, olivine 40 ) – λ and Fe Ti oxides may play an important role in the magma evolution,

e/ and is consistent with the phenocrysts of volcanic rocks (Fig. 2; Chen λ et al., 2008; Fan et al., 2005, 2006, 2007). Ar* = (

40 5.2.2. Nature of the mantle sources

Sampling locations Lithology Based on the above discussion, the Wangtian'e, Tianchi and Namphothe volcanoes (WV, TV, NV) are composed of trachybasalts, tra- chytes and pantellerites. Each type of lithology represents different stages of magmatic evolution: the early trachybasaltic magma followed by trachyandesitic–trachytic magma and finally the eruption of pantellerite and pyroclastic deposits (Fig. 1c; Table A4; Chen et al., 2008; Fan et al., 1998, 1999, 2007; Ri, 1993; Wang et al., 2003; Wei Ar age calculation formula: Sample no. Sampling locations Lithology Weight (mg) 127-797C-9R 134.536°E, 38.616°N Dolerite 32.45 127-797C-12R 134.536°E, 38.616°N Dolerite 35.10 127-797C-16R 134.536°E, 38.616°N Dolerite 38.35 127-797C-27R127-797C-32R127-797C-44R 134.536°E,128-794D-1R 38.616°N 134.536°E,128-794D-3R 38.616°N 134.536°E,128-794D-3R 38.616°N Dolerite128-794D-8R 138.232°E, 40.189°N Dolerite 138.232°E, 40.189°N DoleriteSample 138.232°E, no. 40.189°N 37.95 Dolerite 138.232°E, 40.189°N 36.25 Basalt 22.20 Basalt Dolerite 127-797C-27R127-797C-34R127-797C-41R 134.536°E,127-797C-45R 38.616°N 134.536°E,127-794C-3R 38.616°N 134.536°E,127-794C-8R 38.616°N Dolerite 134.536°E,128-794D-15R 38.616°N Dolerite128-794D-17R 138.232°E, 40.189°N Basalt 138.232°E, 40.189°N Dolerite 138.232°E, 40.189°N 1.875 138.232°E, 40.189°N Dolerite 2.713 Basalt Dolerite 2.366 Dolerite 1.815 3.657 3.282 128-794D-20R 138.232°E, 40.189°N Dolerite 3.441 – Table 2 The age data of Cenozoic basalts from Japan Sea. K et al., 2007, 2013). It is noteworthy that the volcanics from the different 52 J. Liu et al. / Lithos 236–237 (2015) 46–73

Fig. 4. Plot of K2O+Na2O (wt.%) versus SiO2 (wt.%) and the SiO2 concentrations for Wangtian'e volcano, Tianchi volcano (China and DPR Korea) and Namphothe volcano (modified from Le Bas et al., 1986). The data of Wangtian'e volcanics (WV) are from Chen et al. (2008) and Fan et al. (1998, 1999, 2006, 2007); the data of Tianchi volcanics in China (TVC) are from Chen et al. (2007), Fan et al. (2006), Kuritani et al. (2009) and Zou et al. (2008); the data of Tianchi volcanics in DPR Korea (TVDPR) are from this study; the data of Namphothe volcanics (NV) are from this study (sample K02039, K02040, K02043, K02046, K02048, K02049, K02050) and additional eight data are from Fan et al. (2005). eruptive stages of WV, TVC, TVDPR and NV have relatively similar Note that the Th/Yb value from WV, TVC, TVDPR, and NV (0.6–2.7, chondrite-normalized rare earth element patterns and primitive- 0.8–4.8, 1.2–4.9 and 2.6–4.9, respectively) is much higher than that of mantle normalized incompatible element patterns (excluding Eu, Sr, N-type MORB (0.04), but more similar with enriched mantle (e.g., Th/ Ba) and approximate Nd isotopic components (0.51230–0.51264, Yb of OIB is about 1.85; Sun and McDonough, 1989). The Nb/Yb value 0.51251–0.51264, 0.51251–0.51262 and 0.51249–0.51269, respective- (4.5–26.8, 7.9–22.9, 5.4–22.2 and 17.9–20.8, respectively) is also approx- ly) (Figs. 6 and 7; Tables A2, A3, A4), suggesting that the volcanics imately equal to that of enriched mantle (e.g., Nb/Yb of OIB is about 22.2 from the different eruptive stages of these three centers likely have sim- and Nb/Yb of E-MORB is about 3.5; Sun and McDonough, 1989), and ilar magmatic origin and evolution. On the other hand, from basalt to higher than that of N-MORB (0.76). These ratios, as well as the informa- trachyte, then to pantellerite, the contents of ∑REE and the degree of tion inferred from trace element patterns (Fig. 6; Tables A2, A4), suggest the depletion of Eu, Sr, and Ba obviously increase (Fig. 6), indicating that these volcanoes share a common magma source with an enriched that these volcanics from the different eruptive stages not only display mantle magmatic component (Chen et al., 2007). Additionally, the isoto- a common magmatic origin, but also show similar magmatic evolution pic compositions of intermediate and basic rocks fall within the field of where the fractional crystallization of some minerals, especially plagio- OIB, and lie in the mixing evolutionary line of depleted mantle clase, might play a key role. Although data from Namphothe volcano is and EMI, and are closer to EMI end member in the diagram of limited, some available data (i.e., Cao et al., 1998; Fan et al., 2005; Jin and 87Sr/86Sr–143Nd/144Nd (Fig. 7; Basu et al., 1991; Kuritani et al., 2009, Lin, 1995; Jin et al., 2000; Ri, 1993) together with our four samples sug- 2011). There are many controversies on the origin of the EMI, such as gest that the above features also apply to Namphothe volcano. We the metasomatism of ancient material from mantle transition zone therefore conclude that the different evolution stages of these three (Kuritani et al., 2009, 2011; Zou et al., 2008), the enriched lithospheric eruption centers likely come from a common mantle source, and have mantle (Basu et al., 1991; Tatsumoto et al., 1992), the interaction of similar magma evolution. lithospheric and asthenospheric mantle (Fan et al., 2007), or the J. Liu et al. / Lithos 236–237 (2015) 46–73 53

Fig. 5. Plots of selected major elements versus SiO2 for Wangtian'e volcano, Tianchi volcano (China and DPR Korea) and Namphothe volcano; the data of WV, TV and NV are identical with those of Fig. 4. asthenosphere upwelling (Zou et al., 2008; Kuritani et al., 2009). In addi- 5.3. Geodynamic evolution of Northeast Asia as revealed from geochronology tion, given that the great variation of the ratios of Ba/Th and Ba/La (0.25–481.54; 0.05–38.45; Su et al., 2012; Zhang et al., 2008a) and the 5.3.1. Geochronological data from Northeast Asia volcanism contents of mobile elements (e.g., Ba, Rb), we think that the origin of Synthesizing the previous age data (Table A5) and our geochrono- the enriched mantle is likely associated with the fluids released from logical data (Tables 1, 2), we propose the following temporal and spatial stagnant Western Pacific slab (Basu et al., 1991; Fan et al., 2007; distribution of the Cenozoic volcanoes in Northeast Asian continental Karato, 2011; Kuritani et al., 2011; Ohtani et al., 2004; Ohtani and Zhao, margin (Fig. 9). These Cenozoic volcanisms are linearly and parallelly 2009; Richard and Iwamori, 2010; Wei et al., 2003, 2013; Xie et al., distributed in the Songliao Basin, the Yilan–Yitong fault, the Fushun– 1988; Zhao et al., 2007, 2009a,b; Zhao and Tian, 2013). Significant en- fault, the Mt. Changbai volcano, the Japan Sea and the Japan richment in LILE and LREE relative to the HFSE and HREE, and negative Arc (Figs. 1a, 9; Kuno, 1959; Liu et al., 2001, 2004; Miyashiro, 1986; Ti anomalies and positive Pb anomalies are also present in subduction re- Ren et al., 2002; Taira, 2001; Wang et al., 2002, 2006; Zhang et al., lated magmas (e.g., Elburg et al., 2002; Gill, 1981; Guo et al., 2006; 2003a,b, 2010; Zhou and Armstrong, 1982). Hawkesworth et al., 1997; Keppler, 1996; Pearce, 1982; Tatsumi et al., The basaltic volcanism of southern Songliao graben is the earliest 1986; Turner et al., 2003). Moreover, the existence of a stagnant known volcanism in Northeast China (Fig. 9). The volcanism in the subducted slab in the mantle transition zone beneath Mt. Changbai has Tongliao area lasted from 86.2 Ma to 61 Ma, and the volcanics are main- been proposed using seismic source modeling (Duan et al., 2009; Lei ly composed of tholeiitic basalts (Table A5; Fig. 9; Liu et al., 2001; Liu, et al., 2013; Lei and Zhao, 2004), as well as magnetotelluric and tomo- 1987, 1999). Tholeiitic magmatism in the Shuangliao area dated at graphic imaging studies (Zhang et al., 2002; Zhao et al., 2007, 2009a,b; 61.0 Ma (Table A5; Fig. 9). During the 49–39 Ma period, voluminous al- Zhao and Ohtani, 2009; Zhao and Tian, 2013). Thus the volcanic activities kali basalt lavas also occurred around the Shuangliao area (Table A5; Liu in Mt. Changbai area has to be somewhat related to the subduction of et al., 2001). Since then, volcanism younger than 39 Ma has not been Western Pacific Plate (Chen et al., 2007; Fukao et al., 1992; Kuritani detected within the Songliao Basin (Table A5; Fig. 9; Liu et al., 2001). et al., 2009, 2011; Ohtani and Zhao, 2009; Zhao and Tian, 2013). The lin- Along the Yilan–Yitong fault belt, alkaline volcanism are mainly concen- ear volcanic belts along the Mt. Changbai and the northeast fault belts are trated during the period of 14–13 Ma and 11–7Ma(Table A5; Fig. 9; roughly parallel to the Japan Trench, also consistent with the suggestion alkali basalts, basanite, nepheline–basanite). These volcanic activities (Fig. 1a; e.g., Basu et al., 1991; Chen et al., 2007; Liu et al., 2001; Ren et al., are particularly widespread from Liaoyuan (125.1°E, 41.9°N) to 2002). Fangzheng (128.8°E, 45.9°N). These rocks are predominantly composed 54 J. Liu et al. / Lithos 236–237 (2015) 46–73

Fig. 6. Chondrite normalized REE patterns and primitive mantle normalized trace element patterns of Wangtian'e volcanics (WV) (a), Tianchi volcanics in China (TVC) (b) and Tianchi volcanics in DPR Korea (TVDPR), Namphothe volcanics (NV) (c). The data of OIB, E-MORB, and N-MORB are from Sun and McDonough (1989); the data of WV and TVC are identical with those of Fig. 4; the data of TVDPR and NV are from this study.

of alkali basalts which generally contain ultramafic rocks xenolith. Henceforward, tholeiitic basalt dated 3.90 Ma occurred at the Miaoling area, and no other locations of volcanic rocks younger than 7 Ma occured on the Yilan–Yitong fault belt (Table A5; Fig. 9; Liu, 1987, 1999; Song, 1997; Wang et al., 1988). On the Fushun–Mishan fault, dur- ing 16–13 Ma and 11–7 Ma, massive volcanic activities erupted in the northern Jingbo Lake and (Table A5; Fig. 9;16–13 Ma, alkali basalts; 11–7 Ma, tholeiitic basalts). Additionally, 3.66 Ma Jidong alkali olivine basalt also occurred near Mishan area. And during the 0.58–0 Ma period, huge amount of volcanism constantly occurred at the Fushun–Mishan fault (Table A5; Fig. 9; Liu, 1987, 1999; Wang et al., 1988). The oldest known basalts on the Mt. Longgang and Mt. Changbai are 28.4 Ma (Fan et al., 2007; Liu et al., 2001; Liu, 1999; Wang et al., 2003), and after 16 Ma abundant volcanism constantly and intensively occurred (Table A5; Fig. 9). During the period of 4.2–2.0 Ma, the largest volcanism occurred in the Mt. Changbai, forming the 15,000 km2 basaltic platform. The Quaternary was also an improtant period of intensive volcanism, with the eruption of abundant alkali tra- chyte and pantellerite (Fan et al., 2007; Liu, 1999). Based on the geo- Fig. 7. Plots of 143Nd/144Nd versus 87Sr/86Sr for WV, TVC, TVDPR and NV (modified from Zindler and Hart, 1986); the data of OIB, MORB, EMІ and EMП are from Sun and chronological data, the depleted basaltic magma from the Japan Sea McDonough (1989); the data of WV, TV and NV are identical with those of Fig. 4. mainly occurred at 23–15 Ma (Table 2; Table A5; Fig. 9). Whereas on J. Liu et al. / Lithos 236–237 (2015) 46–73 55

Fig. 8. a. The age distribution of volcanism of Wangtian'e, Tianchi and Namphothe volcano. Purple dots represent new age data, red dots are from previous researches, the detailed age data presented in Table 1. b. Volcanic age histogram for Wangtian'e, Tianchi and Namphothe volcano. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) The volcanic ages of WV are from Fan et al. (1998, 1999, 2006, 2007); the volcanic ages of TV are from this study and Fan et al. (2006), Liu and Wang (1982), Liu (1987, 1999), Liu et al. (1998a,b) and Wei et al. (2007); the volcanic ages of NV are from this study and Jin et al. (2000). the Japan Arc only a small amount of volcanism occurred before 15 Ma. upwelling of a hydrous mantle plume model (Kuritani et al., 2013) During the period of 12–4Maand3–0 Ma, an alkali basalt-dominated and the influence of stagnant Pacific slab within the mantle transition Tertiary volcanism and massive Quaternary volcanism took place at the zone (Xu, 2007; Xu et al., 2012b). However, two most important Japan Arc, such as the 10–6 Ma large-scale successive lava flows in the geodynamical models need to be taken seriously: one model associates Kita-Matsuura of Kyushu and the Chugoku of Honshu; the 3.58–3.00 Ma volcanism with a continental rifting episode (Liu et al., 2001, 2004; Ren alkaline and tholeiitic volcanism in the Higashi-Matsuura (Table A5; et al., 2002; Wang et al., 2006; Zhang et al., 2010), the other model re- Fig. 9; Kaneaka et al., 1977; Nakamura et al., 1985; Ozima et al., 1968). lates the volcanism to the subduction of the Pacific plate (Kuritani et al., 2011; Lei and Zhao, 2005; Tang et al., 2006; Wei, 2010; Zhao 5.3.2. Geodynamic evolution of Northeast Asia volcanism et al., 2009a,b; Zhao and Tian, 2013; Zou et al., 2008). These two hypoth- The characteristics of these volcanoes on the northeast Asian eses are not antagonistic, but instead both probably played some role in continental margin, have been explained by many models, such as the the origin and evolution of volcanic activities and may have operated extensional to compressional transformation model (Wang et al., simultaneously or sequentially (Richard and Iwamori, 2010). 2003), the shear model (Xu et al., 1993; Zhao et al., 2014), the The Songliao–Jizhong fault is a predominant tectonic structure in lithosphere–asthenosphere interaction (Xu et al., 2003, 2005), the East China and forms the complicated East Asian continental rift system 56 J. Liu et al. / Lithos 236–237 (2015) 46–73

Fig. 9. A comprehensive temporal and spatial distribution of Cenozoic volcanism from Northeast China, Japan Sea and Japan Arc (modified from Liu et al., 2001). The chronology data of Northeast China are from Liu (1987), Liu et al. (2001) and Wang et al. (1988); the chronology data of Japan Sea and Japan Arc are from this study, Kaneoka Fig. 10. Schematic diagram illustrating the relationship between the development of East et al. (1992), Liu et al. (2001), Nakamura et al. (1985), Pouclet and Bellon (1992) and Asia continental rift system and the subduction of Western Pacifc Plate, and the formation Yamamoto and Hoang (2009). and expansion of Japan Sea. Modified from Liu (1999). together with the Yilan–Yitong fault, the Fushun–Mishan fault and the neighboring graben basin (e.g., Liu, 1989; Liu et al., 2004; Wang et al., enrichment of LREE and LILE, and large variation in the 87Sr/86Sr ratio 2002, 2006; Ying et al., 2010; Zhang et al., 2003a,b, 2008b, 2010). Note also mirror the Mt. Changbai volcanism was similar to the rifting pro- that the main feature of the formation and evolution of the East Asian cess. Hence, from this perspective, we argue that Mt. Changbai volcano continent rift system is the Songliao fault forming in the center and is still a volcano with a significant risk (Liu and Wang, 1982; Liu, 1989, gradually expanding toward the two opposite flanks, particularly to- 1999; Liu et al., 2001; Ren et al., 2002; Wang et al., 1983). ward the east (Fig. 9; Liu, 1989, 1999; Liu and Wang, 1982; Wang The Japan Sea is generally accepted to have been formed by the ex- et al., 1983, 2006; Zhang et al., 2008b, 2010). In the light of the geochro- tension of the back-arc basin or the breakdown of the continental mar- nological data of Cenozoic volcanic rocks (Liu et al., 2001), we can pro- gin caused by increasing tension (e.g., Jolivet et al., 1994; Liu, 1999; Liu pose that Cenozoic volcanism in the East Asian continental rift system et al., 2001; Martin, 2011; Nohda, 2009; Taira, 2001). To be specific, the underwent a stepwise propagation (Fig. 9). The temporal distribution Western Pacific Plate subducted under the continental margin causing of the explosive volcanism shows zonal distribution features. The step- the generation of lithospheric extension that lead to the breakdown of wise propagation is characteristics of the rift-type volcanism from the the continental margin. As the subduction process continued, the break- Songliao fault to Mt. Changbai, which show that the opening time of down increasingly intensified, which was accompanied by the increas- the rift volcanism was earlier, but the ending time was later from west ing distance of separated blocks and the retreat of the subduction to east (Fig. 9). More specifically, the Songliao–Jizhong fault has shrunk- zone (Karig, 1971). The Japan Sea is therefore thought to have been cre- en and closed since the Neogene, and volcanic activity has already ated by these processes (Fig. 10b; Liu, 1999; Liu et al., 2001; Martin, begun to subside (Fig. 9; Wang et al., 2006; Zhang et al., 2010); the 2011; Nohda, 2009). The extension of the back-arc basin inevitablely strong volcanism of the Yilan–Yitong fault were focused on 14–13 Ma gave rise to a change in the continental tectonics, from an extensional and 11–7 Ma, and that of the Fushun–Mishan fault mainly occurred at to compressional environment, resulting in the previous continental 16–13 Ma and 11–7Ma(Table A5; Fig. 9; Liu, 1999; Liu et al., 2001); rift volcanic activity gradually weakening and finally stopping. Thus, while the timing spans of Longgang and Mt. Changbai volcanoes are rel- the closure of the Songliao–Jizhong fault has close relationship with atively larger (Table A5; Fig. 9; Fan et al., 2006, 2007; Liu and Wang, the expansion of the Japan Sea. During the period of intense volcanism 1982; Liu, 1987, 1999; Wei et al., 2007). The stepwise propagation of in the Japan Sea (approximately 22 Ma), the Songliao–Jizhong fault the volcanism may represent the evolutionary trend of the continental contracted and closed, which marked the cessation of volcanism rift system; thus, we argue that the occurrence of volcanism in (Figs. 9 and 10b; Liu and Wang, 1982; Liu, 1989, 1999; Wang et al., Mt. Changbai field is similar to the volcanic activities of the fault zone. 1983). However, accompanied by the closure of the Songliao fault, the Furthermore, the bimodal volcanic rock distribution, the relative extensional stress occurred on both flanks (the bulging part) followed J. Liu et al. / Lithos 236–237 (2015) 46–73 57 by the initiation of Miocene volcanism in response to the change in the formed the present caldera (Sun et al., 2014; Xu et al., 2013; Zou et al., tectonic stress (Figs. 9 and 10c). It is interesting to note that a similar 2010, 2014; Wei et al., 2003, 2013). Large tephra, pumice and ash deposit process occurred in the Japan Sea. The presence of intensive volcanism from this volcanism covered 33,000 km2 of northeast China and Korea and large amounts of basaltic magma in the Japan Sea suggest that the (Sun et al., 2014; Stone, 2011). After the Millennium eruption, the volca- formation and development of the back-arc basin took place during nic activities continued, with historical records and volcanic sample anal- the early Miocene (Liu et al., 2001; Nohda, 2009; Yamamoto and yses indicating at least 4–5 times eruptive activities (Chu et al., 2011; Liu Hoang, 2009). Subsequently, the weakening of the “Japan Sea rift” re- and Taniguchi, 2001; Wei et al., 2003). Chu et al. (2011) provide the orig- sulted in the cessation of volcanism in the central back-arc basin, but inal texts and a critical review that Mt. Changbai have erupted in 1413, highlight the volcanic activities on both its flanks (approximately 1597, 1668, 1702, 1898 and 1903 (Cui et al., 1995; Stone, 2011; Xu 10 Ma, the Japan Arc and NE China) (Figs. 9 and 10c). et al., 2012a, 2013). Given that the past behavior of a volcano is a key to The most intensive phase of volcanism on both sides of the Japan Sea predicting its future behavior in developing hazard assessments, Mt. (the Japan Arc and NE China) took place during the Miocene (Liu Changbai is a giant active volcano with hidden potential risk of eruption and Wang, 1982; Liu, 1989, 1999; Wang et al., 1983), such as the (Yu et al., 2013; Xu et al., 2012a, 2013; Stone, 2010, 2011). This statement 25–23 Ma volcanism in NE China (Naitoushan and Zengfengshan volcanic can also be verified from the following four points: phase) (Liu, 1989, 1999), and the “Green Tuff Orogenesis” in Japan Arc (Komuro et al., 1984; Liu, 1999; Orsi and Sheridan, 1984; Sakata, 1991; (1) Since the establishment of the Mt. Changbai Volcano Observatory Wolff and Wright, 1981). Moreover, since 10 Ma (when the Japan Sea (CHVO) in 1999, Tianchi volcano has been the subject of compre- ceased expansion), the eruptive frequency, the magmatic properties hensive volcano-monitoring program, and significant seismic un- and the geochemical characteristics of these volcanism along both sides rest occurred during 2002–2005 (Stone, 2010, 2011; Wei et al., of the Japan Sea displayed the same characteristics (Figs. 9 and 10c; Liu, 2013; Xu et al., 2012a, 2013; Yun et al., 2013). Seismic monitoring 1987, 1989, 1999). For instance, the 10–6 Ma large-scale volcanic activi- data show the frequency of volcanic eruptions and the intensity of ties in the Kyushu and Honshu (Ozima et al., 1968; Kaneaka et al., the earthquake sharply increased during 2002–2005 (Wu et al. 1977) correspond with the 11–7 Ma volcanism in NE China (Laoyeling 2005; Lei et al., 2013; Liu et al., 1996; Xu et al., 2012a, 2013; Yun volcanic phase); the 3.58–3.00 Ma volcanism in the Higashi-Matsuura et al., 2013). On the basis of ENVISAT/InSAR satellite data, (Nakamura et al., 1985) is similar to the 5.0–2.1 Ma volcanism in NE Ozawa and Taniguchi (2010) proposed that −30 mm uplift oc- China (Junjianshan volcanic phase); the Quaternary volcanic activities curred during the period of 2004–2005, encompassing an area (0.27–0.035 Ma) in the Japan Arc are similar with Baitoushan volcanic −10 km in diameter centered on the caldera (Kim et al., 2014; phase of Mt. Changbai (Simkin et al., 1981; Liu, 1987, 1989, 1999). Lee et al., 2013). GPS and leveling surveys also suggest a sharp in- Thus, investigating and discussing the synchronous volcanism of NE crease in the deformation. Both horizontal and vertical displace- China and the Japan Arc is important for understanding the geodynamic ments reached maxima during 2002–2003 (Cui et al., 2007; Xu evolution and forecasting the re-eruptive possibility of NE Asia volcanism. et al., 2012a, 2013; Yun et al., 2013). Additionally, the concentra- 3 4 Given that NE China and the Japan Arc are geographically separated tions of CO2,He,H2,N2/O2,CH4 and He/ He along with tempera- (i.e., the former is far away from the subduction trench; while the latter ture of spring waters at Tianchi were measured (Guo et al., 2002; is close to the trench), the influence of the Western PacificPlateonvolca- Xu et al., 2008, Xu et al., 2012a, 2013; Zhang and Hu, 1999), which nic activity in NE China should have been different from its effect on the increased sharply from 2003, and remained high through 2006 Japan Arc; thus, the presence of synchronous volcanism on both sides of (Xu et al., 2012a, 2013). the Japan Sea may not be related only to the subduction of the Western (2) Mt. Changbai volcanoes have erupted many times in the past, in- PacificPlate(Liu, 1999; Liu et al., 2001; Ren et al., 2002). We argue that cluding huge Millennium eruptions and the following centennial the influence of the subducted Pacific Plate on NE China and Japan Arc eruptions (Chu et al., 2011; Gill et al., 1992; Guo et al., 2005; does exist (Kuritani et al., 2011; Lei and Zhao, 2005; Tang et al., 2006; Horn and Schmincke, 2000; Jwa et al., 2003; Oppenheimer, Wei, 2010; Zhao et al., 2009a,b; Zhao and Tian, 2013; Zou et al., 2008), 2003; Stone, 2010, 2011; Taniguchi, 2004; Wei et al., 2013; Xu but it was not the sole factor. In contrast, the synchronous volcanism on et al., 2012a, 2013; Yamada et al., 2007; Yin et al., 2012). This char- both sides of the Japan Sea and the Songliao Basin may have been pre- acteristic is extremely similar to the Vesuvius volcano in Italy and dominantly controlled by the rift expansion of the Songliao Basin- the Hekla volcano in Iceland which includes a major caldera- centered and the back-arc spreading of Japan Sea basin-centered (this forming explosive eruption and several smaller explosive erup- may be another form of rift extension). In conclusion, we therefore sug- tions after hundreds to thousands of years (Rolandi et al., 1998; gest that the synchronous and similar volcanism on both sides of the Vivo et al., 1993). Thus for Mt. Changbai volcano, more frequent Japan Sea (i.e., the Japan Arc and NE China) was closely associated with and smaller volcanic activities likely occur in the next few centu- the rift expansion and back-arc spreading of the Japan Sea basin, although ries. Mt. Changbai volcanoes are currently dormant, and these the Cenozoic volcanic activity in the Mt. Changbai field was unavoidablly dormant periods have amounted to hundreds of years, which is linked to the subduction of the western Pacificslab(Kuritani et al., 2009; consistent with the volcanic eruption cycle (Liu and Taniguchi, Liu, 1999; Zhao et al., 2009a,b; Zhao and Tian, 2013). 2001; Liu, 1999; Stone, 2010, 2011; Yu et al., 2013), implying the potential of a future eruption. 5.4. The possibility of re-eruption of Mt. Changbai volcanoes (3) The “stagnant” remnants of the subducted western PacificSlab have reached the Mt. Changbai region on the basis of the investi- Historical records and geochronological data suggest that Mt. gations of global seismic tomography (Lei et al., 2013; Lei and Changbai volcanoes have erupted repeatedly in recent times (Chu et al., Zhao, 2005; Zhao and Lei, 2004; Zhao et al., 2009a,b, 2011; Zhao 2011; Cui et al., 1995; Horn and Schmincke, 2000; Liu, 1999; Liu et al., and Liu, 2010) and magnetotelluric soundings (Tang et al., 2001; Liu and Taniguchi, 2001; Wang et al., 1983; Wei and Liu, 1995; 2006), providing the dynamic mechanism for the eruption of Wei et al., 2001, 2003, 2013; Zou et al., 2010, 2014). The initiation of vol- Mt. Changbai volcanoes (Wei et al., 2003, 2004; Zou et al., 2008, canic activities in the Mt. Changbai area occurred in the Neogene period. 2010). So this relatively active geological background likely indi- Since 4000 BP Mt. Changbai has had several major eruptions on the basis cates that the Mt. Changbai volcanoes have a potential eruption of the geological studies and analyses of the myths and legends (Horn hazard. Additionally, the geochemical analysis described in and Schmincke, 2000; Wei and Liu, 1995; Wei et al., 2001; Zou et al., Section 5.2.2 suggests that the general features of magma evolu- 2014). The largest eruption occurred roughly 1000 years ago, known as tion in Mt. Changbai volcanoes are from basalts via trachytes to the Millennium eruption (occurred between 940 and 941 AD) and pantellerites (Chen et al., 2008; Fan et al., 1998, 1999, 2007; 58 J. Liu et al. / Lithos 236–237 (2015) 46–73

Wang et al., 2003; Wei et al., 2007, 2013). Thus young basalts in K–Ar dating was carried out at the K–Ar and 40Ar–39Ar Isotopic Mt. Wutoufeng of DPR Korea and Mt. Wangchi of NE China cov- Laboratory of Institute of Geology, China Earthquake Administration. ered pyroclastic deposits and pantellerite tephra may reveal that Detailed descriptions of the analytical line are available from Wang a new magmatic cycle has started (Cao et al., 1998; Jin and Lin, et al. (1983). The fresh samples without or minor phenocrysts were 1995; Jin et al., 2000; Liu, 1999; Ri, 1993). chosen and powdered into 40–60 mesh. The K–Ar dating is divided (4) Based on the above discussion, we propose that synchronous and into potassic measurement and argon measurement. The former were similar volcanic activities are occurring on both sides of the Japan done with a HG-5 type flame photometer, and the latter were acquired Sea. Given the current intense volcanic activities in the Japan Arc by isotope dilution analyses using an MM-1200 mass spectrometer and and Kamchatka peninsula in Russia, the eruption of Mt. Changbai a 38Ar drilution agent of 99.98% purity. During the experiments, the Chi- is highly possible. The regularity of the geochronological data of nese Standard sample ZBH-25 biotite of 132.6 ± 1.2 Ma was used to the Songliao–Jizhong fault, Yilan–Yitong fault, Fushun–Mishan monitor the validity of the performance with an error less than 1.5%. fault and Mt. Changbai suggests that the occurrence of Quaternary The K–Ar dating results are listed in Table 2. volcanism in Mt. Changbai likely marks the beginning of a new rift formation. A.2. Major- and trace-element analyses 6. Conclusions Whole-rock major-element analyses were determined using fused Mt. Changbai volcano spans both NE China and DPR Korea and glass disks with a Phillips PW1400 sequential X-ray fluorescence spec- includes Wangtian'e, Tianchi, and Namphothe volcanic centers. trometer (XRF) at IGGCAS. The precision for major elements was better Geochronological data and geological characteristics indicate that the than 2%. The powders (1.2 g) were fused with Li2B4O7 (6 g) in a initial volcanic activity of Mt. Changbai began in the Oligocene and con- CLAISSEFLUXERVI fusion furnace at 1050 °C for 20 min. Loss on ignition tinued until the later part of the late Pleistocene. The volcanism during (LOI) was determined after ignition at 1000 °C for 10 h of 2 g rock pow- this period showed multi-stage magma evolution: the generation of der. Details regarding the analytical techniques were discussed by Guo – trachybasalt in the early stage, followed by trachyandesite trachytic et al. (2005). Major element data are presented in Table A1. fi magmatism, and nally the formation of pantelleritic magma. The vol- Whole-rock trace-element abundances were obtained on a Finnigan canism in Mt. Changbai occurred in the following sequence: Wangtian'e MAT inductively coupled plasma mass spectrometer (ICP-MS) at → volcano (in China) Namphothe volcano (in DPR Korea) and Tianchi IGGCAS. The powders (40 mg) were weighed and dissolved in distilled volcano (astride China and DPR Korea), advancing temporally and 1 ml HF and 0.5 ml HNO3 in Savillex Teflon screw-cap capsules and spatially from southwest to northeast. then were ultrasonically stirred for 15 min. Subsequently, the solutions The three eruption centers of Mt. Changbai are characterized by sim- were evaporated at 150 °C to dryness and the residue was digested ilar magma evolution trends, bimodal volcanic rock distribution, and an with1.5mlHFand0.5mlHNO3 in Teflon screw-cap capsules. Then the enriched mantle source, etc. Although the Cenozoic volcanism in Mt. solutions were heated at 170 °C for 10 days, dried and redissolved in Changbai is thought to have been somewhat related to the subduction 2mlHNO3 in the capsules. In order to dissolve completely the samples, fi of the Western Paci c Plate, the regularity of volcanic activity and petro- the solutions were heated at 150 °C for 5 h and then evaporated, dried graphic characteristics also suggests a continental rift affinity. and redissolved in 2 ml HNO3 and 2 ml 1% HNO3 at 150 °C for 5 h in We suggest that the synchronous and similar volcanism on both screw-cap capsules. The solutions were put into plastic beakers and sides of the Japan Sea (i.e., the Japan Arc and NE China) was closely then 1 ml 500 ppb In was added as an internal standard. Finally, the so- associated with the rift expansion and the back-arc spreading of the lutions were diluted in 1% HNO3 to 50 ml before analyses. A blank solu- Japan Sea. Regardless of the geological environment of Mt. Changbai tion was prepared, the total procedural blanks were b50 ng for all the volcanoes or the whole NE Asia, there are many existing factors that trace elements. During the analytical runs, frequent standard calibrations may induce the eruption of these volcanoes. were performed to correct for instrumental signal drift following the pro- cedure of Gao et al. (1999). Four replicates and two international stan- Acknowledgments dards (BHVO-1 and AGV-1) were prepared using the same procedure to monitor the analytical reproducibility. On the basis of repeated analy- The authors thank the anonymous reviewers and the editor for their ses of samples and international standards, the discrepancies better than helpful reviews and constructive suggestions which greatly improved 5% for all the elements are given in Table A2. The detailed descriptions of the original manuscript. We also thank Drs. S.S. Chen for their help dur- analytical procedures were given in Guo et al. (2005, 2006, 2007). ing the preparation of this manuscript. This work was supported by the National Natural Science Foundation of China (Grant codes: 41272369, 41476034, 40930314, 41311140257, 41302102 and 15CX05007A). A.3. Sr–Nd isotopic analyses

Appendix A. Analytical methods Sr–Nd isotope analyses were performed on a Finnigan MAT262 mass spectrometer at IGGCAS. Sample powders (60 mg) were spiked with 40 39 A.1. Ar/ Ar and K–Ar dating mixed isotope tracers, then dissolved with a mixed acid (HF:HClO4 = 3:1) in Teflon capsules for 7 days at room temperature. Rb, Sr, Sm and The 40Ar/39Ar dating analyses were performed on a GV5400 mass Nd were separated from other rare earth element fractions in solution spectrometer at the Institute of Geology and Geophysics, Chinese Acad- using AG50W×8 (H+) cationic ion-exchange resin columns. Mass emy of Sciences (IGGCAS). Samples were first crushed to 40–60 meshes, fractionation corrections were based on 86Sr/88Sr = 0.1194 and and fresh matrix free of phenocryst and xenocryst was handpicked 146Nd/144Nd = 0.7219. International standard NBS987 gave 87Sr/86Sr = under a binocular. The detailed analytical techniques and age correction 0.710254 ± 16 (n = 8) and NBS607 yielded 87Sr/86Sr = 1.20032 ± 30 method were reported in He et al. (2004). The GA-1550 biotite standard (n = 12). The international La Jolla standard yielded 143Nd/144Nd = yields an age of 98.79 ± 0.96 Ma. Ca and K correction factors were 0.511862 ± 7 (n = 12) and BCR-1 yielded 143Nd/144Nd = 0.512626 ± 36 37 −10 calculated from the CaF2 and K-glass monitors: ( Ar/ Ar)Ca = 9 (n = 12). The whole procedure blank is less than 2 × 10 gforRb– −4 −5 39 37 −4 −11 2.6088 × 10 ± 1.1418 × 10 ,( Ar/ Ar)Ca = 7.236 × 10 ± Sr and 5 × 10 gforSm–Nd isotope analyses. Analytical results and er- −5 40 39 −2 −4 2.814 × 10 , and ( Ar/ Ar)K = 2.648 × 10 ± 2.254 × 10 . The rors (2σ) are reported in Table A3. Detailed sample preparation and ana- Ar–Ar dating results are listed in Table 1. lytical procedures for the Sr–Nd isotope follow those of Gao et al. (1999). Table A1 Major element (wt.%) of Tianchi volcanics in DPR Korea (TVDPR) and Namphothe volcanics (NV).

Sample Tianchi volcanics in DPR Korea

K02001 K02002 K02003 K02005 K02006 K02009 K02010 K02011 K02012 K02013 K02014 K02015 K02016 K02018 K02019 K02021 K02022 K02026 K02027 K02030 K02032 K02035 K02037

SiO2 72.27 57.98 47.72 72.38 54.50 51.21 62.73 60.88 47.78 67.31 64.39 71.95 71.45 70.08 69.30 72.03 71.55 69.63 68.26 69.89 51.86 51.81 70.76 TiO2 0.23 1.43 3.37 0.22 2.05 2.11 1.05 0.97 3.40 0.38 0.55 0.21 0.23 0.31 0.25 0.25 0.24 0.27 0.33 0.30 2.17 2.13 0.28 Al2O3 10.73 17.75 15.87 10.74 17.58 15.98 15.37 16.56 17.08 13.30 16.28 10.50 10.56 11.11 12.01 10.50 10.62 12.45 14.34 11.06 15.66 15.72 10.76 FeOT 4.52 6.67 11.62 4.46 8.29 11.00 6.44 6.14 12.75 4.75 5.05 4.46 4.46 4.68 4.22 4.54 4.46 4.07 3.87 4.50 10.89 10.93 4.61

MnO 0.07 0.10 0.14 0.07 0.11 0.13 0.11 0.10 0.16 0.09 0.11 0.07 0.07 0.08 0.08 0.08 0.08 0.07 0.07 0.08 0.13 0.13 0.08 236 Lithos / al. et Liu J. MgO 0.08 2.17 4.08 0.05 3.33 6.48 1.47 1.94 4.98 0.20 0.40 0.06 0.06 0.18 0.09 0.10 0.08 0.14 0.26 0.19 6.35 6.50 0.16 CaO 0.29 4.63 7.42 0.28 6.40 8.62 3.18 3.11 7.21 0.82 1.40 0.27 0.29 0.61 0.47 0.38 0.36 0.54 0.84 0.59 8.67 8.62 0.51 Na2O 4.89 4.82 3.58 4.99 4.23 3.19 4.86 4.17 3.72 4.91 5.14 4.85 5.00 4.81 5.26 5.15 5.14 5.42 5.73 5.19 3.26 3.25 5.16 K2O 4.37 3.91 2.23 4.36 2.96 0.83 4.17 5.49 2.37 4.84 5.53 4.35 4.47 4.24 4.79 4.42 4.55 4.95 5.40 4.47 0.85 0.87 4.48 P2O5 0.01 0.31 1.34 0.01 0.38 0.28 0.18 0.15 0.70 0.06 0.10 0.01 0.01 0.04 0.03 0.02 0.01 0.03 0.04 0.03 0.29 0.29 0.03 LOI 2.17 0.12 2.65 1.96 0.12 0.00 0.50 0.80 0.00 2.82 1.35 2.81 2.85 3.28 3.05 2.70 2.75 1.95 1.13 4.10 0.00 0.00 2.63

Total 99.63 99.89 100.02 99.52 99.95 99.83 100.06 100.31 100.15 99.47 100.29 99.55 99.46 99.42 99.54 100.16 99.84 99.51 100.27 100.39 100.13 100.25 99.45 – 3 21)46 (2015) 237

Tianchi volcanics in DPR Korea Namphothe volcanics

Sample K02038 K02055 K02056 K02057 K02058 K02062 K02062′ K02064 K02065 K02067 K02068 K02069 K02070 K02072 K02073 K02074 K02039 K02040 K02043 K02046 K02048 K02049 K02050

SiO2 69.88 67.58 72.09 71.83 68.94 65.40 61.15 68.12 65.68 65.76 64.96 65.16 69.89 70.30 70.15 65.03 66.82 51.76 62.08 67.70 49.97 70.63 71.69 – 73 TiO2 0.28 0.42 0.31 0.24 0.34 0.84 1.05 0.38 0.47 0.47 0.46 0.42 0.33 0.27 0.23 0.33 0.87 2.70 0.83 0.27 2.52 0.25 0.24 Al2O3 11.83 13.61 10.02 10.64 13.29 13.02 15.82 13.46 14.51 14.39 14.54 14.79 11.71 11.04 11.08 15.75 15.17 16.83 17.12 15.27 17.80 10.68 11.23 FeOT 4.33 5.64 6.22 4.53 5.21 5.83 6.50 5.56 5.08 4.94 4.90 5.02 4.88 4.48 4.39 5.70 2.95 10.81 5.18 3.22 9.93 4.54 4.24 MnO 0.08 0.14 0.11 0.08 0.11 0.10 0.11 0.12 0.11 0.11 0.10 0.12 0.09 0.08 0.08 0.22 0.05 0.16 0.12 0.13 0.14 0.08 0.07 MgO 0.15 0.13 0.06 0.08 0.10 1.11 1.55 0.12 0.34 0.34 0.40 0.22 0.15 0.16 0.08 0.12 0.29 3.37 0.92 0.16 3.31 0.09 0.11 CaO 0.57 0.85 0.37 0.34 0.67 2.17 3.27 0.64 1.25 1.24 1.47 1.19 0.56 0.49 0.35 1.27 1.36 5.86 2.30 0.92 6.19 0.38 0.35 Na2O 5.23 5.95 5.81 5.41 5.72 5.07 5.32 6.00 5.46 5.47 5.15 5.77 5.17 5.07 5.42 6.58 3.81 4.06 5.48 5.61 3.85 5.03 5.21 K2O 4.75 5.35 4.63 4.59 5.19 4.27 4.46 5.16 5.23 5.21 5.34 5.56 4.69 4.57 4.60 5.34 3.60 3.07 5.77 5.64 2.99 4.45 4.61 P2O5 0.03 0.03 0.01 0.01 0.02 0.13 0.19 0.03 0.06 0.07 0.07 0.05 0.03 0.03 0.02 0.05 0.12 0.66 0.23 0.03 0.72 0.02 0.02 LOI 2.82 0.10 0.20 1.68 0.37 2.32 0.35 0.28 1.98 2.08 2.20 1.91 2.25 3.32 3.19 0.00 4.48 0.68 0.10 0.45 2.05 3.46 2.60 Total 99.94 99.80 99.83 99.42 99.96 100.26 99.77 99.87 100.17 100.08 99.59 100.20 99.75 99.81 99.58 100.39 99.52 99.95 100.13 99.41 99.47 99.60 100.37 59 60

Table A2 Trace element (ug/g) of Tianchi volcanics in DPR Korea (TVDPR) and Namphothe volcanics (NV).

Tianchi volcanics in DPR Korea Namphothe volcanics

Sample K02001 K02003 K02009 K02012 K02035 K02055 K02055P K02056 K02057 K02058 K02062 K02062' K02064 K02074 K02074P K02043 K02046 K02048

La 158 44.5 12.7 46.6 12.9 107 105 232 161 197 113 68.1 165 89.0 93.2 56.6 145 61.3 Ce 318 88.2 25.7 89.5 26.4 209 206 456 326 375 226 133 328 200 213 104 289 111 Pr 36.6 11.8 3.61 11.2 3.66 23.8 23.4 50.4 37.2 42.6 26.2 15.7 33.4 19.1 20.0 12.7 30.9 13.9 Nd 135 51.5 16.9 44.0 17.2 89.7 89.2 188 138 154 94.6 60.0 121 72.6 75.3 45.5 106 54.9 Sm 29.5 11.5 4.75 9.22 4.80 17.4 17.6 36.4 29.9 29.8 20.8 12.6 22.2 12.9 13.4 8.99 17.0 10.5 Eu 0.32 4.42 1.74 2.90 1.72 0.45 0.47 0.55 0.31 0.43 0.85 1.71 0.37 0.61 0.66 2.20 0.20 3.34

Gd 28.3 10.2 4.78 8.06 4.82 15.4 15.3 32.4 28.1 25.2 19.1 10.8 18.4 10.1 10.8 7.37 12.8 8.95 236 Lithos / al. et Liu J. Tb 4.39 1.28 0.68 1.05 0.68 2.27 2.25 4.86 4.38 3.89 2.90 1.56 2.68 1.42 1.53 1.02 1.79 1.15 Dy 26.0 6.64 3.75 5.66 3.70 12.7 12.6 27.9 25.8 22.6 17.1 8.84 15.0 7.86 8.36 5.57 10.1 5.93 Ho 5.00 1.14 0.68 1.03 0.67 2.35 2.32 5.21 5.19 4.31 3.38 1.65 2.72 1.49 1.65 1.03 1.93 1.07 Er 14.0 2.82 1.73 2.76 1.67 6.42 6.40 14.4 13.8 11.7 8.99 4.47 7.43 4.37 4.73 2.90 5.72 2.86 Tm 2.04 0.36 0.23 0.37 0.23 0.93 0.92 2.08 2.04 1.64 1.32 0.64 1.08 0.69 0.78 0.41 0.86 0.39 Yb 12.6 2.04 1.40 2.26 1.30 5.88 5.86 12.6 12.7 10.1 7.98 3.98 6.72 5.40 5.49 2.61 5.51 2.33

Lu 1.66 0.27 0.18 0.32 0.17 0.81 0.80 1.65 1.66 1.39 1.09 0.54 0.87 0.89 0.90 0.36 0.83 0.31 – Sc 3.22 17.7 17.9 15.2 17.8 3.53 3.51 3.08 2.96 3.06 5.95 7.87 2.77 7.81 9.37 8.81 7.61 13.1 46 (2015) 237 V 5.79 168 141 193 141 8.04 7.81 9.92 5.69 9.35 37.5 58.3 7.29 9.86 4.43 26.5 9.03 114 Cr 21.4 44.1 174 46.1 170 35.5 26.5 27.3 17.0 25.2 41.2 44.8 20.8 16.6 17.8 24.6 29.4 39.8 Co 0.43 28.9 42.0 36.1 41.4 0.60 0.66 0.28 0.30 0.45 7.29 11.9 0.64 0.20 0.23 4.42 0.36 26.4 Ni 2.61 21.8 104 18.4 104 10.4 2.16 2.19 2.20 2.44 12.7 22.5 2.79 2.13 2.15 11.0 1.87 27.3 – Cu 10.4 30.2 42.5 22.9 41.7 12.3 6.80 10.7 10.4 10.3 14.6 14.1 6.34 2.14 2.44 4.92 1.85 16.1 73 Zn 203 131 107 128 111 141 137 234 193 158 152 101 165 120 134 76.7 76.1 121 Ga 43.7 23.7 19.1 19.5 19.9 40.7 40.9 43.6 44.7 43.6 36.5 31.8 38.3 31.3 35.4 24.5 30.6 24.2 Rb 371 34.1 13.9 45.0 14.4 188 188 324 363 239 229 116 240 152 169 82.9 185 47.2 Sr 5.17 857 498 1039 503 7.94 7.69 1.61 4.85 3.72 166 264 7.70 2.12 2.01 202 3.81 827 Y 125 26.8 16.1 24.9 15.6 56.7 57.0 129 124 97.1 78.3 38.4 60.4 31.1 32.7 25.4 48.2 26.5 Zr 2282 248 99.8 268 103 1137 1119 2228 2220 1721 1382 598 1837 1217 1367 646 737 344 Nb 196 17.5 8.60 33.9 15.3 130 130 224 202 199 157 21.7 131 101 114 46.8 114 46.4 Ba 20.6 1710 271 941 282 44.8 41.4 15.0 18.4 17.2 191 565 33.0 19.8 18.8 823 14.1 1371 Hf 59.9 6.07 3.02 6.69 3.12 28.7 28.7 56.6 58.3 45.8 36.9 16.1 45.2 27.7 31.1 14.1 20.4 8.79 Ta 2.99 0.66 0.64 1.75 1.05 7.97 7.83 8.59 3.54 12.1 9.86 0.73 0.96 6.28 7.17 2.99 7.39 2.75 Pb 41.8 6.00 1.85 4.48 2.05 19.6 19.6 40.7 39.8 31.8 25.9 12.0 28.7 22.9 24.7 10.1 14.8 4.74 Th 53.8 4.90 1.67 5.59 1.52 22.4 22.4 45.8 53.2 37.0 32.9 13.3 33.2 20.7 21.8 7.33 27.0 7.02 U 11.3 1.12 0.32 1.32 0.32 3.51 3.50 9.32 11.3 5.70 6.97 2.49 6.81 3.36 3.61 1.67 5.60 1.37 Table A3 Sr–Nd isotopes of Tianchi volcanics in DPR Korea (TVDPR) and Namphothe volcanics (NV).

Tianchi volcanics in DPR Korea

Samples KC0201 K0201P K0203 KC0208 K0209 KC0210 K0212 KC0213 KC0214 KC0217 KC0219 KC0224

Rb (ppm) 32.9 393 34.6 252 14.0 343 46.4 324 345 55.4 354 15.6 Sr (ppm) 902 4.84 919 1.51 548 3.97 1052 3.24 4.88 723 10.3 327 87 Rb/86 Sr 0.10 233 0.11 483 0.07 250 0.13 289 204 0.22 99.4 0.14 87 Sr/86 Sr 0.70503 0.70883 0.70506 0.70808 0.70470 0.70519 0.70485 0.70540 0.70511 0.70460 0.70523 0.70487 2σ ±15 ±16 ±14 ±13 ±14 ±12 ±13 ±14 ±11 ±18 ±14 ±14 Sm (ppm) 8.11 30.5 11.1 26.1 4.35 27.5 8.30 25.7 27.4 4.56 28.2 4.07 Nd (ppm) 38.7 130 50.3 131 16.0 127 41.1 118 129 21.3 128 14.3 147 Sm/144 Nd 0.13 0.14 0.13 0.12 0.16 0.13 0.12 0.13 0.13 0.13 0.13 0.17 143 Nd/144 Nd 0.51262 0.51253 0.51255 0.51252 0.51260 0.51254 0.51260 0.51250 0.51253 0.51270 0.51254 0.51258 2σ ±14 ±10 ±9 ±10 ±10 ±13 ±10 ±10 ±8 ±11 ±8 ±9 .Lue l ihs236 Lithos / al. et Liu J. – 3 21)46 (2015) 237 – 73

Table A3 Sr–Nd isotopes of Tianchi volcanics in DPR Korea (TVDPR) and Namphothe volcanics (NV).

Tianchi volcanics in DPR Korea Namphothe volcanics

Samples KC0227 K0235 K0255 K0256 K0257 K0258 K0264 K0274 K0240 K0243 K0246 K0248

Rb (ppm) 31.6 14.7 190 335 373 239 241 173 69.9 87.5 191.8 49.6 Sr (ppm) 667 546 7.48 1.01 4.55 4.70 7.75 1.67 705 209 3.56 847 87 Rb/86 Sr 0.14 0.08 73.5 962 237 147 90.0 296 0.28 1.20 156 0.17 87 Sr/86 Sr 0.70507 0.70477 0.70542 0.70605 0.70577 0.70641 0.70599 0.71460 0.70536 0.70534 0.71010 0.70513 2σ ±12 ±11 ±15 ±11 ±13 ±21 ±14 ±14 ±17 ±14 ±18 ±14 Sm (ppm) 7.26 4.55 17.3 36.6 29.7 28.4 25.5 14.1 9.55 8.83 16.2 9.96 Nd (ppm) 34.6 17.0 85.3 174 132 144 129 75.8 50.0 48.6 104 53.1 147 Sm/144 Nd 0.13 0.16 0.12 0.13 0.14 0.12 0.12 0.11 0.12 0.11 0.09 0.11 143 Nd/144 Nd 0.51249 0.51258 0.51255 0.51253 0.51252 0.51252 0.51254 0.51252 0.51256 0.51254 0.51251 0.51254 2σ ±6 ±12 ±14 ±8 ±13 ±15 ±13 ±10 ±12 ±12 ±8 ±10 61 62 Table A4 Major, trace element (wt.%) and Sr–Nd–Pb isotope of volcanic rocks from Wangtian'e volcano (WV), Tianchi volcano in China (TVC). The data of Wangtian'e volcanics (WV) are from Chen et al. (2008a) and Fan et al. (1998, 1999, 2006, 2007); the data of Tianchi volcanics in China (TVC) are from Chen et al. (2007), Fan et al. (2006), Kuritani et al. (2009) and Zou et al. (2008).

Wangtian'e volcano

Sample WV WV WV WV WV WV WV WV WV WV WV WV WV WV WV WV WV WV

SiO2 51.83 51.48 51.22 49.38 53.31 50.94 51.90 71.49 70.55 70.39 70.83 70.94 50.80 50.75 61.75 50.40 49.70 69.75 TiO2 3.04 3.00 2.91 1.87 1.38 1.23 3.36 0.35 0.40 0.45 0.40 0.39 2.92 3.10 1.28 2.51 2.49 0.50 Al2O3 13.79 14.82 14.86 16.32 16.01 16.06 13.30 12.94 12.98 12.84 12.84 13.06 13.84 13.03 14.75 17.92 18.43 12.42 FeOT 13.06 12.05 12.22 10.66 8.88 8.08 14.02 4.12 4.85 5.01 4.62 4.59 14.45 13.65 8.26 10.72 10.63 5.55 MnO 0.16 0.15 0.16 0.16 0.17 0.13 0.17 0.07 0.11 0.09 0.08 0.07 0.15 0.18 0.10 0.14 613 0.09 MgO 3.17 4.18 4.52 4.56 4.58 3.63 3.58 0.03 0.04 0.01 0.03 0.02 3.35 3.80 0.65 3.90 3.70 0.10 CaO 7.23 8.00 8.02 7.38 4.89 7.34 7.72 0.88 1.06 1.04 1.06 0.94 6.65 6.75 2.10 5.45 5.73 0.70 Na2O 3.38 3.46 3.17 4.17 6.10 4.40 2.37 4.56 4.73 4.72 4.74 4.8 3.57 3.67 4.55 4.52 4.72 4.62 K2O 2.05 1.68 1.66 1.69 1.17 3.32 1.90 4.72 4.65 4.66 4.68 4.69 1.88 2.17 3.55 2.72 2.72 4.86 P2O5 0.95 0.67 0.65 0.61 0.57 0.45 0.62 0.03 0.04 0.05 0.04 0.04 0.60 1.29 0.53 0.65 0.49 0.07 LOI 1.28 0.22 0.13 3.00 3.05 4.01 1.08 0.43 0.33 0.35 0.37 0.45 1.54 1.35 2.28 0.86 1.01 1.00 Total 99.94 99.71 99.52 99.80 100.11 99.59 100.02 99.62 99.74 99.61 99.69 99.99 99.75 99.74 99.80 99.79 99.75 99.66 La 37.0 26.7 26.4 41.0 47.8 50.6 30.5 85.7 69.0 56.6 64.9 60.9 29.5 44.6 49.9 64.8 Ce 80.9 57.5 57.6 83.7 92.9 109 63.5 178 133 120 132 124 67.4 95.6 102 132 Pr 11.4 8.20 8.40 10.6 11.5 13.3 8.90 22.8 17.5 14.9 16.1 15.5 8.95 12.0 11.9 16.2 Nd 50.4 36.0 36.6 39.3 41.7 48.3 37.6 94.0 72.0 61.6 64.3 61.3 42.5 53.0 47.9 69.0 Sm 12.6 9.50 9.70 8.00 8.20 9.50 9.40 20.8 15.6 13.6 14.1 13.8 10.3 12.6 8.90 15.6

Eu 4.62 3.30 3.43 2.13 2.06 2.13 3.05 3.48 3.43 3.11 2.89 3.11 3.30 3.53 2.91 3.52 236 Lithos / al. et Liu J. Gd 11.1 8.33 8.38 6.75 6.80 8.23 8.85 20.0 14.9 12.6 12.6 13.1 9.62 11.3 7.62 13.5 Tb 1.59 1.24 1.23 0.99 0.98 1.26 1.32 3.19 2.34 1.98 1.92 2.06 1.43 1.73 1.13 2.07 Dy 7.87 6.19 6.22 5.39 5.44 6.96 6.88 17.4 12.8 10.9 10.2 11.2 7.03 9.40 5.41 10.9 Ho 1.5 1.14 1.19 1.07 1.05 1.42 1.28 3.32 2.47 2.13 1.95 2.17 1.29 1.69 1.04 1.88 Er 3.48 2.76 2.73 2.85 2.79 3.78 3.13 8.10 6.20 5.44 4.89 5.52 3.30 4.46 2.78 4.58 Tm 0.45 0.37 0.37 0.42 0.42 0.55 0.43 1.09 0.88 0.77 0.73 0.81 0.44 0.65 0.36 0.61 Yb 2.51 2.15 2.08 2.59 2.56 3.52 2.50 6.22 5.16 4.99 4.47 4.80 2.45 3.74 2.20 3.67

Lu 0.37 0.31 0.31 0.40 0.38 0.57 0.37 0.92 0.78 0.75 0.64 0.71 0.34 0.54 0.32 0.60 – 3 21)46 (2015) 237 Sc 22.9 22.3 22.6 15.8 16.4 18.6 23.7 4.10 4.50 3.50 3.20 4.90 V 128 162 165 155 117 120 220 0.83 0.26 0.20 0.07 0.17 Cr 37.7 77.1 93.4 81.6 108 90.8 19.2 24.0 34.6 31.4 23.0 34.6 Co 23.6 31.3 33.4 27.3 23.8 20.5 35.6 0.80 0.70 0.80 0.70 0.80 Ni 13.0 40.1 50.5 39.1 58.5 40.6 12.6 0.60 0.70 0.50 0.10 2.30 – Cu 29.7 36.5 38.4 11.6 32.5 35.5 43.7 1.49 1.88 1.94 1.60 1.93 73 Zn 153 147 150 121 90.0 83.0 174 115 91.0 84.0 83.0 86.0 Ga 22.5 21.8 22.2 20.6 19.8 21.8 23.8 31.3 29.9 27.5 26.7 25.4 Rb 34.0 24.3 23.6 45.7 25.2 66.5 73.5 110 105 102 104 106 32.6 75.0 63.5 113 Sr 559 568 587 685 483 440 546 91.0 101 94.0 84.0 107 519 352 934 98.2 Y 33.9 27.2 26.8 26.3 26.3 34.3 31.5 77.3 59.1 48.6 45.6 50.1 37.6 49.1 2962 48.9 Zr 237 208 208 268 277 248 247 677 632 670 644 634 202 384 299 496 Nb 21.9 17.6 17.8 19.9 19.2 16.0 22.8 57.4 56.6 59.0 56.8 57.5 23.0 41.6 58.9 63.1 Ba 914 619 626 554 484 1083 773 1098 1358 1273 1304 1463 547 921 837 1272 Hf 6.53 5.74 5.81 6.62 6.85 5.92 6.83 18.1 16.9 17.6 17.1 17.2 5.32 10.2 7.62 14.5 Ta 1.50 1.19 1.20 1.13 1.07 0.95 1.50 3.85 3.77 3.86 3.79 3.86 1.09 2.09 3.25 4.61 Pb 5.90 4.70 4.70 9.00 9.80 20.0 23.6 14.9 15.6 15.9 15.3 16.2 4.64 8.90 6.53 17.7 Th 2.10 1.30 1.30 2.90 3.40 5.70 2.40 11.6 10.4 10.7 10.2 12.2 2.91 6.19 5.99 9.08 U 0.43 0.29 0.29 0.80 0.69 0.36 0.45 2.23 2.04 2.13 2.12 2.14 0.58 1.26 1.35 1.01 87 Sr/86 Sr 0.70528 0.70516 0.70550 0.70617 0.70610 0.70628 0.70579 0.70903 0.70568 0.70564 0.70566 0.70567 0.70520 0.70520 0.70577 143 Nd/144 Nd 0.51257 0.51260 0.51257 0.51241 0.51230 0.51234 0.51257 0.51254 0.51254 0.51255 0.51254 0.51253 0.51258 0.51263 0.51257 206 Pb/204 Pb 17.309 17.258 17.254 18.014 18.088 18.090 17.752 17.578 17.569 17.593 17.597 17.592 17.934 17.434 17.565 207 Pb/204 Pb 15.475 15.472 15.461 15.500 15.499 15.507 15.499 15.476 15.460 15.491 15.500 15.489 15.789 15.500 15.466 208 Pb/204 Pb 37.390 37.312 37.278 37.975 38.018 38.048 37.766 37.655 37.607 37.703 37.730 37.697 38.418 37.539 37.671 SiO2 70.45 72.65 74.15 74.70 75.66 65.54 47.81 47.72 49.59 51.24 50.23 65.31 51.24 50.80 50.75 61.75 50.40 49.70 TiO2 0.39 0.33 0.26 0.24 0.22 0.99 2.56 3.85 2.32 2.20 3.67 0.91 2.20 2.92 3.10 1.28 2.51 2.49 Al2O3 12.89 12.08 11.12 10.20 9.82 14.15 16.26 13.04 17.31 16.92 12.84 14.21 16.92 13.84 13.03 14.75 17.92 18.43 FeOT 4.69 3.78 4.08 4.21 4.11 7.31 12.96 15.20 11.39 11.47 13.91 5.60 11.47 14.45 13.65 8.26 10.72 10.63 MnO 0.05 0.02 0.03 0.03 0.04 0.12 0.17 0.20 0.25 0.14 0.17 0.06 0.14 0.15 0.18 0.10 0.14 613 MgO 0.10 0.10 0.10 0.10 0.10 0.69 6.77 4.21 3.69 3.60 3.92 0.35 3.60 3.35 3.80 0.65 3.90 3.70 CaO 0.30 0.10 0.20 0.20 0.15 2.62 8.80 8.01 6.33 6.22 7.92 2.39 6.22 6.65 6.75 2.10 5.45 5.73 Na2O 4.62 4.17 4.00 4.08 3.90 4.63 3.57 3.29 3.90 3.51 2.75 4.09 3.51 3.57 3.67 4.55 4.52 4.72 K2O 4.86 5.10 4.76 4.76 4.60 3.77 1.12 2.00 2.16 2.31 1.49 4.04 2.31 1.88 2.17 3.55 2.72 2.72 P2O5 0.07 0.05 0.01 0.01 0.02 0.30 0.73 1.32 0.49 0.41 0.74 0.24 0.41 0.60 1.29 0.53 0.65 0.49 LOI 1.29 1.27 0.99 1.06 1.18 0.00 0.00 0.00 1.92 2.01 2.18 2.56 2.01 1.54 1.35 2.28 0.86 1.01 Total 99.71 99.65 99.70 99.59 99.80 100.12 100.75 98.84 99.35 100.03 99.82 99.76 100.03 99.75 99.74 99.80 99.79 99.75 La 14.6 43.6 29.7 36.7 29.5 44.6 49.9 Ce 34.0 88.5 60.9 79.5 67.4 95.6 102 Pr 5.27 11.8 7.80 11.7 8.95 12.0 11.9 Nd 22.4 50.1 32.7 54.6 42.5 53.0 47.9 Sm 5.74 11.4 7.90 12.6 10.3 12.6 8.90 Eu 0.52 3.15 2.54 4.45 3.30 3.53 2.91 Gd 4.65 10.8 6.30 12.1 9.62 11.3 7.62 Tb 0.79 1.67 0.93 1.65 1.43 1.73 1.13 Dy 4.16 9.30 4.81 8.54 7.03 9.40 5.41 Ho 0.77 1.69 0.88 1.50 1.29 1.69 1.04 Er 2.46 4.39 2.18 3.57 3.30 4.46 2.78 Tm 0.36 0.66 0.30 0.48 0.44 0.65 0.36 Yb 2.19 4.07 1.84 2.93 2.45 3.74 2.20 Lu 0.38 0.61 0.27 0.42 0.34 0.54 0.32 Sc 6.80 17.6 22.5 V 30.0 201 358 Cr Co 3.60 45.3 38.2 .Lue l ihs236 Lithos / al. et Liu J. Ni 0.50 104 18.6 Cu 2.30 32.5 37.8 Zn 142 107 174 Ga 23.9 20.2 25.0 Rb 191 70.1 28.0 36.5 32.6 75.0 63.5 Sr 1.93 221 680 616 519 352 934 Y 24.1 43.9 22.9 37.6 37.6 49.1 2962

Zr 936 476 154 264 202 384 299 – Nb 119 38.1 29.4 23.7 23.0 41.6 58.9 46 (2015) 237 Ba 16.1 839 675 685 547 921 837 Hf 23.2 10.4 3.80 5.97 5.32 10.2 7.62 Ta 6.02 2.50 1.91 1.72 1.09 2.09 3.25 Pb 19.5 11.3 4.09 7.41 4.64 8.90 6.53 –

Th 19.8 6.29 3.63 3.03 2.91 6.19 5.99 73 U 2.45 1.21 0.81 0.62 0.58 1.26 1.35 87 Sr/86 Sr 0.71674 0.70479 0.70520 0.70520 143 Nd/144 Nd 0.51264 0.51258 0.51258 0.51263 206 Pb/204 Pb 17.587 17.896 17.934 17.434 207 Pb/204 Pb 15.499 15.486 15.789 15.500 208 Pb/204 Pb 37.711 38.091 38.418 37.539

Wangtian'e volcano Tianchi volcano in China

Sample WV WV WV WV WV WV WV WV WV WV WV TVC TVC TVC TVC TVC TVC

SiO2 69.75 70.45 72.65 74.15 74.70 75.66 65.54 47.81 47.72 47.87 49.59 64.04 64.23 64.51 47.54 49.13 50.46 TiO2 0.50 0.39 0.33 0.26 0.24 0.22 0.99 2.56 3.85 2.99 2.32 0.57 0.52 0.47 2.43 3.38 2.90 Al2O3 12.42 12.89 12.08 11.12 10.20 9.82 14.15 16.26 13.04 15.97 17.31 15.69 16.20 15.74 15.17 15.32 17.16 FeOT 5.55 4.69 3.78 4.08 4.21 4.11 7.31 12.96 15.20 11.88 11.39 5.13 4.94 4.94 11.52 11.73 9.91 MnO 0.09 0.05 0.02 0.03 0.03 0.04 0.12 0.17 0.20 0.21 0.25 0.10 0.12 0.12 0.16 0.15 0.12 MgO 0.10 0.10 0.10 0.10 0.10 0.10 0.69 6.77 4.21 4.89 3.69 1.58 0.23 0.19 8.03 3.97 4.68 CaO 0.70 0.30 0.10 0.20 0.20 0.15 2.62 8.80 8.01 7.09 6.33 0.42 1.38 1.25 7.40 7.48 8.31 Na2O 4.62 4.62 4.17 4.00 4.08 3.90 4.63 3.57 3.29 3.99 3.90 5.68 5.54 5.63 4.37 3.64 3.41 K2O 4.86 4.86 5.10 4.76 4.76 4.60 3.77 1.12 2.00 2.25 2.16 5.56 5.93 5.76 1.37 2.57 1.95 P2O5 0.07 0.07 0.05 0.01 0.01 0.02 0.30 0.73 1.32 0.86 0.49 0.10 0.09 0.08 0.69 0.92 0.60 LOI 1.00 1.29 1.27 0.99 1.06 1.18 0.00 0.00 0.00 1.26 1.92 0.00 0.00 0.00 1.05 1.49 0.29 Total 99.66 99.71 99.65 99.70 99.59 99.80 100.12 100.75 98.84 99.26 99.35 98.87 99.18 98.69 99.73 99.78 99.79 La 64.8 14.6 43.6 29.7 36.7 67.2 66.4 79.8 43.7 22.2 58.9

(continued on next page) 63 64 Table A4 (continued)

Wangtian'e volcano

Sample WV WV WV WV WV WV WV WV WV WV WV WV WV WV WV WV WV WV

Ce 132 34.0 88.5 60.9 79.5 139 145 172 81.3 42.8 109 Pr 16.2 5.27 11.8 7.80 11.7 16.0 14.6 17.3 10.1 5.42 14.8 Nd 69.0 22.4 50.1 32.7 54.6 56.3 54.3 63.9 41.2 22.4 62.0 Sm 15.6 5.74 11.4 7.90 12.6 10.9 10.0 11.6 7.94 4.64 12.5 Eu 3.52 0.52 3.15 2.54 4.45 0.74 0.90 0.65 2.48 1.46 3.73 Gd 13.5 4.65 10.8 6.30 12.1 10.0 8.84 10.3 7.78 4.61 12.0 Tb 2.07 0.79 1.67 0.93 1.65 1.56 1.30 1.53 1.07 0.66 1.66 Dy 10.9 4.16 9.30 4.81 8.54 7.56 6.72 7.84 5.35 3.57 8.10 Ho 1.88 0.77 1.69 0.88 1.50 1.47 1.23 1.51 0.99 0.67 1.45 Er 4.58 2.46 4.39 2.18 3.57 3.63 3.13 3.84 2.47 1.79 3.41 Tm 0.61 0.36 0.66 0.30 0.48 Yb 3.67 2.19 4.07 1.84 2.93 3.42 Lu 0.60 0.38 0.61 0.27 0.42 0.49 Sc 6.80 17.6 22.5 V 30.0 201 358 4.00 3.00 151 200 211 Cr Co 3.60 45.3 38.2 Ni 0.50 104 18.6 Cu 2.30 32.5 37.8 Zn 142 107 174 .Lue l ihs236 Lithos / al. et Liu J. Ga 23.9 20.2 25.0 Rb 113 191 70.1 28.0 36.5 116 Sr 98.2 1.93 221 680 616 56.2 41.0 31.0 1059 690 823 Y 48.9 24.1 43.9 22.9 37.6 29.4 36.6 44.1 27.7 19.2 39.3 Zr 496 936 476 154 264 560 528 654 337 221 287 Nb 63.1 119 38.1 29.4 23.7 68.1 81.2 99.9 50.0 28.3 54.5 Ba 1272 16.1 839 675 685 148 154 90.0 520 474 898

Hf 14.5 23.2 10.4 3.80 5.97 14.5 10.9 13.9 7.33 3.64 8.40 – 3 21)46 (2015) 237 Ta 4.61 6.02 2.50 1.91 1.72 5.37 4.16 5.21 3.25 1.67 3.35 Pb 17.7 19.5 11.3 4.09 7.41 14.7 Th 9.08 19.8 6.29 3.63 3.03 14.3 10.6 13.6 5.08 3.46 5.92 U 1.01 2.45 1.21 0.81 0.62 2.72 87 Sr/86 Sr 0.70577 0.71674 0.70479 0.70502 143 144 – Nd/ Nd 0.51257 0.51264 0.51258 0.51259 73 206 Pb/204 Pb 17.565 17.587 17.896 37.897 207 Pb/204 Pb 15.466 15.499 15.486 15.532 208 Pb/204 Pb 37.671 37.711 38.091 17.540

Tianchi volcano in China

Sample TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC

SiO2 52.30 48.27 48.80 52.44 71.11 54.80 66.26 51.14 51.57 52.87 50.58 49.66 49.32 48.96 46.18 49.05 47.16 51.83 TiO2 1.84 2.42 1.35 1.68 0.24 1.96 0.39 2.69 2.83 1.65 3.17 3.60 2.72 3.21 4.10 4.01 3.34 2.45 Al2O3 15.84 14.91 14.64 14.05 11.32 17.12 14.68 15.28 14.71 14.60 16.29 16.08 15.88 16.14 14.49 13.38 15.49 15.85 FeOT 10.76 12.60 9.23 11.43 4.38 7.63 4.95 12.24 12.90 11.32 11.10 11.47 12.26 13.74 16.86 15.52 12.49 11.79 MnO 0.13 0.17 0.15 0.15 0.08 0.12 0.13 0.15 0.16 0.14 0.14 0.14 0.16 0.17 0.19 0.16 0.15 0.13 MgO 6.64 7.22 9.41 7.77 0.01 3.28 0.09 5.39 4.39 7.24 4.88 4.57 5.57 4.41 4.41 4.16 7.13 4.18 CaO 8.58 9.29 8.77 7.74 0.40 6.15 1.09 8.43 7.34 8.05 7.86 8.37 7.06 7.07 8.44 8.21 8.88 7.68 Na2O 2.94 2.82 2.23 2.86 5.03 4.27 5.57 3.35 3.44 3.21 3.77 3.70 3.54 3.79 2.93 2.94 2.71 3.57 K2O 0.53 1.57 3.29 0.72 4.53 3.08 5.42 1.55 1.95 0.72 2.15 2.15 2.91 2.34 0.74 1.33 1.90 1.53 P2O5 0.21 0.49 0.47 0.24 0.02 0.39 0.05 0.42 0.53 0.23 0.61 0.66 0.92 0.63 0.71 0.75 0.54 0.51 LOI 0.11 0.03 1.44 0.79 2.21 0.69 0.72 −0.64 −0.06 −0.05 −0.46 −0.52 −0.52 −0.71 0.66 1.60 0.15 0.99 Total 99.88 99.79 99.78 99.87 99.33 99.49 99.35 100.00 99.76 99.98 100.09 99.88 99.82 99.75 99.71 101.11 99.94 100.51 La 20.0 10.1 33.2 10.8 56.0 144 22.0 26.2 9.60 32.7 32.7 40.1 39.3 24.7 24.4 35.7 23.4 Ce 33.9 20.5 61.3 20.9 105 275 46.0 53.5 20.3 67.2 67.5 81.7 80.7 53.3 53.7 73.8 49.7 Pr 4.89 3.06 7.62 3.03 12.6 29.9 5.75 6.90 2.74 8.19 7.94 9.70 9.45 7.38 7.39 9.13 6.48 Nd 20.8 15.7 31.0 14.4 49.7 107 25.4 29.9 13.1 34.9 33.6 39.3 39.0 34.8 35.1 37.7 29.3 Sm 4.34 4.65 6.21 4.12 9.08 17.4 6.09 7.10 3.96 7.46 7.20 7.82 8.09 8.68 9.05 7.66 7.17 Eu 1.46 1.84 2.26 1.49 1.83 0.34 2.24 2.63 1.51 2.59 2.63 2.97 2.67 3.01 3.08 2.61 2.43 Gd 4.18 4.81 6.31 4.41 7.72 13.3 6.05 6.79 4.59 6.61 6.61 6.76 7.26 8.82 9.04 7.00 7.03 Tb 0.58 0.77 0.89 0.71 1.15 2.15 0.85 0.96 0.66 0.91 0.89 0.91 1.04 1.21 1.25 0.94 0.99 Dy 2.76 4.46 4.60 4.15 6.19 11.3 4.85 5.41 3.78 4.89 4.79 5.00 5.76 6.60 6.90 5.22 5.63 Ho 0.49 0.81 0.84 0.75 1.13 2.08 0.88 0.98 0.69 0.84 0.82 0.87 1.05 1.18 1.22 0.92 1.03 Er 1.14 2.03 2.13 1.84 2.74 5.15 2.15 2.40 1.63 1.97 1.89 2.05 2.55 2.79 2.93 2.22 2.46 Tm 0.38 0.74 0.30 0.33 0.22 0.26 0.25 0.28 0.35 0.38 0.39 0.30 0.35 Yb 2.37 4.97 1.83 2.04 1.35 1.54 1.47 1.69 2.16 2.31 2.32 1.78 2.11 Lu 0.39 0.81 0.26 0.29 0.19 0.21 0.21 0.24 0.31 0.32 0.33 0.25 0.31 Sc 8.79 2.82 23.4 22.7 20.0 20.4 21.4 18.8 19.6 29.4 27.5 24.6 19.7 V 80.0 173 213 140 63.8 0.42 215 215 165 185 225 168 232 292 292 249 182 Cr 62.5 13.5 62.3 59.6 251 50.2 73.1 100 7.60 18.8 10.7 155 44.7 Co 15.1 0.71 42.7 38.6 46.2 34.9 38.8 40.5 44.4 45.5 43.8 46.1 37.1 Ni 23.9 0.66 76.1 55.3 175 47.9 33.7 74.8 28.0 36.3 27.3 99.6 52.3 Cu 18.9 9.14 30.4 28.3 43.8 22.4 26.2 33.7 22.3 28.7 24.4 32.0 17.7 Zn 98.3 126 117 128 112 112 107 112 141 168 152 105 125 Ga 28.9 40.5 19.6 21.7 18.9 22.4 22.7 19.8 22.8 24.3 23.6 20.4 21.1 Rb 80.3 166 27.3 32.2 13.3 33.2 36.6 41.5 42.1 25.1 19.0 29.3 24.7 Sr 464 616 700 343 436 7.02 544 512 387 809 827 849 721 545 533 840 572 Y 13.6 22.9 22.8 20.9 26.8 49.7 22.0 24.9 17.1 21.1 20.4 21.4 26.0 30.0 30.8 23.0 25.7 Zr 102 143 178 96.0 403 943 172 242 91.0 236 245 225 261 195 196 243 210 Nb 18.9 11.5 37.7 11.0 46.6 97.3 22.3 24.0 9.70 34.8 38.6 38.7 41.9 22.9 23.3 38.7 24.0 Ba 362 241 740 264 562 23.8 567 701 257 677 725 1097 743 627 535 611 564 Hf 2.93 2.94 4.94 2.57 9.59 20.2 4.37 5.47 2.39 5.67 5.71 5.21 6.31 4.93 5.12 5.78 5.45 Ta 1.15 0.73 2.23 0.66 3.07 5.99 1.32 1.44 0.55 2.09 2.31 2.29 2.51 1.41 1.46 2.36 1.46 Pb 8.54 13.73 3.77 6.63 2.07 4.48 4.44 6.23 5.54 4.18 3.85 3.39 5.03 Th 2.08 1.20 4.58 1.27 7.69 18.8 2.46 3.25 1.11 3.59 3.86 4.29 4.75 2.47 2.51 3.76 2.90 236 Lithos / al. et Liu J. U 1.51 3.51 0.50 0.65 0.23 0.72 0.54 0.87 0.83 0.47 0.44 0.76 0.58 87 Sr/86 Sr 0.70494 0.70508 0.70518 0.70501 0.70532 0.70499 0.70504 0.70493 0.70502 143 Nd/144 Nd 0.51257 0.51254 0.51251 0.51260 0.51255 0.51256 0.51256 0.51264 0.51258 206 Pb/204 Pb 17.379 17.482 17.384 17.569 17.390 17.378 17.824 17.435 207 Pb/204 Pb 15.538 15.543 15.506 15.508 15.535 15.538 15.537 15.532 208 Pb/204 Pb 37.743 37.805 37.781 37.953 37.627 37.625 38.244 37.672 –

Tianchi volcano in China 46 (2015) 237

Sample TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC

SiO2 50.23 50.80 52.08 53.28 71.11 54.80 66.26 67.80 69.23 63.33 50.09 50.43 TiO2 2.61 1.53 2.15 1.96 0.24 1.96 0.39 0.38 0.34 0.53 2.84 2.55

Al O 16.30 15.27 15.11 15.04 11.32 17.12 14.68 13.67 12.73 15.01 16.89 17.31 –

2 3 73 FeOT 12.48 11.44 11.60 10.73 4.38 7.63 4.95 5.32 5.39 6.81 10.76 10.71 MnO 0.16 0.15 0.14 0.14 0.08 0.12 0.13 0.13 0.13 0.24 0.18 0.16 MgO 3.19 7.78 5.73 5.89 0.01 3.28 0.09 0.03 0.01 0.21 4.10 3.73 CaO 5.76 8.84 7.57 7.74 0.40 6.15 1.09 0.64 0.52 1.86 6.46 6.14 Na2O 4.25 3.08 3.24 3.62 5.03 4.27 5.57 5.77 5.44 5.08 4.03 5.00 K2O 3.03 0.76 1.31 0.85 4.53 3.08 5.42 5.14 5.01 5.46 2.48 2.85 P2O5 1.00 0.21 0.41 0.37 0.02 0.39 0.05 0.03 0.02 0.12 0.77 0.86 LOI 1.87 0.27 1.74 −0.40 2.21 0.69 0.72 0.44 0.53 1.10 0.90 0.00

(continued on next page) 65 66 Table A4 (continued)

Tianchi volcano in China

Sample TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC TVC

Total 100.88 100.13 101.08 99.22 99.33 99.49 99.35 99.35 99.35 99.75 99.50 99.74 La 57.2 12.6 17.8 12.9 56.0 144 128 176 75.6 51.1 54.8 Ce 116 25.1 38.4 28.4 105 275 263 346 144 105 109 Pr 13.3 3.21 5.23 3.75 12.6 29.9 28.7 38.3 17.4 13.9 13.7 Nd 53.7 14.4 25.1 18.3 49.7 107 106 140 66.0 57.9 55.5 Sm 10.7 3.77 6.70 4.97 9.08 17.4 19.3 25.7 11.3 10.9 9.92 Eu 3.40 1.40 2.28 1.91 1.83 0.34 0.50 0.47 1.48 3.30 3.04 Gd 9.35 4.28 6.83 5.38 7.72 13.3 16.0 21.3 9.21 9.63 8.43 Tb 1.27 0.63 0.96 0.74 1.15 2.15 2.71 3.68 1.45 1.41 1.20 Dy 7.17 3.68 5.51 4.14 6.19 11.3 15.3 20.4 7.99 7.46 6.34 Ho 1.29 0.69 1.00 0.73 1.13 2.08 2.85 3.80 1.52 1.39 1.15 Er 3.19 1.71 2.39 1.71 2.74 5.15 7.19 9.74 3.85 3.32 2.79 Tm 0.44 0.24 0.34 0.24 0.38 0.74 1.04 1.43 0.57 0.46 0.38 Yb 2.66 1.48 2.03 1.34 2.37 4.97 6.49 8.87 3.78 2.84 2.38 Lu 0.37 0.22 0.29 0.19 0.39 0.81 1.03 1.38 0.63 0.45 0.36 Sc 14.4 24.9 23.3 19.0 8.79 2.82 2.44 1.95 19.9 14.3 11.0 V 121 174 164 161 63.8 0.42 0.49 0.39 2.02 134 116 Cr 2.30 269 160 181 62.5 13.5 31.4 22.9 15.7 14.1 Co 29.0 51.7 40.2 38.7 15.1 0.71 0.57 0.38 0.81 23.7 23.4 .Lue l ihs236 Lithos / al. et Liu J. Ni 3.60 157 122 123 23.9 0.66 1.06 0.78 1.58 3.22 4.85 Cu 6.30 39.0 36.1 40.9 18.9 9.14 8.32 19.9 5.72 12.9 16.8 Zn 150 103 116 111 98.3 126 185 220 130 129 121 Ga 24.1 19.9 20.9 19.1 28.9 40.5 40.7 42.4 28.0 23.1 23.6 Rb 63.4 11.2 21.0 13.9 80.3 166 209 259 117 49.1 59.1 Sr 707 397 501 482 436 7.02 4.50 2.32 12.0 875 839 Y 32.2 17.2 25.7 17.9 26.8 49.7 69.4 93.9 36.7 33.1 27.3

Zr 357 96.9 175 107 403 943 1449 2136 793 361 367 – 3 21)46 (2015) 237 Nb 56.6 12.8 16.0 11.0 46.6 97.3 144 193 64.0 49.8 54.1 Ba 1091 259 454 332 562 23.8 14.2 8.18 96.4 851 921 Hf 7.77 2.62 4.42 2.87 9.59 20.2 31.4 45.6 14.8 8.65 8.38 Ta 3.26 0.76 0.93 0.68 3.07 5.99 8.99 13.2 4.18 3.58 3.89 Pb 7.72 2.80 3.82 2.63 8.54 13.7 22.7 26.3 15.4 6.15 6.60 –

Th 6.86 1.61 2.04 1.29 7.69 18.8 23.8 33.0 12.6 4.87 5.97 73 U 1.41 0.34 0.39 0.32 1.51 3.51 4.71 5.14 2.70 1.17 1.39 87 Sr/86 Sr 0.70553 0.70511 0.70482 0.70495 0.70494 143 Nd/144 Nd 0.51255 0.51258 0.51259 0.51262 0.51257 0.51258 206 Pb/204 Pb 17.614 17.657 17.373 17.604 207 Pb/204 Pb 15.541 15.543 15.526 15.545 208 Pb/204 Pb 38.087 38.008 37.564 37.845 Table A5 The age data of volcanism from the Songliao Basin, the Talu–Yitong fault, the Fushun–Mishan fault, the Longgang Mts, the Japan Sea and the Japan Arc.

Sampling locations Sample number Lithology Age Source

Shuangliao Mt. Xiaohalaha SL47 Tholeiite 86.2 ± 1.8 Ma Liu (1987) Mt. Bobotu SL43 Basanite 49.1 ± 1.7 Ma Liu et al. (2001) Mt. Boli SL45-1 Basanite 48.4 ± 1.7 Ma Liu et al. (2001) Mt. Boli SL45-2 Basanite 47.4 ± 1.8 Ma Liu et al. (2001) Mt. Dahalaba SL49 Alkali olivine–basalt 39.9 ± 1.5 Ma Liu et al. (2001) Mt. Xiaohalaha SL50 Tholeiite 61.0 ± 1.6 Ma Liu et al. (2001) Tongliao Mt. Daturqi Tholeiite 86.2 ± 1.9 Ma Liu (1987) Fushun Fushun LF-4/1803 Tholeiite 72.0 ± 2.6 Ma Wang et al. (1988) Fushun LF-5/1799 Tholeiite 63.0 ± 2.0 Ma Wang et al. (1988) Fushun LF-1/1802 Tholeiite 55.6 ± 2.1 Ma Wang et al. (1988) Fushun LF-2/1800 Tholeiite 52.1 ± 0.5 Ma Wang et al. (1988) Changchun Pingdingshan YT-15 Tholeiite 73.5 ± 1.8 Ma Liu (1987) Datun Y-16 Tholeiite 82.5 ± 2.0 Ma Liu (1987) Fufeng 81-G3/1880 Tholeiite 83.5 ± 1.6 Ma Wang et al. (1988) Fufeng 81-G2/1884 Tholeiite 83.9 ± 2.0 Ma Wang et al. (1988) Yi–Yi fault belt Yitong Y6 Alkali olivine–basalt 21.0 ± 1.0 Ma Liu (1987) Yitong Y7 Alkali olivine–basalt 11.1 ± 0.5 Ma Liu (1987) Yitong Y10 Alkali olivine–basalt 10.0 ± 0.6 Ma Liu (1987) Yitong Y13 Alkali olivine–basalt 9.1 ± 0.5 Ma Liu (1987) Yitong Y2 Alkali olivine–basalt 7.7 ± 0.4 Ma Liu (1987) 236 Lithos / al. et Liu J. Northern part of the Shangzhi S40 Alkali olivine–basalt 13.1 ± 0.7 Ma Liu (1987) Yi–Yi fault belt Shulan S30 Tholeiite 3.9 ± 0.3 Ma Liu (1987) Shulan S36 Alkali olivine–basalt 10.9 ± 0.6 Ma Liu (1987) Shulan S21 Alkali olivine–basalt 13.5 ± 0.6 Ma Liu (1987) Shulan S23 Alkali olivine–basalt 13.5 ± 0.6 Ma Liu (1987) Fangzheng F32 Alkali olivine–basalt 13.2 ± 0.6 Ma Liu (1987)

– –

Fushun Mishan fault belt Mudanjiang M67 Tholeiite 42.1 ± 1.2 Ma Liu (1987) 46 (2015) 237 Mudanjiang M79 Tholeiite 10.6 ± 0.5 Ma Liu (1987) Mudanjiang M63 Tholeiite 10.5 ± 0.4 Ma Liu (1987) Mudanjiang M82 Alkali olivine–basalt 1.4 ± 0.1 Ma Liu (1987) Mudanjiang M81 Alkali olivine–basalt 1.1 ± 0.1 Ma Liu (1987)

Mudanjiang M77 Alkali olivine–basalt 1.2 ± 0.1 Ma Liu (1987) – 73 Mudanjiang M61 Alkali olivine–basalt 0.4 ± 0.0 Ma Liu (1987) Mudanjiang M62 Alkali olivine–basalt 0.1 ± 0.0 Ma Liu (1987) Jidong, south to Mishan JD2 Alkali olivine–basalt 3.7 ± 0.1 Ma Liu (1987) Huinan 81-G64/1887 Alkali olivine–basalt 1.2 ± 0.3 Ma Wang et al. (1988) Longgang region Mt. Longgang L112 Basanite 27.3 ± 0.9 Ma Liu (1987) Mt. Longgang L110 Trachybasalt 1.1 ± 0.0 Ma Liu (1987) Mt. Longgang L104 Trachybasalt 1.5 ± 0.1 Ma Liu (1987) Mt. Longgang L100 Trachybasalt 0.9 ± 0.0 Ma Liu (1987) Mt. Longgang L99 Trachybasalt 2.4 ± 0.2 Ma Liu (1987) Mt. Longgang L91 Trachybasalt 1.2 ± 0.0 Ma Liu (1987) Qingyuan Q133 Trachybasalt 7.1 ± 0.1 Ma Liu (1987) belt Tianchi, weather station TK13 Trachybasalt 0.1 ± 0.0 Ma Liu et al. (2001) Tianwen peak, top TK12 Trachybasalt 0.1 ± 0.1 Ma Liu et al. (2001) Tianwen peak, middle TK11 Trachybasalt 0.3 ± 0.0 Ma Liu et al. (2001) Tianwen peak, middle TK10 Trachybasalt 0.3 ± 0.0 Ma Liu et al. (2001) Baitoushan Fengkou, N TK25 Trachybasalt 0.2 ± 0.0 Ma Liu et al. (2001) Baitoushan Fengkou, E TK06 Trachybasalt 0.3 ± 0.0 Ma Liu et al. (2001) Changbai waterfall, top TK04 Trachybasalt 0.2 ± 0.0 Ma Liu et al. (2001) Changbai waterfall, mid TK03 Trachybasalt 0.4 ± 0.0 Ma Liu et al. (2001) Changbai waterfall, low TK01 Trachybasalt 0.6 ± 0.0 Ma Liu et al. (2001) Guangping, Helong Cc30 Olivine basalt 1.5 ± 0.1 Ma Liu et al. (2001) Junjianshan, Helong Cc34-1 Alkali olivine–basalt 2.8 ± 0.0 Ma Liu et al. (2001) Junjianshan, Helong Cc34-2 Alkali olivine–basalt 2.8 ± 0.1 Ma Liu et al. (2001) 67 (continued on next page) 68 Table A5 (continued)

Sampling locations Sample number Lithology Age Source

Napping, Helong Cn47 Alkali olivine–basalt 2.1 ± 0.1 Ma Liu et al. (2001) Erdao, Antu Ca66 Tholeiite 2.3 ± 0.6 Ma Liu et al. (2001) Baijin, Yanji Cb14 Alkali olivine–basalt 2.4 ± 0.0 Ma Liu et al. (2001) Shibadaogou, Changbai Ch101 Alkali olivine–basalt 2.2 ± 0.2 Ma Liu et al. (2001) Pingding, Yanji Cb09 Tholeiite 3.0 ± 0.7 Ma Liu et al. (2001) Sanhe, Yanji Cs18 Tholeiite 3.7 ± 0.3 Ma Liu et al. (2001) Sanhe (Zfshan), Yanji Cs23 Tholeiite 3.5 ± 0.6 Ma Liu et al. (2001) Naitoushan,Antu Ca67 Basanite 15.1 ± 0.2 Ma Liu et al. (2001) Hepingying, Antu Ca65 Basanite 16.7 ± 0.6 Ma Liu et al. (2001) Zengfeng (top), Helong Cz52 Alkali olivine–basalt 19.8 ± 1.9 Ma Liu et al. (2001) Zengfeng (mid), Helong Cz54-1 Basanite 20.4 ± 0.4 Ma Liu et al. (2001) Zengfeng (mid), Helong Cz54-2 Basanite 20.2 ± 0.4 Ma Liu et al. (2001) Zengfeng (mid), Helong Cz54-3 Basanite 20.6 ± 1.2 Ma Liu et al. (2001) Japan Sea 134.536°E, 38.616°N 127-797C-9R Dolerite 17.2 ± 0.7 Ma This study 134.536°E, 38.616°N 127-797C-12R Dolerite 15.1 ± 0.9 Ma This study 134.536°E, 38.616°N 127-797C-16R Dolerite 15.7 ± 1.9 Ma This study 134.536°E, 38.616°N 127-797C-27R Dolerite 23.3 ± 0.9 Ma This study 134.536°E, 38.616°N 127-797C-32R Dolerite 18.6 ± 0.5 Ma This study 134.536°E, 38.616°N 127-797C-44R Dolerite 17.2 ± 0.5 Ma This study 138.232°E, 40.189°N 128-794D-1R Dolerite 20.6 ± 2.9 Ma Pouclet and Bellon (1992) .Lue l ihs236 Lithos / al. et Liu J. 138.232°E, 40.189°N 128-794D-3R Basalt 18.3 ± 1.3 Ma Pouclet and Bellon (1992) 138.232°E, 40.189°N 128-794D-3R Basalt 18.1 ± 1.2 Ma Pouclet and Bellon (1992) 138.232°E, 40.189°N 128-794D-8R Dolerite 23.7 ± 5.0 Ma Pouclet and Bellon (1992) 134.536°E, 38.616°N 127-797C-27R Dolerite 19.0 ± 1.1 Ma Kaneoka et al. (1992) 134.536°E, 38.616°N 127-797C-34R Dolerite 19.9 ± 1.1 Ma Kaneoka et al. (1992) 134.536°E, 38.616°N 127-797C-41R Basalt 19.0 ± 0.3 Ma Kaneoka et al. (1992) 134.536°E, 38.616°N 127-797C-45R Dolerite 17.7 ± 0.5 Ma Kaneoka et al. (1992) –

138.232°E, 40.189°N 127-794C-3R Dolerite 20.6 ± 0.6 Ma Kaneoka et al. (1992) 46 (2015) 237 138.232°E, 40.189°N 127-794C-8R Basalt 20.0 ± 2.0 Ma Kaneoka et al. (1992) 138.232°E, 40.189°N 128-794D-15R Dolerite 19.9 ± 0.7 Ma Kaneoka et al. (1992) 138.232°E, 40.189°N 128-794D-20R Dolerite 21.2 ± 0.8 Ma Kaneoka et al. (1992) Japan Arc Higashi-Matsuura 80811-3 Hawaiite 3.0 ± 0.0 Ma Nakamura et al., 1985 –

Higashi-Matsuura 80821-3 Olivine–tholeiite basalt 3.0 ± 0.0 Ma Nakamura et al., 1985 73 Higashi-Matsuura 80811-2 Trachybasalt 3.0 ± 0.0 Ma Nakamura et al., 1985 Higashi-Matsuura 80901-2 Alkali basalt 2.9 ± 0.0 Ma Nakamura et al., 1985 Higashi-Matsuura 80827-1 Alkali basalt 3.0 ± 0.0 Ma Nakamura et al., 1985 Higashi-Matsuura 80908-5 Alkali basalt 3.0 ± 0.0 Ma Nakamura et al., 1985 Ogawashima island 80807-9 Hawaiite 3.6 ± 0.0 Ma Nakamura et al., 1985 Daisen DS-15 Dacite 0.1 ± 0.0 Ma Kimura et al., 2003 Daisen DS-99-7 Dacite 0.1 ± 0.0 Ma Kimura et al., 2003 Daisen DS-11 Dacite 0.3 ± 0.0 Ma Kimura et al., 2003 Daisen DS-14 Dacite 0.4 ± 0.0 Ma Kimura et al., 2003 Daisen DS-99-2 Dacite 0.4 ± 0.0 Ma Kimura et al., 2003 Daisen DS-13 Dacite 0.4 ± 0.0 Ma Kimura et al., 2003 Daisen DS-12 Andesite 0.4 ± 0.0 Ma Kimura et al., 2003 Daisen DS-99-3 Dacite 0.5 ± 0.1 Ma Kimura et al., 2003 Daisen DS-4 Aphyric andesite 0.5 ± 0.0 Ma Kimura et al., 2003 Daisen DS-99-1 Dacite 0.5 ± 0.0 Ma Kimura et al., 2003 Daisen DS-5 Aphyric andesite 0.5 ± 0.0 Ma Kimura et al., 2003 Daisen DS-7 Dacite 0.5 ± 0.0 Ma Kimura et al., 2003 Daisen DS-8 Dacite 0.5 ± 0.0 Ma Kimura et al., 2003 Daisen DS-99-6 Dacite 0.5 ± 0.0 Ma Kimura et al., 2003 Daisen DS-99-5 Dacite 0.6 ± 0.0 Ma Kimura et al., 2003 Daisen DS-10 Dacite 0.6 ± 0.0 Ma Kimura et al., 2003 Daisen DS-99-4 Dacite 0.6 ± 0.0 Ma Kimura et al., 2003 Daisen DS-9 Dacite 0.9 ± 0.0 Ma Kimura et al., 2003 Daisen DS-2 Andesite 1.0 ± 0.0 Ma Kimura et al., 2003 Daisen DS-3 Aphyric andesite 1.0 ± 0.0 Ma Kimura et al., 2003 Daisen DS-5 Dacite 1.0 ± 0.0 Ma Kimura et al., 2003 Daisen DS-1 Andesite 4.8 ± 0.2 Ma Kimura et al., 2003 Hiruzen HZ-00-12 Dacite 0.4 ± 0.1 Ma Kimura et al., 2003 Hiruzen HZ-3 Dacite 0.5 ± 0.0 Ma Kimura et al., 2003 Hiruzen HZ-99-3 Dacite 0.7 ± 0.1 Ma Kimura et al., 2003 Hiruzen HZ-00-14 Dacite 0.8 ± 0.0 Ma Kimura et al., 2003 Hiruzen HZ-00-19 Island arc 0.8 ± 0.0 Ma Kimura et al., 2003 Hiruzen HZ-2 Dacite 0.8 ± 0.0 Ma Kimura et al., 2003 Hiruzen HZ-1 Dacite 0.8 ± 0.0 Ma Kimura et al., 2003 Hiruzen HZ-99-2 Dacite 0.8 ± 0.0 Ma Kimura et al., 2003 Hiruzen HZ-00-5 Dacite 0.8 ± 0.0 Ma Kimura et al., 2003 Hiruzen HZ-00-9 Dacite 0.8 ± 0.0 Ma Kimura et al., 2003 Hiruzen HZ-00-4 Dacite 0.8 ± 0.0 Ma Kimura et al., 2003 Hiruzen HZ-00-20 Dacite 0.9 ± 0.0 Ma Kimura et al., 2003 Hiruzen HZ-99-1 Dacite 1.0 ± 0.0 Ma Kimura et al., 2003 Yokota Province KND-1 Ol basalt 0.7 ± 0.1 Ma Kimura et al., 2003 Yokota Province MSK-1 Ol basalt 1.0 ± 0.0 Ma Kimura et al., 2003 Yokota Province YT-8 Basalt 1.0 ± 0.1 Ma Kimura et al., 2003 Yokota Province YT-5 Ol basalt 1.1 ± 0.1 Ma Kimura et al., 2003 Yokota Province YT-7 Basalt 1.1 ± 0.1 Ma Kimura et al., 2003 Yokota Province YT-10 Basalt 1.1 ± 0.0 Ma Kimura et al., 2003 Yokota Province YT-13 Basalt 1.2 ± 0.0 Ma Kimura et al., 2003 Yokota Province YT-1 Basalt 1.2 ± 0.1 Ma Kimura et al., 2003 236 Lithos / al. et Liu J. Yokota Province YT-9 Basalt 1.2 ± 0.1 Ma Kimura et al., 2003 Yokota Province YT-14 Basalt 1.2 ± 0.0 Ma Kimura et al., 2003 Yokota Province YT-15 Basalt 1.2 ± 0.1 Ma Kimura et al., 2003 Yokota Province TRD-1 Ol basalt 1.2 ± 0.1 Ma Kimura et al., 2003 Yokota Province NRO-4 Ol basalt 1.2 ± 0.0 Ma Kimura et al., 2003 Yokota Province YT-2 Ol basalt 1.3 ± 0.1 Ma Kimura et al., 2003 –

Yokota Province KSB-13 Ol basalt 1.3 ± 0.0 Ma Kimura et al., 2003 46 (2015) 237 Yokota Province YT-4 Basalt 1.3 ± 0.0 Ma Kimura et al., 2003 Yokota Province KSB-5 Ol basalt 1.3 ± 0.1 Ma Kimura et al., 2003 Yokota Province KHM-1 Ol basalt 1.4 ± 0.1 Ma Kimura et al., 2003 Yokota Province YT-12 Basalt 1.6 ± 0.0 Ma Kimura et al., 2003 –

Yokota Province YT-11 Basalt 1.9 ± 0.1 Ma Kimura et al., 2003 73 Yokota Province URD-2 Ol basalt 1.9 ± 0.1 Ma Kimura et al., 2003 Yokota Province KRB-5 Ol basalt 1.9 ± 0.1 Ma Kimura et al., 2003 Yokota Province ONG-1 Ol basalt 2.0 ± 0.1 Ma Kimura et al., 2003 Yokota Province YT-5 Basalt 2.0 ± 0.0 Ma Kimura et al., 2003 Yokota Province YT-3 Basalt 2.2 ± 0.1 Ma Kimura et al., 2003 Yokota Province OKD-1 Ol basalt 7.8 ± 0.3 Ma Kimura et al., 2003 Daikon–Jima DJ-1 Ol basalt 0.1 ± 0.2 Ma Kimura et al., 2003

(continued on next page) 69 70 Table A5 (continued)

Sampling locations Sample number Lithology Age Source

Oki Island OK-9 Basalt 0.4 ± 0.0 Ma Kimura et al., 2003 Oki Island OK-1 Basalt 0.7 ± 0.0 Ma Kimura et al., 2003 Oki Island OK-2 Basalt 1.3 ± 0.1 Ma Kimura et al., 2003 Oki Island OK-3 Aphyric andesite 1.3 ± 0.1 Ma Kimura et al., 2003 Oki Island OK-7 Basalt 2.4 ± 0.2 Ma Kimura et al., 2003 Oki Island OK-8 Basalt 2.5 ± 0.1 Ma Kimura et al., 2003 Oki Island OK-10 Basalt 4.1 ± 0.1 Ma Kimura et al., 2003 Oki Island OK-6 Shoshonite 4.2 ± 0.4 Ma Kimura et al., 2003 Oki Island OK-5 Shoshonite 5.1 ± 0.1 Ma Kimura et al., 2003 Oki Island OK-4 Aphyric andesite 5.3 ± 0.1 Ma Kimura et al., 2003 Sambe SB-3 Dacite 0.3 ± 0.4 Ma Kimura et al., 2003 Sambe SB-99-1 Rhyolite 0.1 ± 0.0 Ma Kimura et al., 2003 Sambe SB-1 Andesite 1.2 ± 0.0 Ma Kimura et al., 2003 Ooe–Takayama OT-1 Dacite 1.5 ± 0.1 Ma Kimura et al., 2003 Abu Province AB-8 Andesite 0.1 ± 0.2 Ma Kimura et al., 2003 Abu Province AB-2 Andesite 0.1 ± 0.0 Ma Kimura et al., 2003 Abu Province AB-7 Andesite 0.1 ± 0.2 Ma Kimura et al., 2003 Abu Province AB-4 Basalt 0.1 ± 0.1 Ma Kimura et al., 2003 Abu Province AB-5 Basalt 0.2 ± 0.0 Ma Kimura et al., 2003 Abu Province AB-6 Andesite 0.2 ± 0.0 Ma Kimura et al., 2003 .Lue l ihs236 Lithos / al. et Liu J. Abu Province AB-10 Andesite 0.2 ± 0.0 Ma Kimura et al., 2003 Abu Province AB-1 Basalt 0.3 ± 0.0 Ma Kimura et al., 2003 Kibi Province ART-4,8 Ol basalt 6.6 ± 0.1 Ma Kimura et al., 2003 Kibi Province SEN-12 Ol basalt 6.7 ± 0.1 Ma Kimura et al., 2003 Kibi Province SHI-11 Ol basalt 7.4 ± 0.1 Ma Kimura et al., 2003 Kibi Province TKY-3 Ol basalt 7.5 ± 0.2 Ma Kimura et al., 2003 Kibi Province YAD-12 Ol basalt 7.6 ± 0.2 Ma Kimura et al., 2003 –

Kibi Province IND-1 Ol basalt 7.8 ± 0.3 Ma Kimura et al., 2003 46 (2015) 237 Kibi Province TAK-1 Ol basalt 7.8 ± 0.1 Ma Kimura et al., 2003 Kibi Province SKR-2 Ol basalt 7.9 ± 0.2 Ma Kimura et al., 2003 Kibi Province YON-5 Ol basalt 7.9 ± 0.2 Ma Kimura et al., 2003 Kibi Province USH-1 Ol basalt 8.1 ± 0.2 Ma Kimura et al., 2003 –

Kibi Province NCH-1 Ol basalt 8.2 ± 0.2 Ma Kimura et al., 2003 73 Kibi Province HIN-8 Ol basalt 8.2 ± 0.2 Ma Kimura et al., 2003 Kibi Province SUS-8 Ol basalt 8.2 ± 0.2 Ma Kimura et al., 2003 Kibi Province HAN-2 Ol basalt 8.2 ± 0.2 Ma Kimura et al., 2003 Kibi Province MUR-8 Ol basalt 8.2 ± 0.2 Ma Kimura et al., 2003 Kibi Province IND-6 Ol basalt 8.4 ± 0.2 Ma Kimura et al., 2003 J. Liu et al. / Lithos 236–237 (2015) 46–73 71

References Horn, S., Schmincke, H.U., 2000. Volatile emission during the eruption of Baitoushan volcano (China/North Korea) ca. 969 AD. Bulletin of Volcanology 61, 537–555. Allan, J.F., Gorton, M.P., 1992. Geochemistry of igneous rocks from Legs 127 and 128, Sea Jin, Z.F., Lin, Z.H., 1995. The characteristics of the cenozoic volcanic geology in Southern of Japan. In: Tamaki, K., Suyehiro, K., Allan, J., McWilliams, S. (Eds.), Proceedings of the Mt. Changbai area. Natural Science Journal of Normal University 11, 98–104 Ocean Drilling Program, Scientific Results: 127/128 Pt. 2. Ocean Drilling, Program, (in Chinese with English abstract). pp. 905–929. Jin, K., Peng, Y.J., Wang, Y.S., Xu, W.L., 2000. The divide and contrast of volcanic events of Barnes, D.A., Thy, P., Renne, P., 1992. Sedimentology, phenocryst chemistry, and age- cenozoic era of Changbaishan area between China and Korea. Journal of Changchun Miocene “Blue Tuff”: Sites 794 and 796, Japan Sea. In: Tamaki, K., Suyehiro, K., University of Science and Technology 30, 125–130 (in Chinese with English abstract). Allan, J., McWilliams, S. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Jolivet, L., Tamaki, K., Fournier, M., 1994. Japan Sea, opening history and mechanism: a Results: 127/128 Pt. 1. Ocean Drilling Program, pp. 115–130. synthesis. Journal of Geophysical Research: Solid Earth (1978–2012) 99, Basu, A.R., Wang, J.W., Wankang, H., Xie, G.H., Tatsumoto, M., 1991. Major element, REE, 22237–22259. and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern Jwa, Y.J., Lee, J.I., Xiangshen, Z., 2003. A study on the eruption ages of Backdusan: radiocar- China: implications for their origin from suboceanic-type mantle reservoirs. Earth bon (14C) age for charcoal and wood samples. Journal of the Geological Society of and Planetary Science Letters. 105, 149–169. Korea 39, 347–357 (in Korean with English abstract). Cao, L., Jin, B.L., Zhu, D., 1998. Comparison of cenozoic volcanic rocks at the Sino-Korean Kaneaka, I., Takahashi, E., Zashu, S., 1977. K–Ar ages of alkali basalts from Okidogo Island. boundary. Journal of Changchun University of Science and Technology. 28, 128–134 Journal of the Geological Society of Japan 83, 187–189. (in Chinese with English abstract). Kaneoka, I., Notsu, K., Takigami, Y., Fujioka, K., Sakai, H., 1990. Constraints on the evolution Chen, Y., Zhang, Y.X., Graham, D., Su, S.D., Deng, J.F., 2007. Geochemistry of Cenozoic of the Japan Sea based on 40Ar–39Ar ages and Sr isotopic ratios for volcanic rocks of basalts and mantle xenoliths in Northeast China. Lithos 96, 108–126. the Yamato Seamount chain in the Japan Sea. Earth and Planetary Science Letters Chen, X.Y., Liu, J.Q., Guo, Z.F., Lu, F., Jiang, D.H., 2008. A study on the geochemical charac- 97, 211–225. teristics and origin of volcanic rocks in Wangtian'e volcano. Acta Petrologica Sinica Kaneoka, I., Takigami, Y., Takaoka, N., Yamashita, S., Tamaki, K., 1992. 40Ar–39Ar analysis of 24, 2576–2584 (in Chinese with English abstract). volcanic rocks recovered from the Japan Sea floor: constraints on the age of formation Chu, K.S., Tsuji, Y., Baag, C.E., Kang, T.S., 2011. Volcanic eruptions of Mt. Baekdu of the Japan Sea. In: Tamaki, K., Suyehiro, K., Allan, J., McWilliams, S. (Eds.), Proceed- (Changbai) occurring in historical times. Bulletin of the Earthquake Research Insti- ings of the Ocean Drilling Program, Scientific Results: 127/128 Pt. 2. Ocean Drilling tute—University of Tokyo 86, 11–27 (in Japanese with English abstract). Program, pp. 819–836. Cui, Z., Wei, H., Liu, R., 1995. A textual research on the historic records of the eruptions Karato, S.I., 2011. Water distribution across the mantle transition zone and its implica- from Tianchi Volcano, Changbaishan. In: Liu, R. (Ed.), Connection of Volcanism and tions for global material circulation. Earth and Planetary Science Letters 301, Human Environment. Seismic Press, pp. 36–39. 413–423. Cui, D.X., Wang, Q.L., Li, K., Wang, W.P., Hu, Y.X., 2007. Analysis of recent deformation Karig, D.E., 1971. Origin and development of marginal basins in the western Pacific. of Changbaishan Tianchi volcano. Chinese Journal of Geophysics 50, 1515–1524 Journal of Geophysical Research 76, 2542–2561. (in Chinese with English abstract). Keppler, H., 1996. Constraints from partitioning experiments on the composition of Duan, Y., Zhao, D., Zhang, X., Xia, S., Liu, Z., Wang, F., Li, L., 2009. Seismic structure and or- subduction zone fluids. Nature 380, 237–240. igin of active intraplate volcanoes in Northeast Asia. Tectonophysics 470, 257–266. Kim, J.R., Lin, S.Y., Hong, S., Choi, Y.S., Yun, H.W., 2014. Ground deformation tracking over Elburg, M.A., Bergen, M.A., Hoogewerff, J., Foden, J., Vroon, P., Zulkarnain, I., Nasution, A., Mt. Baekdu: a pre-evaluation of possible magma recharge by D-InSAR analysis. KSCE 2002. Geochemical trends across an arc–continent collision zone: magma sources Journal of Civil Engineering 18, 1505–1510. and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Komuro, H., Fujita, Y., Kodama, K., 1984. Numerical and experimental models on the Geochimica et Cosmochimica Acta 66, 2771–2789. formation mechanism of collapse basins during the Green Tuff orogenesis of Japan. Fan, Q.C., Liu, R.X., Zhang, G.H., Sui, J.L., 1998. The genesis and evolution of bimodal volca- Bulletin Volcanologique 47, 649–666. nic rocks in Wangtian'e volcano, Changbaishan. Acta Petrologica Sinica. 14, 305–317 Kuno, H., 1959. Origin of Cenozoic petrographic provinces of Japan and surrounding areas. (in Chinese with English abstract). Bulletin Volcanologique 20, 37–76. Fan, Q.C., Liu, R.X., Li, D.M., Li, Q., 1999. Significance of K–Ar age of bimodal volcanic rocks Kuritani, T., Kimura, J.I., Miyamoto, T., Wei, H.Q., Shimano, T., Maeno, F., Jin, X., Taniguchi, at Wangtian'e volcano, Changbaishan area. Chinese Science Bulletin 44, 660–663 H., 2009. Intraplate magmatism related to deceleration of upwelling asthenospheric (in Chinese with English abstract). mantle: implications from the Changbaishan shield basalts, northeast China. Lithos Fan, Q.C., Sui, J.L., Liu, R.X., 2001. Sr–Nd isotopic geochemistry and magmatic evolutions of 112, 247–258. Wudalianchi volcano, Tianchi volcano and Tengchong volcano. Acta Petrologica et Kuritani, T., Ohtani, E., Kimura, J.I., 2011. Intensive hydration of the mantle transition zone Mineralogica 20, 233– 238 (in Chinese with English abstract). beneath China caused by ancient slab stagnation. Nature Geoscience 4, 713–716. Fan, Q.C., Sui, J.L., Sun, Q., Li, N., Wang, T.H., 2005. Preliminary research of magma mixing Kuritani, T., Kimura, J.I., Ohtani, E., Miyamoto, H., Furuyama, K., 2013. Transition zone and explosive mechanism of the Millennium eruption of Tianchi volcano. Acta origin of potassic basalts from Wudalianchi volcano, northeast China. Lithos 156, PetrologicaSinica21,1703–1708 (in Chinese with English abstract). 1–12. Fan, Q.C., Sui, J.L., Wang, H., Li, N., Sun, Q., 2006. Eruption history and magma evolution of Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of the trachybasalt in the Tianchi volcano, Changbaishan. Acta Petrologica Sinica. 22, volcanic rocks based on the total alkali–silica diagram. Journal of Petrology 27, 1449–1457 (in Chinese with English abstract). 745–750. Fan, Q.C., Sui, J.L., Wang, T.H., Li, N., Sui, Q., 2007. History of volcanic activity, magma Lee, D.S., Choi, S.C., Oh, C.W., Seo, M.H., Ryu, I.C., 2013. The study on the possibility of using evolution and eruptive mechanisms of the Changbai volcanic province. Geological satellite in monitoring precursor of magma activity in the Baegdusan Volcano. The Journal of China Universities 13, 175–190 (in Chinese with English abstract). Journal of the Petrological Society of Korea 22, 35–47. Fukao, Y., Obayashi, M., Inoue, H., Nenbai, M., 1992. Subducting slabs stagnant in the Lei, J., Zhao, D., 2004. The relationship between the origin of the intraplate Changbai mantle transition zone. Journal of Geophysical Research: Solid Earth (1978–2012) volcano and the subducting pacific slab. Advance in Earth Sciences 19, 364–367. 97 (B4), 4809–4822. Lei, J., Zhao, D., 2005. P-wave tomography and origin of the Changbai intraplate volcano in Gao, S., Ling, W., Qiu, Y., Lian, Z., Hartmann, G., Simon, K., 1999. Contrasting geochemical Northeast Asia. Tectonophysics 397, 281–295. and Sm–Nd isotopic compositions of Archean metasediments from the Kongling Lei, J., Xie, F., Fan, Q., Santosh, M., 2013. Seismic imaging of the deep structure under the high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistri- Chinese volcanoes: an overview. Physics of the Earth and Planetary Interiors 224, bution of REE during crustal anatexis. Geochimica et Cosmochimica Acta 63, 104–123. 2071–2088. Liu, J.Q., 1983. Changbai Mountains Cenozoic volcanic activity. Master's Proceedings of Gill, J., 1981. Orogenic Andesite and Plate Tectonics. Springer Verlag (390 pp.). Geology Institute. Science and Technology Press, Beijing, pp. 343 –355 (in Chinese Gill, J., Dunlap, C., McCurry, M., 1992. Large-volume, mid-latitude, Cl-rich eruption during with English abstract). 600–1000 AD: Baitoushan, China. American Geophysical Union Chapman Conference Liu, J.Q., 1987. Study on geochronology of the cenozoic. Acta Petrologica Sinica 4, 21–31 of Climate, Volcanism, and Global Change. Hilo, Hawaii. (in Chinese with English abstract). Guo, Z., Liu, J., Sui, S., Liu, Q., He, H., Ni, Y., 2002. The mass estimation of volatile emission Liu, J.Q., 1989. On the origin and evolution of continental rift system in Northeast China. during 1199–1200 AD eruption of Baitoushan volcano and its significance. Science in Chinese Journal of Geology 3, 209–216 (in Chinese with English abstract). China Series D: Earth Sciences 45, 530–539. Liu, J.Q., 1999. Volcanoes in China. Science Press, Beijing, p. 219. Guo, Z., Hertogen, J., Liu, J., Pasteels, P., Boven, A., Punzalan, L., He, H., Luo, X., Zhang, W., Liu, J.Q., Taniguchi, H., 2001. Active volcanoes in China. Northeast Asian Studies 6, 2005. Potassic magmatism in western Sichun and Yunnan provinces, SE Tibet, 173–189 (in Chinese with English abstract). China: petrological and geochemical constraints on petrogenesis. Journal of Petrology Liu, J.Q., Wang, S., 1982. Changbaishan volcano and the age of Tianchi. Chinese Science 46, 33–78. Bulletin 21, 1312–1315 (in Chinese with English abstract). Guo, Z., Wilson, M., Liu, J., Mao, Q., 2006. Post-collisional, potassic and ultrapotassic Liu, R.X., Wei, H.Q., Tang, J., Song, S.R., Li, X.D., Yang, Q.F., Liu, T.S., Wang, J.J., 1996. Progress magmatism of the northern Tibetan Plateau: constraints on characteristics of the of the study on Tianchi volcano, Changbaishan, China. Seismology Geomagnetism mantle source, geodynamic setting and uplift mechanisms. Journal of Petrology 47, Obstetrics Research 17, 2–11 (in Chinese with English abstract). 1177–1220. Liu, R.X., Wei, H.Q., Li, J.T., 1998a. Modern Eruption of Tianchi Volcano, Changbaishan. Guo, Z., Wilson, M., Liu, J., 2007. Post-collisional adakites in south Tibet: products of partial Science Press, Beijing, p. 159 (in Chinese with English abstract). melting of subduction-modified lower crust. Lithos 96, 205–224. Liu, R.X., Fan, Q.C., Zheng, X., Zhang, M., Li, N., 1998b. The magma evolution of Tianchi Hawkesworth, C.J., Turner, S.P., McDermott, F., Peate, D.W., Calsteren, P., 1997. U–Th volcano, Changbaishan. Science in China Series D: Earth Sciences 28, 226–231. isotopes in arc magmas: implications for element transfer from the subducted Liu, J.Q., Han, J., Fyfe, W.S., 2001. Cenozoic episodic volcanism and continental rifting in crust. Science 276, 551–555. northeast China and possible link to Japan Sea development as revealed from K–Ar He, H.Y., Wang, X.L., Zhou, Z.H., Wang, F., Boven, A., Shi, G.H., Zhu, R.X., 2004. Timing of the geochronology. Tectonophysics 339, 385–401. Jiufotang Formation (Jehol Group) in Liaoning, northeastern China, and its implica- Liu, M., Cui, X., Liu, F., 2004. Cenozoic rifting and volcanism in eastern China: a mantle tions. Geophysical Research Letters 31 (12). dynamic link to the Indo-Asian collision? Tectonophysics 393, 29–42. 72 J. Liu et al. / Lithos 236–237 (2015) 46–73

Martin, A.K., 2011. Double saloon door tectonics in the Japan Sea, Fossa Magna, and the Vivo, De, Scandone, R., Trigila, R., 1993. Mount Vesuvius, special issue. Journal of Volcanol- Japanese Island Arc. Tectonophysics 498, 45–65. ogy and Geothermal Research 58, 381. Miyashiro, A., 1986. Hot region and the origin of marginal basins in the western pacific. Wang, S.S., Liu, J.Q., Zhu, M., Zhao, D.Z., 1983. K–Ar dating of Cenozoic volcanic rocks in Tectonophysics 122, 195–216. Changbai mountainous areas. Scientia Geologica Sinica 3, 205– 216 (in Chinese with Nakamura, E., McDougall, I., Campbell, I.H., 1985. K–Ar ages of basalts from the Higashi- English abstract). Matsuura District, northwestern Kyushu, Japan and regional geochronology of the Wang, H.F., Yang, X.C., Zhu, B.Q., Fan, S.K., Dai, T.M., 1988. K–Ar chronology and evolution Cenozoic alkaline volcanic rocks in eastern Asia. Geochemical Journal 20, 91–99. if the Cenozoic volcanic rocks in the eastern China. Geochimica 1988, 1–11 Nohda, S., 2009. Formation of the Japan Sea basin: reassessment from Ar–Ar ages and Nd– (in Chinese with English abstract). Sr isotopic data of basement basalts of the Japan Sea and adjacent regions. Journal of Wang, P., Liu, W., Wang, S., Song, W., 2002. 40Ar/39Ar and K/Ar dating on the volcanic Asian Earth Sciences 34, 599–609. rocks in the Songliao basin, NE China: constraints on stratigraphy and basin dynam- Ohtani, E., Zhao, D., 2009. The role of water in the deep upper mantle and transition zone: ics. International Journal of Earth Sciences 91, 331–340. dehydration of stagnant slabs and its effects on the big mantle wedge. Russian Geol- Wang, Y., Li, C.F., Wei, H.Q., Shan, X.J., 2003. Late Pliocene–recent tectonic setting for the ogy and Geophysics 50, 1073–1078. Tianchi volcanic zone, Changbai Mountains, northeast China. Journal of Asian Earth Ohtani, E., Litasov, K., Hosoya, T., Kubo, T., Kondo, T., 2004. Water transport into the deep Sciences 21, 1159–1170. mantle and formation of a hydrous transition zone. Physics of the Earth and Planetary Wang, F., Zhou, X.H., Zhang, L.C., Ying, J.F., Zhang, Y.T., Wu, F.Y., Zhu, R.X., 2006. Late Me- Interiors 143, 255–269. sozoic volcanism in the Great Xing'an Range (NE China): timing and implications for Oppenheimer, C., 2003. Ice core and palaeoclimatic evidence for the timing and nature of the dynamic setting of NE Asia. Earth and Planetary Science Letters 251, 179–198. the great mid-13th century volcanic eruption. International Journal of Climatology Wei, H., 2010. Magma up moving process within the magma prism beneath the 23, 417–426. Changbaishan volcanoes. Earth Science Frontiers 17, 11–23. Orsi, G., Sheridan, M.F., 1984. The Green Tuff of Pantelleria: rheoignimbrite or Wei, H., Liu, R., 1995. A genetic nomenclature and hazards analysis on the latest pyroclas- rheomorphic fall? Bulletin Volcanologique 47, 611–626. tic deposits from Tianchi Volcano, Changbaishan. In: Liu, R. (Ed.)Volcanism and Ozawa, T., Taniguchi, H., 2010. Crustal deformation related to seismic activity under the Human Environment, Seismological Publisher, pp. 21–27 (in Chinese with English Changbaishan volcano by SAR interferometry. Earth Science of Baitoushan Volcano abstract). and its adjacent area. CNEAS Monograph Series 41, 143–158 (in Japanese with Wei, H., Taniguchi, H., Liu, R., 2001. Chinese myths and legends for Tianchi Volcano English abstract). eruptions. Northeast Asian Studies 6 pp. 191–200. Ozima, M., Kaneoka, I., Kong, M., Kinoshita, H., Kobayashi, K., Ohnaka, N., Nagata, T., Wei, H., Sparks, R.S.J., Liu, R., Fan, Q., Wang, Y., Hong, H., Zhang, H., Chen, H., Jiang, C., Dong, Kurasawa, H., 1968. Paleomagnetism and K–Ar ages of successive lava flows (2). J., Zheng, Y., Pan, Y., 2003. Three active volcanoes in China and their hazards. Journal Journal of Geomagnetism and Geoelectricity 20, 85–92. of Asian Earth Sciences 21, 515–526. Pearce, J., 1982. Trace element characteristics of lavas from destructive plate boundaries. Wei, H., Hong, H., Sparks, R.S.J., Walder, J.S., Han, B., 2004. Potential hazards of eruptions In: Thorpe, R.S. (Ed.), Andesites: Orogenic Andesites and Related Rocks. John Wiley, surrounding the Tianchi Caldera lake, China. Acta Geologica Sinica 78, 790–794. New York, pp. 525–548. Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H., Jin, B., 2007. Timescale and evolution of the Peng, Z.C., Zartman, R.E., Futa, K., Chen, D.G., 1986. Pb-, Sr- and Nd-isotopic systematics intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, and chemical characteristics of Cenozoic basalts, Eastern China. Chemical Geology Changbaishan, Northeast China. Lithos 96, 315–324. 59, 3–33. Wei, H., Liu, G., Gill, J., 2013. Review of eruptive activity at Tianchi volcano, Changbaishan, Pouclet, A., Bellon, H., 1992. Geochemistry and isotopic composition of volcanic rocks northeast China: implications for possible future eruptions. Bulletin of Volcanology from the Yamato Basin: Hole 794D, Sea of Japan. In: Tamaki, K., Suyehiro, K., Allan, 75, 1–14. J., McWilliams, S. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results: Wolff, J.A., Wright, J.V., 1981. Formation of the Green Tuff, Pantelleria. Bulletin 127/128 Pt. 2. Ocean Drilling Program, pp. 779–789. Volcanologique 44, 681–690. Ren, J.Y., Tamaki, K., Li, S., Zhang, J.X., 2002. Late Mesozoic and Cenozoic rifting and its dy- Xie, G.H., Wang, J.W., Basu, A.R., Tatsumoto, M., 1988. Petrochemistry and Sr, Nd, Pb- namic setting in Eastern China and adjacent areas. Tectonophysics 344, 175–205. isotopic geochemistry of cenozoic volcanic rocks, Changbaishan area, northeast Ri, D., 1993. Paektu volcano. Geology of Korea. Foreign Languages Books Publishing China. Acta Petrologica Sinica 4, 1–12 (in Chinese with English abstract). House, DPR of Korea. Xu, Y.G., 2007. Diachronous lithospheric thinning of the North China Craton and forma- Richard, G.C., Iwamori, H., 2010. Stagnant slab, wet plumes and Cenozoic volcanism in tion of the Daxin'anling–Taihangshan gravity lineament. Lithos 96, 281–298. East Asia. Physics of the Earth and Planetary Interiors 183, 280–287. Xu, Y.G., Ross, J.V., Mercier, J.-C.C., 1993. The upper mantle beneath the continental rift of Rolandi, G., Petrosino, P., Geehin, J., 1998. The interplinian activity at Somma–Vesuvius in Tanlu, eastern China: evidence for the intralithospheric shear zones. Tectonophysics the last 3500 years. Journal of Volcanology and Geothermal Research 82, 19–52. 225, 337–360. Sakata, S., 1991. Carbon isotope geochemistry of natural gases from the Green Tuff Basin, Xu, Y.G., Menzies, M.A., Thirlwall, M.F., Huang, X.L., Liu, Y., Chen, X.M., 2003. Japan. Geochimica et Cosmochimica Acta 55, 1395–1405. “Reactive”harzburgites from Huinan, NE China: products of lithosphere–astheno- Siebert, L., Simkin, T., Kimberly, P., 2010. Volcanoes of the World. Univ of California Press. sphere interaction during lithospheric thinning? Geochimica et Cosmochimica Acta Simkin, Tom, Siebert, L., McClelland, L., Bridge, D., Newhall, C., Latter, J., 1981. Volcanoes of 67, 487–505. the world: a regional directory, gazetteer, and chronology of volcanism during the Xu, Y.G., Ma, J.L., Frey, F.A., Feigenson, M.D., Liu, J.-F., 2005. Role of lithosphere– last 10,000 years. Hutchinson Ross Publ. Co., New York, pp. 20–200. asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts Song, T., 1997. Inversion styles in the Songliao basin (northeast China) and estimation of from Datong, western North China Craton. Chemical Geology 224, 247–271. the degree of inversion. Tectonophysics 283, 173–188. Xu, J.Q., Bai, C.J., Liu, J., 2008. Geothermal resource prognosis based on remote sensing Stone, R., 2010. Is China's riskiest volcano stirring or merely biding its time? Science 329, technology in Changbaishan volcanic area. Remote Sensing for Land and Resources 498–499. 1, 68–71. Stone, R., 2011. Vigil at North Korea's Mount Doom. Science 334, 584–588. Xu, J., Liu, G., Wu, J., Ming, Y., Wang, Q., Cui, D., Shangguan, Z., Pan, B., Lin, X., Liu, J., 2012a. Su, Y.P., Zheng, J.P., Griffin, W.L., Zhao, J.H., Tang, H.Y., Ma, Q., Lin, X.Y., 2012. Geochemistry Recent unrest of Changbaishan volcano, northeast China: a precursor of a future and geochronology of Carboniferous volcanic rocks in the eastern Junggar eruption? Geophysical Research Letters 39 (16). terrane, NW China: implication for a tectonic transition. Gondwana Research 22, Xu, Y.G., Zhang, H.H., Qiu, H.N., Ge, W.C., Wu, F.Y., 2012b. Oceanic crust components in 1009–1029. continental basalts from Shuangliao, Northeast China: derived from the mantle tran- Sun, S.S., McDonough, W., 1989. Chemical and isotopic systematics of oceanic basalts: im- sition zone? Chemical Geology 328, 168–184. plications for mantle composition and processes. Geological Society, London, Special Xu, J., Pan, B., Liu, T., Hajdas, I., Zhao, B., Yu, H., Liu, R., Zhao, P., 2013. Climatic impact of the Publications 42, 313–345. Millennium eruption of Changbaishan volcano in China: new insights from high- Sun, C., Plunkett, G., Liu, J., Zhao, H., Sigl, M., McConnell, J.R., Pilcher, J.R., Vinther, B., precision radiocarbon wiggle-match dating. Geophysical Research Letters 40, 54–59. Steffensen, J., Hall, V., 2014. Ash from Changbaishan Millennium eruption recorded Yamada, K., Gotanda, K., Yonenobu, H., Shinozuka, Y., Kitagawa, J., Makohonienko, M., in Greenland ice: implications for determining the eruption's timing and impact. Schwab, M., Haraguchi, T., Yasuda, Y., 2007. High-resolution past environmental re- Geophysical Research Letters 41 (2), 694–701. construction in East Asia using annually laminated lake sediments of Lake Megata Taira, A., 2001. Tectonic evolution of the Japanese island arc system. Annual Review of in northeastern Japan. EOS Trans, AGU (PP11B-0520). Earth and Planetary Sciences 29, 109–134. Yamamoto, T., Hoang, N., 2009. Synchronous Japan Sea opening Miocene fore-arc volca- Tang, J., Zhao, Z., Wang, J., Zhan, Y., Deng, H., Chen, B., 2006. Study of the formation mech- nism in the Abukuma Mountains, NE Japan: an advancing hot asthenosphere flow anism for volcanism in Northeast China based on deep electric structure. Acta versus Pacific slab melting. Lithos 112, 575–590. Petrologica Sinica 22, 1503–1510. Yin, J., Jull, A.J., Burr, G.S., Zheng, Y., 2012. A wiggle-match age for the Millennium eruption Taniguchi, H., 2004. 10th century great eruption of Baitoushan volcano, Northeast China, of Tianchi Volcano at Changbaishan, Northeastern China. Quaternary Science Reviews and its historic effect. CNEAS Monograph Series 16, 1–215 (in Japanese with English 47, 150–159. abstract). Ying, J.F., Zhou, X.H., Zhang, L.C., Wang, F., 2010. Geochronological framework of Mesozoic Tatsumi, Y., Hamilton, D., Nesbitt, R.W., 1986. Chemical characteristics of fluid phase volcanic rocks in the Great Xing'an Range, NE China, and their geodynamic implica- released from a subducted lithosphere and origin of arc magmas: evidence from tions. Journal of Asian Earth Sciences 39, 786–793. high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Yu, H., Xu, J., Luan, P., Zhao, B., Pan, B., 2013. Probabilistic assessment of tephra fallout Research 29, 293–309. hazard at Changbaishan volcano, Northeast China. Natural Hazards 69, 1369–1388. Tatsumoto, M., Basu, A.R., Huang, W.K., Wang, J.W., Xie, G., 1992. Sr, Nd, and Pb isotopes of Yun, S.H., Lee, J.H., Chang, C., 2013. A study on the change of magma activity from 2002 to ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI 2009 at Mt. Baekdusan using surface displacement. Journal of the Korean Earth and EMII in subcontinental lithosphere. Earth and Planetary Science Letters 113, Science Society 34, 470–478.

107–128. Zhang, J.G., Hu, H.T., 1999. A discussion on the genesis of CO2 outgassed in geothermal Turner, S., Bourdon, B., Gill, J., 2003. Insights into magma genesis at convergent margins processes around the Tianchi Lake, Changbai Mountains. Geological Review 45, from U-series isotopes. Reviews in Mineralogy and Geochemistry 52, 255–315. 231–235. J. Liu et al. / Lithos 236–237 (2015) 46–73 73

Zhang, M., Menzies, M.A., Suddaby, P., Thirlwall, M.F., 1991. EM1 signature from within Zhao, D., Wang, Z., Umino, N., Hasegawa, A., 2007. Tomographic imaging outside a seismic the post-Archaean subcontinental lithospheric mantle: isotopic evidence from the network: application to the northeast Japan arc. Bulletin of the Seismological Society potassic volcanic rocks in NE China. Geochemical Journal 25, 387–398. of America 97, 1121–1132. Zhang, H.F., Sun, M., Zhou, X.H., Fan, W.M., Zhai, M.G., Yin, J.F., 2002. Mesozoic lithosphere Zhao, D., Wang, Z., Umino, N., Hasegawa, A., 2009a. Mapping the mantle wedge and destruction beneath the North China Craton: evidence from major-, trace- element interplate thrust zone of the northeast Japan arc. Tectonophysics 467, 89–106. and Sr–Nd–Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy Zhao, D., Tian, Y., Lei, J., Liu, L., Zheng, S., 2009b. Seismic image and origin of the Changbai and Petrology 144, 241–253. intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific Zhang, Y.Q., Ma, Y.S., Yang, N., Shi, W., Dong, S.W., 2003a. Cenozoic extensional stress slab. Physics of the Earth and Planetary Interiors 173, 197–206. evolution in North China. Journal of Geodynamics 36, 591–613. Zhao, J.H., Zhou, M.F., Zheng, J.P., 2010. Metasomatic mantle source and crustal contami- Zhang, Y.Q., Shi, W., Dong, S.W., 2003b. Cenozoic deformation history of the Tancheng– nation for the formation of the Neoproterozoic mafic dike swarm in the northern Lujiang Fault Zone, north China, and dynamic implications. Island Arc 12, 281–293. Yangtze Block, South China. Lithos. 115, 177–189. Zhang, Z.C., Mao, J.W., Cai, J.H., Kusky, T.M., Zhou, G., Yan, S.H., Zhao, L., 2008a. Geochem- Zhao, D., Yu, S., Ohtani, E., 2011. East Asia: Seismotectonics, magmatism and mantle dy- istry of picrites and associated lavas of a Devonian island arc in the northern Junggar namics. Journal of Asian Earth Sciences. 40, 689–709. terrane, Xinjiang (NW China): implications for petrogenesis, arc mantle sources and Zhao, Y.W., Li, N., Fan, Q.C., Zou, H., Xu, Y.G., 2014. Two episodes of volcanism in the tectonic setting. Lithos 105, 379–395. Wudalianchi volcanic belt, NE China: evidence for tectonic controls on volcanic Zhang, J.H., Ge, W.C., Wu, F.Y., Wilde, S.A., Yang, J.H., Liu, X.M., 2008b. Large-scale Early activities. Journal of Volcanology and Geothermal Research 285, 170–179. Cretaceous volcanic events in the northern Great Xing'an Range, northeastern Zhou, X., Armstrong, R.L., 1982. Cenozoic volcanic rocks of eastern China—secular and China. Lithos 102, 138–157. geographic trends in chemistry and strontium isotopic composition. Earth and Plan- Zhang, J.H., Gao, S., Ge, W.C., Wu, F.Y., Yang, J.H., Wilde, S.A., Li, M., 2010. Geochronology of etary Science Letters 58, 301–329. the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: implica- Zindler, A., Hart, S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary tions for subduction-induced delamination. Chemical Geology 276, 144–165. Sciences 14, 493–571. Zhao, D., Lei, J., 2004. Seismic ray path variations in a 3-D global velocity model. Physics of Zou, H.B., Fan, Q.C., Yao, Y.P., 2008. U–Th systematics of dispersed young volcanoes in NE the Earth and Planetary Interiors 141, 153–166. China: asthenosphere upwelling caused by piling up and upward thickening of Zhao, D., Liu, L., 2010. Deep structure and origin of active volcanoes in China. Geoscience stagnant Pacific slab. Chemical Geology 255, 134–142. Frontiers 1, 31–44. Zou, H., Fan, Q., Zhang, H., 2010. Rapid development of the great Millennium eruption of Zhao, D., Ohtani, E., 2009. Deep slab subduction and dehydration and their geodynamic Changbaishan (Tianchi) Volcano, China/North Korea: evidence from U–Th zircon consequences: evidence from seismology and mineral physics. Gondwana Research dating. Lithos 119, 289–296. 16, 401–413. Zou, H., Fan, Q., Zhang, H., Schmitt, A.K., 2014. U-series zircon age constraints on the Zhao, D., Tian, Y., 2013. Changbai intraplate volcanism and deep earthquakes in East Asia: plumbing system and magma residence times of the Changbai volcano, China/ a possible link? Geophysical Journal International 195, 706–724. North Korea border. Lithos 200, 169–180. Zhao, J.H., Zhou, M.F., 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction- related metasomatism in the upper mantle. Precambrian Research 152, 27–47.