Article ISSN 1179-3163 (Online Edition)

Total Page:16

File Type:pdf, Size:1020Kb

Article ISSN 1179-3163 (Online Edition) Phytotaxa 260 (1): 075–082 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.260.1.8 Phylogenetic Position and Morphological Observation of the Ctenocladus circinnatus Borzi, a rare green alga from Changtang Plateau, China BENWEN LIU1, 2, XUDONG LIU1, 2, ZHENGYU HU3, HUAN ZHU1 & GUOXIANG LIU1* 1Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People’s Republic of China 2University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China 3State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People’s Republic of China * Corresponding author ([email protected]) Abstract Two microfilamentous green algal specimens from Tibet were identified as Ctenocladus circinnatus Borzi, due to their unique morphology and saline habitat. The phylogenetic evidence based on DNA sequence data from the nucleus (SSU) and chloroplast elongation factor TU (tufA) sequences clearly revealed that the genus Ctenocladus, which has been classified in the Chaetophorales (Chlorophyceae) or Trebouxiophyceae incertae sedis by most phycologists, should be included in the Ulvales (Ulvophyceae) instead, and has a close relationship with the genera Pseudendoclonium and Phaeophila. We specu- late that there may be undescribed or cryptic species especially in freshwater and other non-marine habitats. A phylogenetic re-evaluation based on large samples of microfilamentous ulvophycean algae especially freshwater specimens is needed. Keywords: Ctenocladus circinnatus, Changtang Plateau, Phaeophila, Pseudendoclonium, Ulvophyceae Introduction The relatively rare green algae Ctenocladus was first described in Italy (Borzi 1883). Since then, the distribution of Ctenocladus has been recorded in several sites (Ariño et al. 1996, Blinn 1971, Li et al. 1992). This branched filamentous alga is mainly found in inland water, with high salinity, pH, temperature, Na+/Mg2+ ratio and other ecological factors. The taxonomic position of Ctenocladus varies according to different phycologists. Ctenocladus circinnatus was separated into Lochmiopsis sibirica and Lochmiopsis printzii by Woronochin (Woronochin & Popova 1929). While Smith (1950) and Bourrelly (1966) combined Ctenocladus and Lochmiopsis, adopting the original name, Ctenocladus. Printz (1964) classified Ctenocladus as a section of the Gongrosira. According to the system of Bourrelly (Bourrelly 1990), Li & Bi (1998) classified the genus Ctenocladus based on specimens collected from Tibet in the family Chaetophoraceae. Both Tsarenko (2011) and Guiry & Guiry (2015) placed it in Chlorellales (Trebouxiophyceae), and Wehr et al. (2015) also classified in Trebouxiophyceae but with uncertain position. Ultrastructural evidence provided new taxonomic clues in this genus. Blinn & Morrison (1974) found pit-like intercellular connections in Ctenocladus which resembled those in Trentepohlia. Mattox & Stewart (1984) classified Ctenocladus in Ulvophyceae based on the ultrastructure of flagellar apparatus. Although this green algal classification based on ultrastructure of the basal body in flagellated cells and cytokinesis was proved by molecular phylogeny, few studies focused on the molecular phylogeny of Ctenocladus. Moreover, the relationship between Ctenocladus and other algal groups in Chlorophyta is unknown. Recent studies have shown that there may be cryptic lineages in microfilamentous algae with similar morphology in Ulvophyceae such as Hazenia and Pseudendoclonium (Škaloud et al. 2013), and that morphology may not be a good indicator of phylogenetic relatedness such as in Ulvella (O’Kelly et al. 2004, Nielsen et al. 2013). Moreover, molecular data for Ctenocladus are absent. Taking all these facts into account, the present study is aimed to determine the phylogenetic relationship of Ctenocladus with other Chlorophytes based on specimens from two saline lakes in Tibet. Accepted by Marina Aboal: 12 Apr. 2016; published: 9 May 2016 75 MATERIALS AND METHODS Sampling The Ctenocladus samples used in this study were collected in June 2014 from two endorheic lakes, Dong tso (31° 35’ 37” N, 91° 07’ 30” E) and Dum tso (32° 07’ 29” N, 84° 53’ 51” E ), in the west of Tibet, China. Each sample was preserved in 100% alcohol and frozen at –20℃ for DNA extraction and 4% formalin for morphological study. These two voucher specimens were deposited in the Freshwater Algal Herbarium (IHB), under the accession number TB2014012 and TB2014062 . The water parameters of the two lakes were measured following the standard protocols (SEPA 2002). DNA extraction, PCR amplification and Sequencing Genomic DNA was extracted using an Axygen DNeasy plant Kit (Axygen Biotechnology, Hangzhou, China) according to the manufacturer’s specifications after approximately 15 mg of filaments were added to 1 mL of 0.5mm glass beads and 350 μl of phosphate buffer solution (PBS, pH 7.0). The algal cells were lysed by bead beating at 4800 rpm for 2 min in a mini-beadbeater (Model 3110BX, Biospec Products, Bartlesville, Oklahoma USA). Universal primers (Honda et al. 1999, Famà et al. 2002) were used to amplify the partial nuclear-encoded SSU rDNA and tufA sequences, respectively. The sequence amplification profile consisted of an initial 5 min denaturing at 94℃, 34 cycles of denaturing at 94℃ for 1 min each cycle, 50 s annealing at 56°C (SSU rDNA) and 53°C (tufA), 80s extension at 72℃ and a final extension of 5 min at 72℃. The excised PCR products were cloned into a pMD18-T vector and transferred into E. coli competent cells DH5α (Takara Bio Inc., Otsu, Shiga, Japan). Twenty clones of SSU rDNA sequence and tufA sequence were sent to WuHan Tsingke BioTech Co., Ltd. (WuHan, China) for sequencing, respectively. Universal sequencing primers were M13F and M13F (Vieira & Messing 1982). Phylogenetic analyses Sequences were selected from GenBank (http://www.ncbi.nlm.nih.gov/) for nuclear SSU rDNA and chloroplast tufA analyses. Together with 53 (SSU rDNA) and 47 (tufA) published sequences representing the Ulvophyceae, four new Ctenocladus SSU rDNA and tufA sequences were subjected to mafft7.2 (Katoh & Standley 2013) for initial alignments, and refined manually with Seaview v. 4.32 (Gouy et al. 2010). Base composition and transition/transversion ratio were calculated by MEGA5.0 (Tamura et al. 2011). ModelTest3.72 (Posada & Crandall 1998) was used to select the evolutionary best-fit model according to hierarchical likelihood ratio tests and Akaike information criterion. The best-fit model for SSU rDNA and tufA was GTR+I+G. Phylogenetic trees using maximum likelihood (ML) and Bayesian were constructed with RAxML8.0 (Stamatakis 2014) and with MrBayes3.1.2 (Huelsenbeck & Ronquist- 2001). Bootstrap analyses with 1000 replicates of the dataset for ML were performed to estimate statistical reliability. Bayesian analyses of both SSU rDNA and tufA sequences were performed with 2.0×106 generations of Markov chain Monte Carlo iterations and trees were sampled every 1×103 generations. It was assumed that the stationary distribution was reached when average standard deviation of split frequencies between two runs was lower than 0.01. The first 25% of the calculated trees was discarded as burn- in, and the remaining samples were used to construct a Bayesian consensus tree and to infer posterior probabilities. The bootstrap values and posterior probabilities were presented on the nodes. The resulting phylogenetic trees were edited using Figtree 1.4.2 (http://tree.bio.ed. ac.uk/software/figtree/). RESULTS Morphological Observation Ctenocladus circinnatus A. Borzi. Saggio di ricerche Sulla biologia delle alghe. Ctenocladus, gen. nov. Studi Algologici. 1883, 1: 27–50. Description: The thalli of C. circinnatus were composed of numerous radially arranged filaments with unilateral branching, without mucilage. The cells were cylindrical, 6–8 μm wide and 28–85 μm long, uninucleate, with a parietal plastid and one to three pyrenoids. Terminal vegetative cells usually produced thick-walled akinetes, which were spherical or approximately spherical with a diameter of 10–21 μm, giving rise to chain-like rows. Zoosporangia were 76 • Phytotaxa 260 (1) © 2016 Magnolia Press LIU ET AL. irregularly spherical, containing eight or more zoospores and were released at the apical end of the cell (Fig. 1). The C. circinnatus specimens sampled from Tibet, China were slightly different from the original description and illustrations (Printz 1964, Starmach 1972, Ariño 1996). Printz (1964) and Starmach (1972) reported cells 10–15 μm in diameter and Ariño (1996) reported cells 3–5 μm in diameter and 20–150 μm long. A previous study showed that C. circinnatus from Tibet was consistent with our observations (Li et al. 1992). FIGURE 1. Morphological observation of Ctenocladus specimens. A. Cytoplasm concentration on the top of the filaments; B. Random arrangement of filaments and numerous zoosporangia; C. Chains of thick-walled akinetes; D. E. Zoosporangia; F. Detail of the branching pattern. Scale bars: A–C = 40 μm, D = 10 μm, E = 20 μm, F = 40 μm. Arrows in B and D are presumptive zoosporangia and in C is presumptive zkinetes. A, akinetes; Z, zoosporangia. Distribution: Ctenocladus has been recorded world-wide (Russia, USA, Canada, Italy, Peru and China) (Blinn & Stein 1970, Li et al. 1992, Hu & Wei, 2006), but only restricted to inland habitats. In present
Recommended publications
  • Supplementary Materials: Figure S1
    1 Supplementary materials: Figure S1. Coral reef in Xiaodong Hai locality: (A) The southern part of the locality; (B) Reef slope; (C) Reef-flat, the upper subtidal zone; (D) Reef-flat, the lower intertidal zone. Figure S2. Algal communities in Xiaodong Hai at different seasons of 2016–2019: (A) Community of colonial blue-green algae, transect 1, the splash zone, the dry season of 2019; (B) Monodominant community of the red crust alga Hildenbrandia rubra, transect 3, upper intertidal, the rainy season of 2016; (C) Monodominant community of the red alga Gelidiella bornetii, transect 3, upper intertidal, the rainy season of 2018; (D) Bidominant community of the red alga Laurencia decumbens and the green Ulva clathrata, transect 3, middle intertidal, the dry season of 2019; (E) Polydominant community of algal turf with the mosaic dominance of red algae Tolypiocladia glomerulata (inset a), Palisada papillosa (center), and Centroceras clavulatum (inset b), transect 2, middle intertidal, the dry season of 2019; (F) Polydominant community of algal turf with the mosaic dominance of the red alga Hypnea pannosa and green Caulerpa chemnitzia, transect 1, lower intertidal, the dry season of 2016; (G) Polydominant community of algal turf with the mosaic dominance of brown algae Padina australis (inset a) and Hydroclathrus clathratus (inset b), the red alga Acanthophora spicifera (inset c) and the green alga Caulerpa chemnitzia, transect 1, lower intertidal, the dry season of 2019; (H) Sargassum spp. belt, transect 1, upper subtidal, the dry season of 2016. 2 3 Table S1. List of the seaweeds of Xiaodong Hai in 2016-2019. The abundance of taxa: rare sightings (+); common (++); abundant (+++).
    [Show full text]
  • Biodata of Juan M. Lopez-Bautista, Author of “Red Algal Genomics: a Synopsis”
    Biodata of Juan M. Lopez-Bautista, author of “Red Algal Genomics: A Synopsis” Dr. Juan M. Lopez-Bautista is currently an Associate Professor in the Department of Biological Sciences of The University of Alabama, Tuscaloosa, AL, USA, and algal curator for The University of Alabama Herbarium (UNA). He received his PhD from Louisiana State University, Baton Rouge, in 2000 (under the advisory of Dr. Russell L. Chapman). He spent 3 years as a postdoctoral researcher at The University of Louisiana at Lafayette with Dr. Suzanne Fredericq. Dr. Lopez- Bautista’s research interests include algal biodiversity, molecular systematics and evolution of red seaweeds and tropical subaerial algae. E-mail: [email protected] 227 J. Seckbach and D.J. Chapman (eds.), Red Algae in the Genomic Age, Cellular Origin, Life in Extreme Habitats and Astrobiology 13, 227–240 DOI 10.1007/978-90-481-3795-4_12, © Springer Science+Business Media B.V. 2010 RED ALGAL GENOMICS: A SYNOPSIS JUAN M. LOPEZ-BAUTISTA Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA 1. Introduction The red algae (or Rhodophyta) are an ancient and diversified group of photo- autotrophic organisms. A 1,200-million-year-old fossil has been assigned to Bangiomorpha pubescens, a Bangia-like fossil suggesting sexual differentiation (Butterfield, 2000). Most rhodophytes inhabit marine environments (98%), but many well-known taxa are from freshwater habitats and acidic hot springs. Red algae have also been reported from tropical rainforests as members of the suba- erial community (Gurgel and Lopez-Bautista, 2007). Their sizes range from uni- cellular microscopic forms to macroalgal species that are several feet in length.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • Download This Article in PDF Format
    E3S Web of Conferences 233, 02037 (2021) https://doi.org/10.1051/e3sconf/202123302037 IAECST 2020 Comparing Complete Mitochondrion Genome of Bloom-forming Macroalgae from the Southern Yellow Sea, China Jing Xia1, Peimin He1, Jinlin Liu1,*, Wei Liu1, Yichao Tong1, Yuqing Sun1, Shuang Zhao1, Lihua Xia2, Yutao Qin2, Haofei Zhang2, and Jianheng Zhang1,* 1College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China, 201306 2East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai, China, 201206 Abstract. The green tide in the Southern Yellow Sea which has been erupting continuously for 14 years. Dominant species of the free-floating Ulva in the early stage of macroalgae bloom were Ulva compressa, Ulva flexuosa, Ulva prolifera, and Ulva linza along the coast of Jiangsu Province. In the present study, we carried out comparative studies on complete mitochondrion genomes of four kinds of bloom-forming green algae, and provided standard morphological characteristic pictures of these Ulva species. The maximum likelihood phylogenetic analysis showed that U. linza is the closest sister species of U. prolifera. This study will be helpful in studying the genetic diversity and identification of Ulva species. 1 Introduction gradually [19]. Thus, it was meaningful to carry out comparative studies on organelle genomes of these Green tides, which occur widely in many coastal areas, bloom-forming green algae. are caused primarily by flotation, accumulation, and excessive proliferation of green macroalgae, especially the members of the genus Ulva [1-3]. China has the high 2 The specimen and data preparation frequency outbreak of the green tide [4-10]. Especially, In our previous studies, mitochondrion genome of U.
    [Show full text]
  • Marine Algal Endophyte and Epiphytes New to New Caledonia
    Bull. Natn. Sci. Mus., Tokyo, Ser. B, 24(3), pp. 93-101, September 22, 1998 Marine Algal Endophyte and Epiphytes New to New Caledonia Taiju Kitayama' and Claire Garrigue' 'Department of Botany, National Science Museum, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005 Japan 'ORSTOM, BP A5, Nouméa, New Caledonia Abstract Four microscopic multicellular algae, Plzaeophila deidroides (Chloro- phyceae, Phaeophilales), Feldinannia irregularis, Feldrnaniiizia indica (Phaeo- phyceae, Ectocarpales), Stylonema alsidii (Rhodophyceae, Porphyridiales) were recorded for the first time from the coast of New Caledonia. Plzaeophila deizdroides is an endophyte in Dictyota and the rest are epiphytes on Turbinaria ornata or Sphacelaria rigidula. The three genera and the three orders are new records in New Caledonia. Key words : Algal flora, endophyte, epiphyte, Feldnzannnia indica, Feldmaiznia ii*regularis,New Caledonia, Phaeoplzila dendroides, Phaeophyceae, Rhodophyceae, Stylonema alsidii, Ulvophyceae. Since Kiitzing (1863) published the first records of New Caledonian algae based on E. Vieillard's collections, there have been few further publications focussed on marine benthic algae from New Caledonia including Gepp (1922), Catala (1950), May (1953, 1966), Garrigue (1987) and Ajisaka (1991). In their catalog of the Ma- rine Benthic Algae from New Caledonia (based on the previous records), Garrigue and Tsuda (1988) enumerated 130 species of green algae, 59 species of brown algae and 147 species of red algae. However, to date there have been few studies on minute endophytes or epiphytes on macroalgae in New Caledonia. This is because it is diffi- cult to find microscopic algae living within or on the tissue of the preserved dried plants specimens previously collected. While in New Caledonia on a study trip the first author collected fresh samples with the aim of examining the microscopic ma- rine algae of New Caledonia.
    [Show full text]
  • Acidophilic Green Algal Genome Provides Insights Into Adaptation to an Acidic Environment
    Acidophilic green algal genome provides insights into adaptation to an acidic environment Shunsuke Hirookaa,b,1, Yuu Hirosec, Yu Kanesakib,d, Sumio Higuchie, Takayuki Fujiwaraa,b,f, Ryo Onumaa, Atsuko Eraa,b, Ryudo Ohbayashia, Akihiro Uzukaa,f, Hisayoshi Nozakig, Hirofumi Yoshikawab,h, and Shin-ya Miyagishimaa,b,f,1 aDepartment of Cell Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan; bCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; cDepartment of Environmental and Life Sciences, Toyohashi University of Technology, Aichi 441-8580, Japan; dNODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan; eResearch Group for Aquatic Plants Restoration in Lake Nojiri, Nojiriko Museum, Nagano 389-1303, Japan; fDepartment of Genetics, Graduate University for Advanced Studies, Shizuoka 411-8540, Japan; gDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; and hDepartment of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan Edited by Krishna K. Niyogi, Howard Hughes Medical Institute, University of California, Berkeley, CA, and approved August 16, 2017 (received for review April 28, 2017) Some microalgae are adapted to extremely acidic environments in pumps that biotransform arsenic and archaeal ATPases, which which toxic metals are present at high levels. However, little is known probably contribute to the algal heat tolerance (8). In addition, the about how acidophilic algae evolved from their respective neutrophilic reduction in the number of genes encoding voltage-gated ion ancestors by adapting to particular acidic environments. To gain channels and the expansion of chloride channel and chloride car- insights into this issue, we determined the draft genome sequence rier/channel families in the genome has probably contributed to the of the acidophilic green alga Chlamydomonas eustigma and per- algal acid tolerance (8).
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected].
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • 7 Systematics of the Green Algae
    7989_C007.fm Page 123 Monday, June 25, 2007 8:57 PM Systematics of the green 7 algae: conflict of classic and modern approaches Thomas Pröschold and Frederik Leliaert CONTENTS Introduction ....................................................................................................................................124 How are green algae classified? ........................................................................................125 The morphological concept ...............................................................................................125 The ultrastructural concept ................................................................................................125 The molecular concept (phylogenetic concept).................................................................131 Classic versus modern approaches: problems with identification of species and genera.....................................................................................................................134 Taxonomic revision of genera and species using polyphasic approaches....................................139 Polyphasic approaches used for characterization of the genera Oogamochlamys and Lobochlamys....................................................................................140 Delimiting phylogenetic species by a multi-gene approach in Micromonas and Halimeda .....................................................................................................................143 Conclusions ....................................................................................................................................144
    [Show full text]
  • Analysis of a Plastid Multigene Data Set and the Phylogenetic Position of the Marine Macroalga Caulerpa Filiformis (Chlorophyta)1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography J. Phycol. 45, 1206–1212 (2009) Ó 2009 Phycological Society of America DOI: 10.1111/j.1529-8817.2009.00731.x ANALYSIS OF A PLASTID MULTIGENE DATA SET AND THE PHYLOGENETIC POSITION OF THE MARINE MACROALGA CAULERPA FILIFORMIS (CHLOROPHYTA)1 G. C. Zuccarello2, Natalie Price School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand Heroen Verbruggen and Frederik Leliaert Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium Molecular phylogenetic relationships within the Lewis and McCourt 2004, Pro¨schold and Leliaert Chlorophyta have relied heavily on rRNA data. 2007). These data have revolutionized our insight in green With molecular and ultrastructural data certain algal evolution, yet some class relationships have evolutionary trends are clear. The Viridiplantae are never been well resolved. A commonly used class divided into two distinct lineages, the Streptophyta within the Chlorophyta is the Ulvophyceae, although and the Chlorophyta (Bremer 1985). The Strepto- there is not much support for its monophyly. The phyta includes the land plants and their sister clades, relationships among the Ulvophyceae, Trebouxio- a paraphyletic assemblage of green algae (known as phyceae, and Chlorophyceae are also contentious. charophyte green algae). The Chlorophyta includes In recent years, chloroplast genome data have the remaining green algae belonging to four classes. shown their utility in resolving relationships between The Prasinophyceae are the earliest diverging Chlo- the main green algal clades, but such studies have rophyta and form a paraphyletic assemblage at the never included marine macroalgae.
    [Show full text]
  • Toward a Monograph of Non-Marine Ulvophyceae Using an Integrative Approach (Molecular Phylogeny and Systematics of Terrestrial Ulvophyceae II.)
    Phytotaxa 324 (1): 001–041 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.324.1.1 Toward a monograph of non-marine Ulvophyceae using an integrative approach (Molecular phylogeny and systematics of terrestrial Ulvophyceae II.) TATYANA DARIENKO1 & THOMAS PRÖSCHOLD2 1 University of Göttingen, Experimental Phycology and Culture Collection of Algae, Nikolausberger Weg 18, D-37073 Göttingen, Ger- many, and Kholodny Institute of Botany, National Academy of Science, Tereschenkivska Str. 2, Kyiv 01601, Ukraine 2 University of Innsbruck, Research Institute for Limnology, Mondseestr. 9, A-5310 Mondsee, Austria Corresponding author: Thomas Pröschold, E-mail: [email protected] Abstract Phylogenetic analyses of SSU rDNA sequences have shown that coccoid and filamentous green algae are distributed among all classes of the Chlorophyta. One of these classes, the Ulvophyceae, mostly contains marine seaweeds and microalgae. However, new studies have shown that there are filamentous and sarcinoid freshwater and terrestrial spe- cies (including symbionts in lichens) among the Ulvophyceae, but very little is known about these species. Ultrastruc- tural studies of some of them have confirmed that the flagellar apparatus of zoospores (counterclockwise basal body orientation) is typical for the Ulvophyceae. In addition to ultrastructural features, the presence of a “Codiolum”-stage is characteristic of some members of this algal class. We studied more than 50 strains of freshwater and terrestrial ulvophycean microalgae obtained from the different public culture collection and our own isolates using an integra- tive approach. Three independent lineages of the Ulvophyceae containing terrestrial species were revealed by these methods.
    [Show full text]
  • Early Photosynthetic Eukaryotes Inhabited Low-Salinity Habitats
    Early photosynthetic eukaryotes inhabited PNAS PLUS low-salinity habitats Patricia Sánchez-Baracaldoa,1, John A. Ravenb,c, Davide Pisanid,e, and Andrew H. Knollf aSchool of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom; bDivision of Plant Science, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; cPlant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; dSchool of Biological Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; eSchool of Earth Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; and fDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 SEE COMMENTARY Edited by Peter R. Crane, Oak Spring Garden Foundation, Upperville, Virginia, and approved July 7, 2017 (received for review December 7, 2016) The early evolutionary history of the chloroplast lineage remains estimates for the origin of plastids ranging over 800 My (7). At the an open question. It is widely accepted that the endosymbiosis that same time, the ecological setting in which this endosymbiotic event established the chloroplast lineage in eukaryotes can be traced occurred has not been fully explored (8), partly because of phy- back to a single event, in which a cyanobacterium was incorpo- logenetic uncertainties and preservational biases of the fossil re- rated into a protistan host. It is still unclear, however, which cord. Phylogenomics and trait evolution analysis have pointed to a Cyanobacteria are most closely related to the chloroplast, when the freshwater origin for Cyanobacteria (9–11), providing an approach plastid lineage first evolved, and in what habitats this endosym- to address the early diversification of terrestrial biota for which the biotic event occurred.
    [Show full text]