Osu1258043461.Pdf (806.83

Total Page:16

File Type:pdf, Size:1020Kb

Osu1258043461.Pdf (806.83 Analysis of Vanilla Compounds in Vanilla Extracts and Model Vanilla Ice Cream Mixes Using Novel Technology Thesis Presented in Partial Fulfillment of the Requirements for the Degree Masters of Science in the Graduate School of The Ohio State University By Michael Dennis Sharp, B.S. Graduate Program in Food Science and Technology The Ohio State University 2009 Thesis Committee: W James Harper, Advisor Mike Mangino David Min 1 Copyright by Michael Dennis Sharp 2009 Abstract Vanilla is an important flavor for many foods. Vanilla beans have been shown to contain over 200 compounds, which can vary in concentration depending on the region where the beans are harvested. Several compounds including vanillin, p- hydroxybenzaldehyde, guaiacol, and anise alcohol have been found to be important for the aroma profile of vanilla. Because of the complexity of the vanilla aroma profile there are many gaps in the current understanding of how vanilla compounds are volatilized in food systems. Several novel analytical technologies are under investigation for their ability to aid in analyzing compounds in vanilla extracts and in model ice cream mixes. Although several methods are currently available, a need exists for a more rapid and sensitive method to analyze the concentration of important compounds in vanilla beans and extracts. Selected ion flow tube mass spectroscopy (SIFT-MS) and fourier transform infrared (FTIR) spectroscopy are two methods that have potential for rapid discrimination and characterization of vanilla extracts. Vanilla extracts made with beans from different countries of origin including Uganda, Indonesia, Papua New Guinea, Madagascar, and India were analyzed using both methods of analysis. Pirouette statistical software, a multivariate data analysis tool, was utilized to determine the differences between samples. Differentiation between samples was observed for all extracts, with Papua New Guinea and Indonesian samples differing the most from other ii samples. The top 5 compounds found to be most responsible, based on discriminating power, for the differentiation between samples were vanillin, anise alcohol, methylguaiacol, p-hydroxybenzaldehyde, and p-cresol. The top wavenumbers found to be most responsible, based on discriminating power, for the differentiation between samples were 1523, 1573, 1516, and 1292 cm-1. These wavenumbers have been associated with vanillin and vanillin derivatives in previous studies. Both methods have shown to be quick and reliable methods for analyzing vanilla extracts which could be utilized as a quality assurance tool in the fragrance, flavoring, and food industries. Flavor-food interactions have been shown to be important to the overall flavor profile of many foods including ice cream. Vanilla flavor, being the top flavor of ice cream, has been shown to be reduced in intensity due to protein and fat in ice cream. A research gap exists in understanding how vanilla compounds besides vanillin, the most abundant vanilla compound, and other ingredients besides protein and oil interact. A 3x3x2x2x2 full factorial design with oil, protein, sugar, stabilizer, and corn syrup as factors was conducted. Each mixture of ice cream ingredients was analyzed for headspace concentration of vanilla compounds using a selected ion flow tube mass spectrometry (SIFT-MS) technique. Although the most amount of compounds were statistically significantly effected by protein and oil, other ingredient and interactions between ingredients effected the headspace concentration of a variety of vanilla compounds. By changing the formulation of an ice cream mix, the vanilla flavor profile is clearly altered. iii Acknowledgements This work would not have been possible without the tremendous help, advise, encouragement, and trust from many kind individuals. Firstly my advisor Dr. Harper for all of his support and expertise as well as the freedom he gave me to explore my interests. I would also like to thank all of the research associates and lab mates for advise and help working through problems. I couldn’t have done the research I did without the help of Virginia Dare for providing all the samples I needed, or the many knowledgeable and skilled people at Syft technologies. I mostly would like to thank my wife and daughter for being so supportive, trusting, sacrificing and willing to allow me this opportunity. iv Vita 2001………………………………..…………………………….West Jordan High School 2006-2008……………….…………………….………Food Scientist, Casper’s Ice Cream 2007………………………….…..B.S. Food Science and Nutrition, Utah State University 2008-2009……………………Graduate Research Assistant, Department of Food Science and Technology, The Ohio State University 2009-Present………………………………………..Product Scientist, Dreyer’s Ice Cream Publications Sharp MD, McMahon DJ, Broadbent J. Comparative evaluation of yogurt and low-fat Cheddar cheese as delivery media for probiotic Lactobacillus casei. J Food Sci 73(7):M375-M377 Field of Study Major Field: Food Science and Technology v Table of Contents Abstract……………………………………………………………………………..……..ii Acknowledgements……………………………………………………………………….iv Vita………………………………………………………………………………………...v Chapter 1: Literature Review……………………………………………………………...1 Chapter 2: Rapid Discrimination and Characterization of Vanilla Extracts Made From Countries of Different Origin by FTIR-ATR and SIFT-MS………………………….…49 Chapter 3: Flavor-Ingredient Interactions Between Vanilla Compounds and a model Ice Cream Mix……………………………………………………………………………….80 Appendix A: Vanilla Compound Concentrations In Vanillas Of Unique Countries Of Origin………………………………………………………………….. …………...…109 Appendix B: Estimates and P-Values For Measured Parameters For All Ingredients And Ingredient Interactions………………………………………………………………….115 References……………………………………………………………………………....153 vi CHAPTER 1 Literature Review 1.1 Vanilla 1.1.1 Vanilla Overview Although vanilla is the second most expensive spice, next to saffron, it is still the most widely used (Ranadive 2005). Vanilla has a very versatile flavor that is acceptable at almost any concentration (Korthou and Verpoorte 2007). Because vanilla is such a versatile and well accepted flavoring it is used readily in the food, beverage, cosmetic, and tobacco industries (Korthou and Verpoorte 2007). In the United States alone 1350 metric tons of cured vanilla beans are imported yearly and over 2100 metric tons are imported globally per year (Ranadive 2005). Natural vanilla flavorings are extracted from the plant genus Vanilla (Rao and Ravishanker 2000). Two species from this genus have been used and approved in most countries to create vanilla flavoring including Vanilla planifolia and Vanilla tahitensus, however Vanillus planifolia is more widely used because of its pod quality and yield (Sinha and others 2008). V. planifolia was originally cultivated in Mexico by the Aztecs (Sinha and others 2008). After the arrival of the Spaniards in Mexico and the discovery of artificial pollination techniques, V. planifolia is now cultivated in many tropical climates that fall between 25˚ above and below the equator (Havkin-Frenkel and Dorn 1 1997). Today the principle vanilla cultivating country is Madagascar which exports 1000-1200 tons of cured vanilla beans per year (Ranadive 2005). Other countries that export a significant amount of vanilla include Indonesia, the Comoro Islands, Uganda, India, Tonga, Mexico and Tahiti (Ranadive 2005). Vanilla planifolia is grown on large looping vine fields with about 2000 vines per hectare (Ranadive 2005). Vanilla thrives in warm moist tropical climates, but also needs plenty of shade and support. Vanilla also has shallow roots that require well drained soils (Ranadive 2005). At about 8 to 9 months post pollination, Vanilla beans are harvested. At the time of harvest however, green vanilla beans are flavorless and only contain glucosides of flavor compounds (Havkin-Frenkel and Belanger 2007). Vanilla’s characteristic flavor is developed during a process called curing as glucosides are released. Curing is the process in which the vanilla aroma develops in the pods or beans. This process for aroma development is carried out in dried vanilla beans and allows chemical and enzymatic reactions to occur (Dignum and others 2001). Although most vanilla cultivating countries have developed their own curing process, all processes generally consist of four steps: scalding, sweating, drying and conditioning (Dignum and others 2001). During these curing processes glycosides are hydrolyzed, and other compounds undergo oxidation or polymerization (Havkin-Frenkel and others 2005). Although cured vanilla pods themselves are sometimes used for flavoring, it is much more common that vanilla be used for flavoring as an extract. Vanilla extracts are prepared by either percolating cured beans with a water and ethyl alcohol, or by 2 macerating whole beans and then circulating ethanol over the pods under vacuum (Sinha and Others 2008). The latter method is able to increase the concentration or “fold” of the extract. Each fold of a vanilla extract is defined as 13.35 oz of extractable material per gallon of solvent (CFR 169.3). The Code of Federal Regulations (169.175) further defines a vanilla extract as having at least 35% ethanol, and contains one or more of the following ingredients: Glycerin, Propylene Glycol, Sugar, Dextrose, or Corn Syrup. Vanilla flavoring is defined as an extract that meets the same requirements as vanilla extract, but does not contain at least 35% ethanol (CFR 169.177). 1.1.2 Vanilla Flavor Compounds Over 200 compounds have
Recommended publications
  • Vanillin Formation from Ferulic Acid in Vanilla Planifolia Is Catalysed by a Single Enzyme
    Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme Gallage, Nethaji Janeshawari; Hansen, Esben Halkjær; Kannangara, Rubini Maya; Olsen, Carl Erik; Motawie, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel ; Møller, Birger Lindberg Published in: Nature Communications DOI: 10.1038/ncomms5037 Publication date: 2014 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Gallage, N. J., Hansen, E. H., Kannangara, R. M., Olsen, C. E., Motawie, M. S., Jørgensen, K., Holme, I., Hebelstrup, K., Grisoni, M., & Møller, B. L. (2014). Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nature Communications, 5(6), [4037]. https://doi.org/10.1038/ncomms5037 Download date: 01. okt.. 2021 ARTICLE Received 19 Nov 2013 | Accepted 6 May 2014 | Published 19 Jun 2014 DOI: 10.1038/ncomms5037 OPEN Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme Nethaji J. Gallage1,2,3, Esben H. Hansen4, Rubini Kannangara1,2,3, Carl Erik Olsen1,2, Mohammed Saddik Motawia1,2,3, Kirsten Jørgensen1,2,3, Inger Holme5, Kim Hebelstrup5, Michel Grisoni6 & Birger Lindberg Møller1,2,3,7 Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays.
    [Show full text]
  • Pilot Scale Cultivation and Production of Vanilla Planifolia in the United Arab Emirates
    1143 Bulgarian Journal of Agricultural Science, 25 (No 6) 2019, 1143–1150 Pilot scale cultivation and production of Vanilla planifolia in the United Arab Emirates Khalil Ur Rahman1*, Mohamed Khalifa Bin Thaleth1, George Mathew Kutty1, Ramachandran Subramanian2* 1Al Nakhli Management, Dubai Hatta Road, Dubai, United Arab Emirates 2Birla Institute of Technology and Science, Department of Biotechnology, Pilani, Dubai campus, PO Box 345055, Dubai, United Arab Emirates *Correspondence author: [email protected], [email protected] Abstract Rahman, K., Thaleth, M. K. B., Kutty, G. M. & Subramanian, R. (2019). Pilot scale cultivation and production of Vanilla planifolia in the United Arab Emirates. Bulgarian Journal of Agricultural Science, 25 (6), 1143–1150 Vanilla planifolia is cultivated in the tropical climate and primarily grown in Madagascar, Indonesia, China and Mexico. Pilot-scale cultivation of V. planifolia was trialed under greenhouse conditions in the United Arab Emirates. V. planifolia cut- tings were obtained from India and it was grown through vegetative propagation. The cuttings of 50 cm long were planted in the soil-compost substrate at 4:1 ratio and irrigated with freshwater (water salinity 263 μS/cm). Every three months plant-based compost was added at a rate of 4 kg m-2. The height of the vanilla plant was maintained at 1.5 m and vines were supported by galvanized pipes covered by ropes. The manual pollination method was carried out upon blooming. Pods were harvested man- ually when the tip turned light brown. Mature pods were graded, blanched, dried and packaged. 20 kg fresh pods obtained from the ten vanilla plants produced 4 kg processed and dried pods after curing by blanching and drying.
    [Show full text]
  • Intereferents in Condensed Tannins Quantification by the Vanillin Assay
    INTEREFERENTS IN CONDENSED TANNINS QUANTIFICATION BY THE VANILLIN ASSAY IOANNA MAVRIKOU Dissertação para obtenção do Grau de Mestre em Vinifera EuroMaster – European Master of Sciences of Viticulture and Oenology Orientador: Professor Jorge Ricardo da Silva Júri: Presidente: Olga Laureano, Investigadora Coordenadora, UTL/ISA Vogais: - Antonio Morata, Professor, Universidad Politecnica de Madrid - Jorge Ricardo da Silva, Professor, UTL/ISA Lisboa, 2012 Acknowledgments First and foremost, I would like to thank the Vinifera EuroMaster consortium for giving me the opportunity to participate in the M.Sc. of Viticulture and Enology. Moreover, I would like to express my appreciation to the leading universities and the professors from all around the world for sharing their scientific knowledge and experiences with us and improving day by day the program through mobility. Furthermore, I would like to thank the ISA/UTL University of Lisbon and the personnel working in the laboratory of Enology for providing me with tools, help and a great working environment during the experimental period of this thesis. Special acknowledge to my Professor Jorge Ricardo Da Silva for tutoring me throughout my experiment, but also for the chance to think freely and go deeper to the field of phenols. Last but most important, I would like to extend my special thanks to my family and friends for being a true support and inspiration in every doubt and decision. 1 UTL/ISA University of Lisbon “Vinifera Euromaster” European Master of Science in Viticulture&Oenology Ioanna Mavrikou: Inteferents in condensed tannins quantification with vanillin assay MSc Thesis: 67 pages Key Words: Proanthocyanidins; Interference substances; Phenols; Vanillin assay Abstract Different methods have been established in order to perform accurately the quantification of the condensed tannins in various plant products and beverages.
    [Show full text]
  • Ecology and Ex Situ Conservation of Vanilla Siamensis (Rolfe Ex Downie) in Thailand
    Kent Academic Repository Full text document (pdf) Citation for published version Chaipanich, Vinan Vince (2020) Ecology and Ex Situ Conservation of Vanilla siamensis (Rolfe ex Downie) in Thailand. Doctor of Philosophy (PhD) thesis, University of Kent,. DOI Link to record in KAR https://kar.kent.ac.uk/85312/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html Ecology and Ex Situ Conservation of Vanilla siamensis (Rolfe ex Downie) in Thailand By Vinan Vince Chaipanich November 2020 A thesis submitted to the University of Kent in the School of Anthropology and Conservation, Faculty of Social Sciences for the degree of Doctor of Philosophy Abstract A loss of habitat and climate change raises concerns about change in biodiversity, in particular the sensitive species such as narrowly endemic species. Vanilla siamensis is one such endemic species.
    [Show full text]
  • The Synthesis of Vanillin
    The synthesis of vanillin - learning about aspects of sustainable chemistry by comparing different syntheses La síntesis de la vainilla - aprendiendo sobre aspectos de química sostenible mediante la comparación de diferentes síntesis NICOLE GARNER1, ANTJE SIOL2 , INGO EILKS1 1 Institute for Science Education, University of Bremen, 2 Center for Environmental Research and Sustainable Technology, University of Bremen, Germany, [email protected] Abstract • Prevention This paper discusses one way of integrating the aspects of sustainable chemistry into • Atom Economy secondary and undergraduate chemistry education. Two different synthesis reactions • Less Hazardous Chemical Syntheses for vanillin are presented, which both use isoeugenol as the starting reagent. Whereas • Designing Safer Chemicals the first synthesis is performed using conventional chemistry techniques, second • Safer Solvents and Auxiliaries approach employs strategies inspired by sustainable chemistry. The discussion • Design for Energy Efficiency covers how comparison of these two experiments can aid in learning about selected • Use of Renewable Feedstocks sustainable chemistry principles. • Reduce Derivatives Key words: education for sustainable development, chemistry education, green • Catalysis chemistry, vanillin • Design for Degradation • Real-time Analysis for Pollution Prevention Resumen • Inherently Safer Chemistry for Accident Prevention Este artículo analiza una manera de integrar los aspectos de la química sostenible en la escuela secundaria y en bachillerato.
    [Show full text]
  • Snapshot: Mammalian TRP Channels David E
    SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/-
    [Show full text]
  • Advances in Direct Mass Spectrometry Techniques Coupled with Chemometric Modelling for the Rapid Detection of Food Fraud
    Advances in Direct Mass Spectrometry Techniques Coupled with Chemometric Modelling for the Rapid Detection of Food Fraud Ken Rosnack Principal Market Development Manager [email protected] ©2019 Waters Corporation 1 Overview Food Fraud / Adulteration Introduction Vanilla Authenticity Belgian Butter (PDO) Olive Oil ©2019 Waters Corporation 2 Introduction to food fraud A food safety incident is typically an unintentional act with unintentional harm – e.g. German E. coli O104:H4 outbreak in 2011 A food defence incident is an intentional act with intentional harm – e.g. Punjab sweet poisoning with chlorfenapyr in 2016 Food fraud is most commonly referred to as the intentional defrauding of food and food ingredients for economic gain Food fraud encompasses the terms: – Food authenticity; ensuring that food offered for sale or sold is of the nature, substance and quality expected by the purchaser – Economically motivated adulteration (EMA); intentional substitution or addition of a substance in a product for the purpose of increasing the apparent value of the product or reducing the cost of its production ©2019 Waters Corporation 3 Food Products at Risk for Food Fraud Meat Milk Olive oil Fish / Seafood Organic foods Cereals, grains and rice Honey and maple syrup Coffee and tea Select herbs and spices Wine Fruit juices ©2019 Waters Corporation 4 Mass Spectrometric Profiling Traditional • Simple, sample preparation • GC-MS • LC-MS, LC-MS/MS • Few thousand components in 5-30 min Direct + • No sample prepared + • Formation
    [Show full text]
  • Vanilla Montana Ridl.: a NEW LOCALITY RECORD in PENINSULAR MALAYSIA and ITS AMENDED DESCRIPTION
    Journal of Sustainability Science and Management eISSN: 2672-7226 Volume 15 Number 7, October 2020: 49-55 © Penerbit UMT Vanilla montana Ridl.: A NEW LOCALITY RECORD IN PENINSULAR MALAYSIA AND ITS AMENDED DESCRIPTION AKMAL RAFFI1,2, FARAH ALIA NORDIN*3, JAMILAH MOHD SALIM1,4 AND HARDY ADRIAN A. CHIN5 1Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu. 2Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak. 3School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang. 4Faculty of Science and Marine Environment Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu. 5698, Persiaran Merak, Taman Paroi Jaya, 70400, Seremban, Negeri Sembilan. *Corresponding author: [email protected] Submitted final draft: 25 April 2020 Accepted: 11 May 2020 http://doi.org/10.46754/jssm.2020.10.006 Abstract: Among the seven Vanilla species native to Peninsular Malaysia, Vanilla montana was the first species to be described. But due to its rarity, it took more than 100 years for the species to be rediscovered in two other localities. This paper describes the first record of V. montana in Negeri Sembilan with preliminary notes on its floral development and some highlights on the ecological influences. We also proposed a conservation status for the species. The data obtained will serve as an important botanical profile of the species, and it will add to our knowledge gaps on the distribution of this distinctive orchid in Malaysia. Keywords: Biodiversity, florivory, endangeredVanilla , Orchidaceae, Negeri Sembilan. Introduction the peninsula (Go et al., 2015a). Surprisingly, In Peninsular Malaysia, the genus Vanilla Plum.
    [Show full text]
  • Unesco – Eolss Sample Chapters
    CULTIVATED PLANTS, PRIMARILY AS FOOD SOURCES – Vol. II– Spices - Éva Németh SPICES Éva Németh BKA University, Department of Medicinal and Aromatic Plants, Budapest, Hungary Keywords: culinary herbs, aromatic plants, condiment, flavoring plants, essential oils, food additives. Contents 1. Introduction 2. Spices of the temperate zone 2.1. Basil, Ocimum basilicum L. (Lamiaceae). (See Figure 1). 2.2. Caraway Carum carvi L. (Apiaceae) 2.3. Dill, Anethum graveolens L. (Apiaceae) 2.4. Mustard, Sinapis alba and Brassica species (Brassicaceae) 2.5. Oregano, Origanum vulgare L. (Lamiaceae) 2.6. Sweet marjoram, Majorana hortensis Mönch. (Lamiaceae) 3. Spices of the tropics 3.1. Cinnamon, Cinnamomum zeylanicum Nees, syn. C. verum J.S.Presl. (Lauraceae) 3.2. Clove, Syzyngium aromaticum L syn. Eugenia caryophyllata Thunb. (Myrtaceae) 3.3. Ginger, Zingiber officinale Roscoe (Zingiberaceae) 3.4. Pepper, Piper nigrum L. (Piperaceae) Glossary Bibliography Biographical Sketch Summary In ancient times no sharp distinction was made between flavoring plants, spices, medicinal plants and sacrificial species. In the past, spices were very valuable articles of exchange, for many countries they assured a source of wealth and richness. Today, spices are lower in price, but they are essential of foods to any type of nation. In addition to synthetic aromatic compounds, spices from natural resources have increasing importance again. UNESCO – EOLSS The majority of spices not only add flavor and aroma to our foods, but contribute to their preservationSAMPLE and nutritive value. Although CHAPTERS the flavoring role of spices in our food cannot be separated from their other (curing, antimicrobal, antioxidant, etc.) actions, in this article we try to introduce some of the most important plants selected according to their importance as condiments.
    [Show full text]
  • Evaluation of Essential Oils and Extracts of Rose Geranium and Rose Petals As Natural Preservatives in Terms of Toxicity, Antimicrobial, and Antiviral Activity
    pathogens Article Evaluation of Essential Oils and Extracts of Rose Geranium and Rose Petals as Natural Preservatives in Terms of Toxicity, Antimicrobial, and Antiviral Activity Chrysa Androutsopoulou 1, Spyridoula D. Christopoulou 2, Panagiotis Hahalis 3, Chrysoula Kotsalou 1, Fotini N. Lamari 2 and Apostolos Vantarakis 1,* 1 Department of Public Health, Faculty of Medicine, University of Patras, 26504 Patras, Greece; [email protected] (C.A.); [email protected] (C.K.) 2 Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Patras, Greece; [email protected] (S.D.C.); [email protected] (F.N.L.) 3 Tentoura Castro-G.P. Hahalis Distillery, 26225 Patras, Greece; [email protected] * Correspondence: [email protected] Abstract: Essential oils (EOs) and extracts of rose geranium (Pelargonium graveolens) and petals of rose (Rosa damascena) have been fully characterized in terms of composition, safety, antimicrobial, and antiviral properties. They were analyzed against Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Aspergillus niger, and Adenovirus 35. Their toxicity and life span were also determined. EO of P. graveolens (5%) did not retain any antibacterial activity (whereas at Citation: Androutsopoulou, C.; 100% it was greatly effective against E. coli), had antifungal activity against A. niger, and significant Christopoulou, S.D.; Hahalis, P.; antiviral activity. Rose geranium extract (dilutions 25−90%) (v/v) had antifungal and antibacterial Kotsalou, C.; Lamari, F.N.; Vantarakis, activity, especially against E. coli, and dose-dependent antiviral activity. Rose petals EO (5%) retains A. Evaluation of Essential Oils and low inhibitory activity against S. aureus and S. Typhimurium growth (about 20−30%), antifungal Extracts of Rose Geranium and Rose activity, and antiviral activity for medium to low virus concentrations.
    [Show full text]
  • Dermal Morphology of <Emphasis Type="Italic">Vanilla Planifolia
    Proc. Indian Acad. Sci., Vol. 84 B, No. 5, 1976, pp. 173-179 Dermal morphology of Vanilla planifolia Andr. and V. wightii Lindl. B. K. NAYAR, F.A.Sc., RAJENDRA RAI AND P. VATSALA Department of Botany, Calicut University, Kerala 673635 MS received 8 April 1976 ABSTRACT In contrast to other Orchidaceae, the stomata in Va;ziila planifolia and V. wightii, are predominantly of the para-mesoperigenous type but the meristemoid is squarish as in other members of the family. 16~S of the stomata in V. planifclia and the stomata on the scale-leaves of V. wightii are of the aperigenous type; in V. planifolia, a few stomata (8~) are anisomesogenous (meristemoid triangular) and others (2~o) hemipara-mesop~rigenous. In V. Mghtii subsidiary cells of the para- mesoperigenous cauline stomata divide secondarily to form 5-7 subsidiary cells. Stomata are abundant on the stem of V. wightii (stomatal index-3.4) but sparse in V. planifolia (index-0.57). There is a progressive increase in stomatal index from base to apex of the leaf of V. planifolia. About 80~; of the the stomata in mature leaves of V. planifolia degenerate, as leaves get older.The epidermis is devoid of trichom~s in both species. In V. planifc.lia, each epidermal cell has a large crystal included in it. It is suggested that the stomatal types in Vanilla indicate the relationship of Orchidaceae to Hypoxidaceae, through Curculigo, which also has para- mesoperigenous stomata. 1. INTRODUCTION DIFFERENT Natural Orders, especially of the Monocotyledons, are reported to possess characteristic stomatal types and the aperigenous type is the rule in Orchidaceae.
    [Show full text]
  • Chemical Tools for the Synthesis and Analysis of Glycans Thamrongsak Cheewawisuttichai [email protected]
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 8-2019 Chemical Tools for the Synthesis and Analysis of Glycans Thamrongsak Cheewawisuttichai [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Recommended Citation Cheewawisuttichai, Thamrongsak, "Chemical Tools for the Synthesis and Analysis of Glycans" (2019). Electronic Theses and Dissertations. 3058. https://digitalcommons.library.umaine.edu/etd/3058 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. CHEMICAL TOOLS FOR THE SYNTHESIS AND ANALYSIS OF GLYCANS By Thamrongsak Cheewawisuttichai B.S. Chulalongkorn University, 2012 A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Chemistry) The Graduate School The University of Maine August 2019 Advisory Committee: Matthew Brichacek, Assistant Professor of Chemistry, Advisor Alice E. Bruce, Professor of Chemistry Barbara J.W. Cole, Professor of Chemistry Raymond C. Fort, Jr., Professor of Chemistry William M. Gramlich, Associate Professor of Chemistry Copyright 2019 Thamrongsak Cheewawisuttichai ii CHEMICAL TOOLS FOR THE SYNTHESIS AND ANALYSIS OF GLYCANS By Thamrongsak Cheewawisuttichai Dissertation Advisor: Dr. Matthew Brichacek An Abstract of the Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Chemistry) August 2019 Glycans can be found in every living organism from plants to bacteria and viruses to human. It has been known that glycans are involved in many biological processes such as structural roles, specific recognition with glycan-binding proteins, and host-pathogen recognitions.
    [Show full text]