bioRxiv preprint doi: https://doi.org/10.1101/597567; this version posted July 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 Systematic identification of cancer cell vulnerabilities to natural killer 3 cell-mediated immune surveillance 4 5 Matthew F. Pech, Linda E. Fong, Jacqueline E. Villalta, Leanne J.G. Chan, Samir Kharbanda, 6 Jonathon J. O’Brien, Fiona E. McAllister, Ari J. Firestone, Calvin H. Jan, Jeff Settleman# 7 8 Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, CA, United States 9 #correspondence:
[email protected] 10 1 bioRxiv preprint doi: https://doi.org/10.1101/597567; this version posted July 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 11 Abstract 12 13 Only a subset of cancer patients respond to T-cell checkpoint inhibitors, highlighting the need for 14 alternative immunotherapeutics. We performed CRISPR-Cas9 screens in a leukemia cell line to 15 identify perturbations that enhance natural killer effector functions. Our screens defined critical 16 components of the tumor-immune synapse and highlighted the importance of cancer cell 17 interferon-g signaling in modulating NK activity. Surprisingly, disrupting the ubiquitin ligase 18 substrate adaptor DCAF15 strongly sensitized cancer cells to NK-mediated clearance.