Yokogawa Says…

Total Page:16

File Type:pdf, Size:1020Kb

Yokogawa Says… THE AMAZING QUOTES....... 2 YOKOGAWA ELECTRIC CORPORATION (TYO: 6841) is a Japanese electrical engineering and software company, with businesses based on its technologies in measurement, control, and information. It has a workforce of over 19,000 in its 80 companies worldwide, operating in 33 countries. Yokogawa's consolidated net sales in fiscal year 2007 accounted for over 437.4 billion yen, and net income was 11.7 billion yen net sales fell to 376.5 billion yen, and net loss was 38.4 billion yen in fiscal year 2008; net sales fell further to 316.6 billion yen, and net loss was 14.8 billion yen in fiscal year YOKOGAWA 2009,. In fiscal year 2010, net sales SAYS… increased slightly to 325.6 billion yen and We are sure you want to be net loss decreased to 6.7 billion yen. Unlike looked at beyond being called profitable competitors Omron, Yamatake just an employee and want to Horiba and Shimadzu, Yokogawa asset-per- be valued as an Intellectual share and share price figures have fallen Resource, a Professional in your below, so the company created takeover own right. Join YIL and experience for yourself a new defence measures in 2007. high, never experienced thus far in your Professional career. www.yokogawa.com 3 History Yokogawa was established in 1915 as an electric meter research institute in Shibuya, Tokyo by Tamisuke Yokogawa (Doctor of Architectural Engineering) with Ichiro Yokogawa and Shin Aoki. Later, it became incorporated as Yokogawa Electric Works Ltd., the first company to produce and sell electric meters in Japan. Former Hokushin Electric Works CO., LTD. and YOKOGAWA PRECISION CORP. were the manufacturers of worldwide known HOKUSHIN 16mm Film Projectors. Hokushin means "North Star" in Japanese. Businesses and main products 1.Yokogawa's main businesses are industrial automation and test and measurement hardware and software. Its newly developed businesses include photonic computing, navigation, and services 2. Some of Yokogawa's main hardware products are controllers, recorders and data acquisition equipment. www.yokogawa.com 4 Major office locations Musashino (near Mitaka Station), Tokyo, Japan (world headquarters Amersfoort, The Netherlands (Europe headquarters) Sugar Land, Texas, USA (North & Central America headquarters) Singapore (ASEAN and Oceania headquarters) Shanghai, China (East Asia headquarters) Bahrain (Middle East headquarters Bangalore, India (South East Asia headquarters) Yokogawa, Australia (Australia/NZ Headquarters) Yokogawa America do Sul (Brazil Office) Moscow, Russia, (Yokogawa Electric CIS Ltd.) Calgary, Canada RECRUITMENT PROCESS..... 1. APTITUDE TEST WHICH INCLUDES TECHNICAL , GENERAL AND VOCABULARY. 2. SELECTED CANDIDATES IN WRITTEN TEST WILL PROCEED TO A GENERAL GROUP DISCUSSION. 3 .THE PERSONS RECRUITED ALSO IN THE GD WILL PROCEED TO THE TECHNICAL INTERVIEW AND WILL www.yokogawa.com BE SELECTED ON THE BASIS OF THE TALLENT . 5 “Vigilant Plant excels at bringing out the best in your plant and your people - keeping them fully aware, well informed, and ready to face the next challenge”. Trademark products of Yokogawa Process control instruments: DPharp EJA - pressure transmitter with resonant silicon technology DPharp EJX - pressure transmitter with resonant silicon technology and SIL2 certification Indicator FVX - Fieldbus indicator Valve Positioner YVP - Fieldbus positioner ADMag AXF - magnetic flow meter for high-end technology use ADMag CA - magnetic flow meter for substances without apparent electrode ADMag SE - magnetic flow meter for general use Rotamass - mass flow meter with coriolis technology Rotameter - Rotameter DY - vortex flow meter 6 Emerson Electric Company is an American multinational corporation headquartered in Ferguson, Missouri, United States This Fortune 500 company manufactures products and provides engineering services for a wide range of industrial, commercial, and consumer markets Emerson is one of the largest power equipment manufacturers in the U.S. As of 2010, it has a workforce of approximately 127,800 employees worldwide, with a global presence spanning 150 countries Emerson (NYSE: EMR) is a diversified global manufacturing and technology company. We offer a wide range of products and services in the industrial, commercial and consumer markets through our Process Management, Industrial Automation, Network Power, Climate Technologies, and Commercial & Residential Solutions businesses. Recognized widely for our engineering capabilities and management excellence, Emerson has approximately 135,000 employees and 235 manufacturing locations worldwide 7 HISTORY Emerson was established in 1890 in St. Louis, Missouri (USA) as Emerson Electric Manufacturing Co. by Civil War Union veteran John Wesley Emerson to manufacture electric motors using a patent owned by the Scottish- born brothers Charles and Alexander Meston. St. Louis In 1892, it became the first to sell electric fans Missouri(USA) in the United States. It quickly expanded its product line to include electric sewing machines, electric dental drills, and power tools. During World War II, under the leadership of Stuart Symington, Emerson became the world's largest manufacturer of airplane armament. Symington went on to become the first United States Secretary of the Air Force from 1947-1950, a Democratic U.S. Senator from Missouri from 1953-1976, and a candidate for the Presidency of the United Stuart Symington States in 1960. In 1954, W.R. "Buck" Persons was named company president. Under his leadership, Emerson diversified its business portfolio by acquiring 36 companies. When he retired in 1973, the company had 82 plants, 31,000 employees and $800 million in sales. EMPLOYERS...... 8 VISIT PAGE:WWW.EMERSON.COM Charles F. Knight served as CEO from 1973 to 2000, and was chairman from 1974 to 2004. His tenure was marked by development of a rigorous planning process, new product and technology development, acquisitions and joint ventures, and international growth. Charles F. Knight David N. Farr has served as CEO since 2000 and as chairman since 2004. On January 30, 2008, top executives from Emerson had meetings with the Costa Rican President and government authorities to open an operation for Latin America based in Costa Rica. They are planning to hire more than 500 engineers in a period of 4 years. On July 26th, 2011, Emerson announced it David N. Farr would locate its Latin America headquarters in Sunrise, Florida. EMERSON BUSINESS: Emerson Process Management Helping process industries better manage plants through intelligent control systems and software, measurement instruments, valves, and industry expertise. 9 REQIUREMENTS FOR IT SERVICE DELIVERY ANALYST Emerson Industrial Automation Fluid automation systems, materials joining equipment, mechanical and electrical Basic Qualification: Degree drives, industrial electrical products, and or equivalent wok power generation technologies. experience in Information Systems recommended. Emerson Network Power Power backup systems, embedded power, precision cooling, and connectivity technologies for data centres, Required skills: telecommunications networks, and other applications. Project management Emerson Climate Technologies experience Assuring comfort, energy efficiency and safety for consumers and retailers with heating, Experience with Microsoft air conditioning, and refrigeration solutions. Project Emerson Commercial & Residential Windows server, Storage, Solutions and or UNIX knowledge Durable construction and maintenance preferred, but not tools for professionals and homeowners, home required. and commercial storage and organization systems, food waste disposers and other Process improvement appliance solutions experi ence desired. Process documentation skills.Intermediate professional level role. Responsible for the management of internally scheduled infrastructure delivery dates, provide delivery updates and monitor work in process. 10 Assists the infrastructure managers to schedule, 11 THE PARAMOUNT CRITIQUE AIR SPEED INDICATOR The air speed indicator gauge is an instrument used in an aircraft to craft's airspeed, typically in knots, to the pilot. APPLICATIONS: The airspeed indicator is used by the pilot during all phases of flight, from take-off, climb, cruise, descent and landing in order to maintain airspeeds specific to the aircraft type and operating conditions as specified in the Operating Manual. During instrument flight, the airspeed indicator is used in addition to the Artificial horizon as an instrument of reference for pitch control during climbs, descents and turns. The airspeed indicator is also used in dead reckoning, where time, speed, and bearing are used for navigation in the absence of aids such as , VORs or GPS. 12 ON LIGHT AIRCRAFT Airspeed indicator markings use a set of standardized colored bands and lines on the face of the instrument. The white range is the normal range of operating speeds for the aircraft with the flaps extended as for landing or takeoff. The airspeed The greenindicator range or airspeed is the normal range of operating speeds for the aircraft without flaps extended. The yellow range is the range in which the aircraft may be operated in smooth air, and then only with caution to avoid abrupt control movement. A redline mark indicates VNE, or velocity (never exceed). This is the maximum demonstrated safe airspeed that the aircraft must not exceed under any circumstances. The red line is preceded by a yellow band which is the caution area, which runs from VNO (maximum structural cruise
Recommended publications
  • Top 100 Global Innovators 2021 10-Year Anniversary
    Top 100 Global Innovators 2021 10-year anniversary edition Celebrating 10 years of Top 100 Global Innovators Contents 06 Foreword 09 A habit for the new 10 Creating the list 12 Top 100 Global Innovators 2021 18 One year on 24 The hidden value of innovation culture 26 An ideation keel 3 Break– out 4 29 that have led the way. These 29 companies have appeared in the Top 100 Global Innovators list every single year since its inception a decade ago. With an average age of a century, the foundational stories of these firms and the themes they teach, endure and resonate today. Company history information was sourced from publicly available web records, including company websites, and best efforts were made to share with organizations for veracity. Break– 1665 — Saint-Gobain In October 1665, King Louis 14th of France granted a charter to minister Jean-Baptiste Colbert for a new glass and mirror making company, the Royal Mirror Glass Factory. With glassmaking expertise in the 17th century monopolized by Venice, the new company brought valuable Venetian glass makers, and their rare knowledge, across the Alps. After 365 years of prosperity and expansion with orders from the royal household (including the Hall of Mirrors at Versailles), today Saint-Gobain is a out global supplier and innovator of high- performance and sustainable materials (including glass) across a broad range of industries including construction, mobility, health and manufacturing. 1875 — Toshiba In 1875 Hisashige Tanaka opened Tanaka Engineering Works in Tokyo, manufacturing telegraphic equipment. Five years later, Ichisuke Fujioka established Hakunetsu-sha & Company, with a focus on developing the first Japanese-designed electric lamps.
    [Show full text]
  • FTSE Japan ESG Low Carbon Select
    2 FTSE Russell Publications 19 August 2021 FTSE Japan ESG Low Carbon Select Indicative Index Weight Data as at Closing on 30 June 2021 Constituent Index weight (%) Country Constituent Index weight (%) Country Constituent Index weight (%) Country ABC-Mart 0.01 JAPAN Ebara 0.17 JAPAN JFE Holdings 0.04 JAPAN Acom 0.02 JAPAN Eisai 1.03 JAPAN JGC Corp 0.02 JAPAN Activia Properties 0.01 JAPAN Eneos Holdings 0.05 JAPAN JSR Corp 0.11 JAPAN Advance Residence Investment 0.01 JAPAN Ezaki Glico 0.01 JAPAN JTEKT 0.07 JAPAN Advantest Corp 0.53 JAPAN Fancl Corp 0.03 JAPAN Justsystems 0.01 JAPAN Aeon 0.61 JAPAN Fanuc 0.87 JAPAN Kagome 0.02 JAPAN AEON Financial Service 0.01 JAPAN Fast Retailing 3.13 JAPAN Kajima Corp 0.1 JAPAN Aeon Mall 0.01 JAPAN FP Corporation 0.04 JAPAN Kakaku.com Inc. 0.05 JAPAN AGC 0.06 JAPAN Fuji Electric 0.18 JAPAN Kaken Pharmaceutical 0.01 JAPAN Aica Kogyo 0.07 JAPAN Fuji Oil Holdings 0.01 JAPAN Kamigumi 0.01 JAPAN Ain Pharmaciez <0.005 JAPAN FUJIFILM Holdings 1.05 JAPAN Kaneka Corp 0.01 JAPAN Air Water 0.01 JAPAN Fujitsu 2.04 JAPAN Kansai Paint 0.05 JAPAN Aisin Seiki Co 0.31 JAPAN Fujitsu General 0.01 JAPAN Kao 1.38 JAPAN Ajinomoto Co 0.27 JAPAN Fukuoka Financial Group 0.01 JAPAN KDDI Corp 2.22 JAPAN Alfresa Holdings 0.01 JAPAN Fukuyama Transporting 0.01 JAPAN Keihan Holdings 0.02 JAPAN Alps Alpine 0.04 JAPAN Furukawa Electric 0.03 JAPAN Keikyu Corporation 0.02 JAPAN Amada 0.01 JAPAN Fuyo General Lease 0.08 JAPAN Keio Corp 0.04 JAPAN Amano Corp 0.01 JAPAN GLP J-REIT 0.02 JAPAN Keisei Electric Railway 0.03 JAPAN ANA Holdings 0.02 JAPAN GMO Internet 0.01 JAPAN Kenedix Office Investment Corporation 0.01 JAPAN Anritsu 0.15 JAPAN GMO Payment Gateway 0.01 JAPAN KEWPIE Corporation 0.03 JAPAN Aozora Bank 0.02 JAPAN Goldwin 0.01 JAPAN Keyence Corp 0.42 JAPAN As One 0.01 JAPAN GS Yuasa Corp 0.03 JAPAN Kikkoman 0.25 JAPAN Asahi Group Holdings 0.5 JAPAN GungHo Online Entertainment 0.01 JAPAN Kinden <0.005 JAPAN Asahi Intecc 0.01 JAPAN Gunma Bank 0.01 JAPAN Kintetsu 0.03 JAPAN Asahi Kasei Corporation 0.26 JAPAN H.U.
    [Show full text]
  • Mass Spectrometer Business Presentation Materials
    Mass Spectrometer Business Presentation Materials Hiroto Itoi, Corporate Officer Deputy General Manager of the Analytical & Measuring Instruments Division Shimadzu Corporation Jul. 3, 2018 Contents I. Introduction • Expansion of Mass Spectrometry ………………………………………………………………… p.3 • History of Shimadzu's Growth in Mass Spectrometry …………………………………………… p.5 II. Overview of Mass Spectrometers • Operating Principle, Demand Trends, and Vendors ……………………………………………… p.9 • Mass Spectra ………………………………………………………………………………………… p.10 • Configuration of Mass Spectrometers …………………………………………………………… p.11 • Ionization …………………………………………………………………………………………… p.12 • Mass Separation …………………………………………………………………………………… p.14 III. Shimadzu's Mass Spectrometer Business • Product Type ………………………………………………………………………………………… p.17 • Application Software ………………………………………………………………………………… p.18 • Growth Strategy for Mass Spectrometer Business ……………………………………………… p.19 • Expand/Improve Product Lines …………………………………………………………………… p.20 • Measures to Expand Application Fields …………………………………………………………… p.24 • Measures to Automate Data Processing Using AI ……………………………………………… p.25 IV. Summary • Future Direction ……………………………………………………………………………………… p.26 July 2018 Mass Spectrometer Business Presentation Materials 2 I. Introduction Expansion of Mass Spectrometry (1) Why Mass Spectrometry? Mass spectrometry is able to analyze a wide variety of compounds with high accuracy and high efficiency (simultaneous multicomponent analysis). It offers superior characteristics that are especially beneficial in the following fields,
    [Show full text]
  • Published on 7 October 2016 1. Constituents Change the Result Of
    The result of periodic review and component stocks of TOPIX Composite 1500(effective 31 October 2016) Published on 7 October 2016 1. Constituents Change Addition( 70 ) Deletion( 60 ) Code Issue Code Issue 1810 MATSUI CONSTRUCTION CO.,LTD. 1868 Mitsui Home Co.,Ltd. 1972 SANKO METAL INDUSTRIAL CO.,LTD. 2196 ESCRIT INC. 2117 Nissin Sugar Co.,Ltd. 2198 IKK Inc. 2124 JAC Recruitment Co.,Ltd. 2418 TSUKADA GLOBAL HOLDINGS Inc. 2170 Link and Motivation Inc. 3079 DVx Inc. 2337 Ichigo Inc. 3093 Treasure Factory Co.,LTD. 2359 CORE CORPORATION 3194 KIRINDO HOLDINGS CO.,LTD. 2429 WORLD HOLDINGS CO.,LTD. 3205 DAIDOH LIMITED 2462 J-COM Holdings Co.,Ltd. 3667 enish,inc. 2485 TEAR Corporation 3834 ASAHI Net,Inc. 2492 Infomart Corporation 3946 TOMOKU CO.,LTD. 2915 KENKO Mayonnaise Co.,Ltd. 4221 Okura Industrial Co.,Ltd. 3179 Syuppin Co.,Ltd. 4238 Miraial Co.,Ltd. 3193 Torikizoku co.,ltd. 4331 TAKE AND GIVE. NEEDS Co.,Ltd. 3196 HOTLAND Co.,Ltd. 4406 New Japan Chemical Co.,Ltd. 3199 Watahan & Co.,Ltd. 4538 Fuso Pharmaceutical Industries,Ltd. 3244 Samty Co.,Ltd. 4550 Nissui Pharmaceutical Co.,Ltd. 3250 A.D.Works Co.,Ltd. 4636 T&K TOKA CO.,LTD. 3543 KOMEDA Holdings Co.,Ltd. 4651 SANIX INCORPORATED 3636 Mitsubishi Research Institute,Inc. 4809 Paraca Inc. 3654 HITO-Communications,Inc. 5204 ISHIZUKA GLASS CO.,LTD. 3666 TECNOS JAPAN INCORPORATED 5998 Advanex Inc. 3678 MEDIA DO Co.,Ltd. 6203 Howa Machinery,Ltd. 3688 VOYAGE GROUP,INC. 6319 SNT CORPORATION 3694 OPTiM CORPORATION 6362 Ishii Iron Works Co.,Ltd. 3724 VeriServe Corporation 6373 DAIDO KOGYO CO.,LTD. 3765 GungHo Online Entertainment,Inc.
    [Show full text]
  • C054-E076 up Series
    C054-E076 UniBloc Performance Balances UP Series 836HULHV 8QL%ORFū 3HUIRUPDQFH%DODQFHV Superior Response Signicantly Increases Weighing Efciency +LJK6SHHG The display response time for weighing minute quantities (from about ten times the minimum display value) is about one second. That signicantly improves weighing efciency. 7RXJKQHVV Using the highly impact-resistant UniBloc sensor minimizes downtime due to malfunctions. 6WUHVV)UHH The STABLO™-AP ionizer (optional) eliminates static electricity effects to provide highly reliable measurements without any time-consuming steps. Large Pan with 0.01 g Large Pan with 0.1 g Minimum Display Value Minimum Display Value • UP2202X • UP2202Y • UP4201X • UP4201Y • UP4202X • UP4202Y • UP8201X • UP8201Y • UP6202X • UP6202Y Movie that explains UP-series features in easy-to-understand terms. https://www.shimadzu.com/an/balance/analytical/up-6.html Small Pan with 0.001 g Small Pan with 0.01 g Minimum Display Value Minimum Display Value • UP223X • UP223Y • UP423X • UP423Y • UP422X • UP422Y • UP623X • UP623Y • UP823X • UP823Y • UP822X • UP822Y • UP1023X • UP1023Y +LJK6SHHG High-speed weighing signicantly improves efciency of weighing operations. Signicantly Improved Response Provides Fastest Response Performance in Its Class Advanced digital control technology shortens display response times to about one ninth of previous values when weighing minute quantities, which signicantly improves work efciency. Response for Weighing Minute Quantities Large pan model with 0.01 g minimum display value Small pan model with 0.001 g minimum display value Previous 9 model 9× UP 1 Speedy Faster Response (vs. previous Shimadzu model) 0246810 Time (sec.) Measurement Conditions: Large pan model with 0.01 g minimum display value and 0.1 g load Small pan model with 0.001 g minimum display value and 0.01 g load UP-Wind Break (large pan windbreak) (only for large pan models with 0.01 g minimum display value) Newly designed UP-Wind Break included standard.
    [Show full text]
  • Proposal of a Data Processing Guideline for Realizing Automatic Measurement Process with General Geometrical Tolerances and Contactless Laser Scanning
    Proposal of a data processing guideline for realizing automatic measurement process with general geometrical tolerances and contactless laser scanning 2018/4/4 Atsuto Soma Hiromasa Suzuki Toshiaki Takahashi Copyright (c)2014, Japan Electronics and Information Technology Industries Association, All rights reserved. 1 Contents • Introduction of the Project • Problem Statements • Proposed Solution – Proposal of New General Geometric Tolerance (GGT) – Data Processing Guidelines for point cloud • Next Steps Copyright (c)2014, Japan Electronics and Information Technology Industries Association, All rights reserved. 2 Contents • Introduction of the Project • Problem Statements • Proposed Solution – Proposal of New General Geometric Tolerance (GGT) – Data Processing Guidelines for Point Cloud • Next Steps Copyright (c)2014, Japan Electronics and Information Technology Industries Association, All rights reserved. 3 Introduction of JEITA What is JEITA? The objective of the Japan Electronics and Information Technology Industries Association (JEITA) is to promote healthy manufacturing, international trade and consumption of electronics products and components in order to contribute to the overall development of the electronics and information technology (IT) industries, and thereby to promote further Japan's economic development and cultural prosperity. JEITA’s Policy and Strategy Board > Number of full members: 279> Number of associate members: 117(as of May 13, 2014) - Director companies and chair/subchair companies - Policy director companies (alphabetical) Fujitsu Limited (chairman Masami Yamamoto) Asahi Glass Co., Ltd. Nichicon Corporation Sharp Corporation Azbil Corporation IBM Japan, Ltd. Hitachi, Ltd. Advantest Corporation Nippon Chemi-Con Corporation Panasonic Corporation Ikegami Tsushinki Co., Ltd. Japan Aviation Electronics Industry, Ltd. SMK Corporation Mitsubishi Electric Corporation Nihon Kohden Corporation Omron Corporation NEC Corporation JRC Nihon Musen Kyocera Corporation Sony Corporation Hitachi Metals, Ltd KOA Corporation Fuji Xerox Co., Ltd.
    [Show full text]
  • Facilitation of Information Transfer on Chemicals in Products
    Facilitation of Information Transfer on Chemicals in Products The Ministry of Economy, Trade and Industry (METI) developed ‘chemSHERPA’ [kémʃéərpə] as a new information transfer scheme for chemicals in products throughout their supply chains. METI hopes that the dissemination of chemSHERPA may contribute to reduce the workload of both providers and recipients of the information. From the beginning of the development of chemSHERPA, METI has been in communication with international bodies such as the IEC and the IPC, etc., with the aim of developing chemSHERPA into not only a Japanese standard but also an International standard. To make it a de-facto standard, METI has introduced this scheme to international organizations and governments of other countries for their active use. The Joint Article Management Promotion Consortium (JAMP) is a governing body for chemSHERPA from April 2016 and see a shift to chemSHERPA. We believe many companies are preparing towards implementing chemSHERPA. Based on the efforts mentioned above, the following companies and company groups have agreed with the dissemination of chemSHERPA, and METI will continue to work with JAMP and companies to spread the use of chemSHERPA to internal as well as external supply chains as needed.(Please contact us if any company or company group has interest in putting its name below.) It should be noted, the use of the provision of data entry support tools is free of charge in principle with the aim of promoting wider use of chemSHERPA. [Contact information] Chemical Management Policy Division Manufacturing Industries Bureau Ministry of Economy, Trade and Industry [email protected] 03-3501-0080 (direct) 03-3501-1511 (ex.
    [Show full text]
  • Facilitation of Information Transfer on Chemicals in Products
    Facilitation of Information Transfer on Chemicals in Products The Ministry of Economy, Trade and Industry (METI) has developed ‘chemSHERPA’ [kémʃéərpə] as a new information transfer scheme for chemicals in products throughout their supply chains. METI hopes that the dissemination of chemSHERPA may contribute to reduce the workload of both providers and recipients of the information. From the beginning of the development of chemSHERPA, METI has been in communication with international bodies such as the IEC and the IPC, etc., with the aim of developing chemSHERPA into not only a Japanese standard but also an International standard. To make it a de-facto standard, METI has introduced this scheme to international organizations and governments of other countries for their active use. The Joint Article Management Promotion Consortium (JAMP) will be a governing body for chemSHERPA from April 2016 and METI expects to see an orderly, step-by-step shift to chemSHERPA over the two years transition period. Accordingly JAMP has a plan to finish renewing the substances list in the existing JAMP scheme by the end of March of 2018. We believe many companies will begin advance preparations towards implementing chemSHERPA. Based on the efforts mentioned above, the following companies and company groups have agreed with the dissemination of chemSHERPA, and METI will continue to work with companies to spread the use of chemSHERPA to internal as well as external supply chains.(Please contact us if any company or company group has interest in putting its name below.) It should be noted, the use of the provision of data entry support tools is free of charge in principle with the aim of promoting wider use of chemSHERPA.
    [Show full text]
  • Visible-Light-Induced Photocatalytic Benzene/Cyclohexane Cross
    Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018 Supporting Information Visible-light-induced Photocatalytic Benzene/Cyclohexane Cross-coupling Utilizing a Ligand-to-metal Charge Transfer Benzene Complex Adsorbed on Titanium Oxides A. Yamamoto,*ab T. Ohara,a and H. Yoshida*ab a Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan. b Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan. E-mail: [email protected] [email protected] S1 2 –1 Material and Synthesis. An anatase TiO2 powder (JRC-TIO-8, 338 m g ) was donated from the Catalysis Society of Japan. PdCl2 (Kishida, 99%), H2PtCl6·6H2O (Wako, 99.9%), RhCl3·3H2O (Kishida, 99%), HAuCl4.4H2O (Kishida, 99.9%), Ag(NO3) (Kishida, 99%), Ni(NO3)2·6H2O (Wako, 98%) or Co(NO3)2·6H2O (Nacalai tesque, 98%) were used as a metal precursor of co-catalysts, and co-catalyst was loaded on the TiO2 powder by a photodeposition method. The TiO2 powder was dispersed in a methanol/water solution (25% v/v, 400 mL) containing the metal precursor (0.1 wt%), and irradiated using a xenon lamp (Perkin Elmer PE300BUV) with stirring for 30 min. The light intensity was 50 mW cm–2 when measured at 365 ± 20 nm wavelength using a UV radiometer (Topcon, UVR-2, UD-36). After the filtration, the sample was washed with ion-exchanged water, and then was dried at 323 K. The catalyst is referred to as M/TiO2 (M = Rh, Pt, Au, Pd, Ag, Ni, and Co).
    [Show full text]
  • Schedule of Investments July 31, 2021 (Unaudited)
    Elfun International Equity Fund Schedule of Investments July 31, 2021 (Unaudited) Number Fair Number Fair of Shares Value of Shares Value Common Stock - 96.1% Kao Corp. 36,700 $ 2,198,322 Australia - 2.0% Komatsu Ltd. 104,800 2,701,405 BHP Group PLC 129,626 $ 4,188,443 Mitsubishi UFJ Financial Group Inc. 773,626 4,077,837 Brazil - 0.5% Murata Manufacturing Itau Unibanco Holding S.A. Company Ltd. 48,091 3,961,208 ADR 183,361 1,057,993 Nidec Corp. 14,673 1,636,424 Recruit Holdings Company Canada - 1.2% Ltd. 100,100 5,134,058 Brookfield Asset Secom Company Ltd. 26,300 1,977,952 Management Inc., Class A 46,839 2,527,021 Shimadzu Corp. 78,657 3,153,447 Brookfield Asset Shiseido Company Ltd. 56,762 3,768,273 Management Reinsurance Partners Ltd., Class A 323 17,475 Tokio Marine Holdings Inc. 62,898 2,985,864 2,544,496 50,292,594 France - 16.9% Netherlands - 7.6% Air Liquide S.A. 32,280 5,610,731 ASML Holding N.V. 10,393 7,875,044 AXA S.A. 130,371 3,382,513 ING Groep N.V. 307,846 3,959,263 BNP Paribas S.A. 68,053 4,151,871 Koninklijke DSM N.V. 20,217 4,074,263 Dassault Systemes SE 55,675 3,071,221 15,908,570 LVMH Moet Hennessy Louis Vuitton SE 8,210 6,560,695 Norway - 1.3% Safran S.A. 32,196 4,211,033 Equinor ASA 145,138 2,832,826 Vivendi SE 109,924 3,714,913 Worldline S.A.
    [Show full text]
  • ERADICATING FORCED LABOR in ELECTRONICS: What Do Company Statements Under the UK Modern Slavery Act Tell Us?
    ERADICATING FORCED LABOR IN ELECTRONICS: What do company statements under the UK Modern Slavery Act tell us? March 2018 TABLE OF CONTENTS Executive Summary 3 Introduction: Forced Labor Risks in Electronics Supply Chains 5 Company Selection 7 Compliance with the UK Modern Slavery Act 8 What Actions Have Companies Taken? 11 Findings by Theme: Gaps and Good Practice Examples 13 1. Commitment and Governance, including Training 13 2. Traceability and Risk Assessment 14 3. Purchasing Practices 15 4. Recruitment 16 5. Worker Voice 17 6. Monitoring 18 7. Remedy 19 Recommendations for Electronic Companies 20 Appendix 1: ICT Companies Required to Report under the UK Modern Slavery Act 21 Appendix 2: Benchmark Methodology - Information and Communications Technology 25 2 KnowTheChain TABLE OF CONTENTS EXECUTIVE SUMMARY The information and communications technology sector medium-size global ICT companies and identified 102 (ICT) is at high risk of forced labor. A significant number of companies from Asia, Europe, and the United States required workers in electronics supply chains are migrant workers to report under the Modern Slavery Act. We reached out to 23 who are particularly vulnerable to exploitation. The US of those companies that had not published a statement. We Department of Labor lists China and Malaysia as countries also assessed compliance among published statements with where electronics may be produced using forced labor. In the minimum requirements of the Modern Slavery Act: the fact, a 2014 Verité study found that nearly a third of migrant statement must be linked on the homepage of the company’s workers in Malaysia’s electronics sector are in situations of website, signed by a director or equivalent, and approved by forced labor.1 the board.
    [Show full text]
  • Weston Was the Icon of Meters in Japan
    2007 IEEE Conference on the History of Electric Power Weston was the Icon of Meters in Japan Eiju MATSUMOTO* Society of Historical Metrology, Japan Abstract Weston Electrical Instrument Corporation was founded in 1888 and began to manufacture portable direct-current meters. At that time, the electricity power industry emerged in Japan, and in 1888, the Institute of Electrical Engineers of Japan (IEEJ) was also established. Many Weston meters were imported to Japan and used by government institutions and universities. Japanese meter manufacturers were established around 1900 and began to manufacture meters similar to Weston's meters. It took a while for them to become able to make meters that were comparable to Weston's. On the other hand, it took a long time for Japanese users to acknowledge that the performance of domestic meters achieved the level of Weston's. In other words, Weston's meters were the icon of meters for Japanese users and maintained their superiority status for a long time in Japan. The following meters were Weston's specialties: 1) Laboratory Standard Instrument (accuracy of 0.1%) 2) Portable Precision Instrument (accuracy of 0.25%) 3) Photographic Exposure Meter Weston's superiority status in Japan continued until around 1950, after World War II. The arrival of digital instruments, however, changed the situation radically. Although the company had excellent patents, such as one for the dual-slope A/D converter, Weston Corporation passed on the opportunity to survive the competition in the meter industry. 1. Weston Electrical Instrument and voltage [2]. Corporation and Japan Many Japanese meter manufacturers were Edward Weston (1850-1936) completed a founded before and after World War I (1914 - portable precision electrical instrument in 1918), because the war made it difficult for 1888 and founded Weston Electrical Japan to export and import products.
    [Show full text]