Molecular and Atomic Spectroscopy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dozy-Chaos Mechanics for a Broad Audience
challenges Concept Paper Dozy-Chaos Mechanics for a Broad Audience Vladimir V. Egorov Russian Academy of Sciences, FSRC “Crystallography and Photonics”, Photochemistry Center, 7a Novatorov Street, 119421 Moscow, Russia; [email protected] Received: 29 June 2020; Accepted: 28 July 2020; Published: 31 July 2020 Abstract: A new and universal theoretical approach to the dynamics of the transient state in elementary physico-chemical processes, called dozy-chaos mechanics (Egorov, V.V. Heliyon Physics 2019, 5, e02579), is introduced to a wide general readership. Keywords: theoretical physics; quantum mechanics; molecular quantum transitions; singularity; dozy chaos; dozy-chaos mechanics; electron transfer; condensed matter; applications 1. Introduction In a publication of Petrenko and Stein [1], it is demonstrated that “the feasibility of the theory of extended multiphonon electron transitions” [2–4] “for the description of optical spectra of polymethine dyes and J-aggregates using quantum chemistry”. A recent publication by the same authors [5] “demonstrates the feasibility and applicability of the theory of extended multiphonon electron transitions for the description of nonlinear optical properties of polymethine dyes using quantum chemistry and model calculations”. About twenty years have passed since the first publications on the theory of extended multiphonon electron transitions [2–4], however, apart from the author of this theory and this paper, only Petrenko and Stein managed to use their results constructively, despite their promising character [1,5,6], and despite the fact that for a long time, the new theory has been constantly in the field of view of a sufficiently large number of researchers (see, e.g., [7–31]). The low demand in practice for the new, promising theory is associated not only with its complexity (however, we note that this theory is the simplest theory of all its likely future and more complex modifications [6]), but also with an insufficiently clear presentation of its physical foundations in the author’s pioneering works [2–4]. -
Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals
Article Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals Pravin Kumar Tiwari 1,2, Nilesh Kumar Rai 3, Rohit Kumar 3, Christian G. Parigger 4 and Awadhesh Kumar Rai 2,* 1 Institute for Plasma Research, Gandhinagar, Gujarat-382428, India 2 Laser Spectroscopy Research Laboratory, Department of Physics, University of Allahabad, Prayagraj-211002, India 3 CMP Degree College, Department of Physics, University of Allahabad, Pragyagraj-211002, India 4 Physics and Astronomy Department, University of Tennessee, University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700, USA * Correspondence: [email protected]; Tel.: +91-532-2460993 Received: 10 June 2019; Accepted: 10 July 2019; Published: 19 July 2019 Abstract: Laser-induced breakdown spectroscopy (LIBS) of pharmaceutical drugs that contain paracetamol was investigated in air and argon atmospheres. The characteristic neutral and ionic spectral lines of various elements and molecular signatures of CN violet and C2 Swan band systems were observed. The relative hardness of all drug samples was measured as well. Principal component analysis, a multivariate method, was applied in the data analysis for demarcation purposes of the drug samples. The CN violet and C2 Swan spectral radiances were investigated for evaluation of a possible correlation of the chemical and molecular structures of the pharmaceuticals. Complementary Raman and Fourier-transform-infrared spectroscopies were used to record the molecular spectra of the drug samples. The application of the above techniques for drug screening are important for the identification and mitigation of drugs that contain additives that may cause adverse side-effects. Keywords: paracetamol; laser-induced breakdown spectroscopy; cyanide; carbon swan bands; principal component analysis; Raman spectroscopy; Fourier-transform-infrared spectroscopy 1. -
Near-Infrared Spectroscopic Analysis for Classification
CORE Metadata, citation and similar papers at core.ac.uk Provided by Wood and Fiber Science (E-Journal) NEAR-INFRARED SPECTROSCOPIC ANALYSIS FOR CLASSIFICATION OF WATER MOLECULES IN WOOD BY A THEORY OF WATER MIXTURES Sang-Yun Yang Graduate Research Assistant Department of Forest Sciences Seoul National University Seoul, Korea 151-921 E-mail: [email protected] Chang-Deuk Eom Research Scientist Korea Forest Research Institute Seoul, Korea E-mail: [email protected] Yeonjung Han PhD Candidate E-mail: [email protected] Yoonseong Chang Graduate Research Assistant E-mail: [email protected] Yonggun Park Department of Forest Sciences Seoul National University Seoul, Korea 151-921 E-mail: [email protected] Jun-Jae Lee Professor E-mail: [email protected] Joon-Weon Choi Associate Professor E-mail: [email protected] Hwanmyeong Yeo*{ Associate Professor Research Institute for Agriculture and Life Sciences Department of Forest Sciences Seoul National University Seoul, Korea, 151-921 E-mail: [email protected] (Received May 2013) * Corresponding author { SWST member Wood and Fiber Science, 46(2), 2014, pp. 138-147 # 2014 by the Society of Wood Science and Technology Yang et al—NIR SPECTROSCOPIC ANALYSIS FOR WOOD WATER MOLECULES 139 Abstract. This study was conducted to analyze the mechanism of moisture adsorption–desorption in wood using near-IR (NIR) spectroscopy. NIR spectra reflected from moist wood were acquired, and spectra in the range from 1800-2100 nm, which were sensitive to water variation, were decomposed into three different components according to the Buijs and Choppin theory. It is assumed that the three components represent three types of bound water: water molecules without -OH groups engaged in hydrogen bonds (S0), water molecules with one -OH group engaged in a hydrogen bond (S1), and water molecules with two -OH groups engaged in hydrogen bonds (S2). -
Atomic Spectroscopy
Atomic Spectroscopy Reference Books: 1) Analytical Chemistry by Gary D. Christian 2) Principles of instrumental Analysis by Skoog, Holler, Crouch 3) Fundamentals of Analytical Chemistry by Skoog 4) Basic Concepts of analytical Chemistry by S. M. Khopkar We consider two types of optical atomic spectrometric methods that use similar techniques for sample introduction and atomization. The first is atomic absorption spectrometry (AAS), which for half a century has been the most widely used method for the determination of single elements in analytical samples. The second is atomic fluorescence spectrometry (AFS), which since the mid-1960s has been studied extensively. By contrast to the absorption method, atomic fluorescence has not gained widespread general use for routine elemental analysis. Thus, although several instrument makers have in recent years begun to offer special- purpose atomic fluorescence spectrometers, the vast majority of instruments are still of the atomic absorption type. Sample Atomization Techniques We first describe the two most common methods of sample atomization encountered in AAS and AFS, flame atomization, and electrothermal atomization. We then turn to three specialized atomization procedures used in both types of spectrometry. Flame Atomization In a flame atomizer, a solution of the sample is nebulized by a flow of gaseous oxidant, mixed with a gaseous fuel, and carried into a flame where atomization occurs. As shown in Figure, a complex set of interconnected processes then occur in the flame. The first step is desolvation, in which the solvent evaporates to produce a finely divided solid molecular aerosol. The aerosol is then volatilized to form gaseous molecules. Dissociation of most of these molecules produces an atomic gas. -
Methods Employed in Optical Emission Spectroscopy Analysis: a Review
Ingeniería y Ciencia ISSN:1794-9165 | ISSN-e: 2256-4314 ing. cienc., vol. 11, no. 21, pp. 239–267, enero-junio. 2015. http://www.eafit.edu.co/ingciencia This article is licensed under a Creative Commons Attribution 4.0 By Methods Employed in Optical Emission Spectroscopy Analysis: a Review D. M. Devia 1, L. V. Rodriguez-Restrepo 2and E. Restrepo-Parra 3 Received: 15-06-2014 | Acepted: 25-09-2014 | Onlínea: 01-30-2015 PACS: 52.25.Dg, 31.15.V- doi:10.17230/ingciencia.11.21.12 Abstract In this work, different methods employed for the analysis of emission spec- tra are presented. The proposal is to calculate the excitation temperature (Texc), electronic temperature (Te) and electron density (ne) for several plasma techniques used in the growth of thin films. Some of these tech- niques include magnetron sputtering and arc discharges. Initially, some fundamental physical principles that support the Optical Emission Spec- troscopy (OES) technique are described; then, some rules to consider dur- ing the spectral analysis to avoid ambiguities are listed. Finally, some of the more frequently used spectroscopic methods for determining the phy- sical properties of plasma are described. Key words: OES; plasma parameters; elemental determination; line intensity; broadening; shifting 1 Universidad Tecnológica de Pereira, Pereira, Colombia, [email protected]. 2 Universidad Nacional de Colombia, Sede Manizales, Colombia, [email protected] . 3 Universidad Nacional de Colombia, Sede Manizales, Colombia [email protected]. Universidad EAFIT 239j Methods Employed in Optical Emission Spectroscopy Analysis: a Review Métodos empleados en el análisis de espectroscopía óptica de emisión: una revisión Resumen En este trabajo se presentan diferentes métodos empleados para el análisis de espectros ópticos de emisión. -
Atomic Spectroscopy 008044D 01 a Guide to Selecting The
PerkinElmer has been at the forefront of The Most Trusted inorganic analytical technology for over 50 years. With a comprehensive product Name in Elemental line that includes Flame AA systems, high-performance Graphite Furnace AA Analysis systems, flexible ICP-OES systems and the most powerful ICP-MS systems, we can provide the ideal solution no matter what the specifics of your application. We understand the unique and varied needs of the customers and markets we serve. And we provide integrated solutions that streamline and simplify the entire process from sample handling and analysis to the communication of test results. With tens of thousands of installations worldwide, PerkinElmer systems are performing WORLD LEADER IN inorganic analyses every hour of every day. Behind that extensive network of products stands the industry’s largest and most-responsive technical service and support staff. Factory-trained and located in 150 countries, they have earned a reputation for consistently AA, ICP-OES delivering the highest levels of personalized, responsive service in the industry. AND ICP-MS PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs Copyright ©2008-2013, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners. Atomic Spectroscopy 008044D_01 A Guide to Selecting the Appropriate -
DOCTOR of PHILOSOPHY Xueyu Song
Probing properties of glassy water and other liquids with site selective spectroscopies Nhan Chuong Dang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Physical Chemistry Program of Study Committee: Ryszard Jankowiak, Co-major Professor Klaus Schmidt-Rohr, Co-major Professor Mark Gordon Xueyu Song Victor S.-Y. Lin Iowa State University Ames, Iowa 2005 Copyright 0Nhan Chuong Dang, 2005. All rights reserved. Graduate College Iowa State University This is to certify that the doctoral dissertation of Nhan Chuong Dang has met the dissertation requirements of Iowa State University & SL-%+& Co-major Professor e2z--T6 For the Major Program ... 111 TABLE OF CONTENTS CHAPTER 1. BACKGROUND ON SUPERCOOLED LIQUIDS, GLASSES AND HETEROGENEOUS DYNAMICS 1.1. Formations of Supercooled Liquids and Glasses 1.2. Dynamics, Thermodynamics, and Heterogeneous Dynamics of Supercooled Liquids and Glasses 3 1.3. Background on Supercooled and Glassy water 10 1.4. Remarks on Unsolved Problems Concerning Dynamics of Supercooled Liquids and Glasses and Proposals of Solving the Problems 14 1.5. Dissertation Organization 20 References 22 CHAPTER 2. OPTICAL SPECTROSCOPY OF IMPURITIES IN SOLIDS 27 2.1. Electronic Spectra of Single Impurities in Solids 27 2.2. Electron-Phonon Coupling 33 2.3. Single Site Absorption Line Shape 37 2.4. Inhomogeneous Broadening and Optical Bands of Impurities in Solids 38 2.5. Spectral Hole Burning 42 2.5.1. NPHB Mechanism 47 2.5.2. Dispersive Hole Growth Kinetics 53 2.5.3. Temperature Dependence of Zero-Phonon Hole 56 iv 2.6. -
Broadening of Spectral Lines in Emission of Atomic and Molecular Gases © International Science Press I R a M P ISSN: 2229-3159 8(2), December 2017, Pp
Broadening of Spectral lines in Emission of Atomic and Molecular Gases © International Science Press I R A M P ISSN: 2229-3159 8(2), December 2017, pp. 99-118 Broadening of Spectral lines in Emission of Atomic and Molecular Gases B. M. SMIRNOV Joint Institute for High Temperatures of Russian Academy of Sciences, Izhorskaya 13/19, Moscow, Russia ABSTRACT: An analogy is shown for broadening the spectral line of atoms in the case of competition between the short-range Doppler broadening mechanism and the long-range broadening mechanism, as well as for the absorption band of a molecular gas in the infrared (IR) spectral range, where a long-range part of the spectrum is also determined by the impact mechanism of the broadening, and the long-range part in the pedestal region the absorption band is associated with the distribution of molecules over the rotational states, and in the region of the wings of the absorption band, it is due to the finite time of collisions involving emitting molecules. The flux of resonance radiation produced by an excited atomic gas is estimated using the concepts of the spectral emission band of a high optical thickness of the gas. These concepts are used for a molecular gas where, in the framework of the regular model (the Elsasser model), expressions are obtained for the absorption coefficient related to a specific spectral absorption band, separately in the pedestal region and for the wings of the absorption band. As a demonstration of the possibilities of these concepts, based on them, the IR radiative flux was calculated on the surface of Venus from its atmosphere, which includes seven vibrational transitions of the carbon dioxide molecule and amounts to 26% of the total flux of IR radiation emitted by the surface of Venus. -
Prospects in Analytical Atomic Spectrometry
Russian Chemical Reviews 75 $4) 289 ± 302 $2006) Prospects in analytical atomic spectrometry AABol'shakov, AAGaneev, V M Nemets Contents I. Introduction 289 II. Atomic absorption spectrometry 290 III. Atomic emission spectrometry 292 IV. Atomic mass spectrometry 293 V. Atomic fluorescence spectrometry 295 VI. Atomic ionisation spectrometry 296 VII. Sample preparation and introduction, atomisation and data processing 298 VIII. Conclusion 298 Abstract. The trends in the development of five main branches of processing $averaging) of noise and enhances the analysis accu- atomic spectrometry, viz., absorption, emission, mass, fluores- racy due to the use of correlation models and neural network cence and ionisation spectrometry, are analysed. The advantages algorithms. and drawbacks of various techniques in atomic spectrometry are The development of analytical spectrometry and detection considered. Emphasised are the applications of analytical plasma- techniques is stimulated by the diverse and increasing demands in and laser-based methods. The problems and prospects in the industry, medicine, science, environmental control, forensic ana- development in respective fields of analytical instrumentation lysis, etc. The development of portable analysers for the determi- are discussed. The bibliography includes 279 references.references. nation of elements in different media at the immediate point of sampling, which eliminates the stages of collecting, transportation I. Introduction and storage of samples, is one of the most important directions. It should be noted that the development of atomic spectro- Analytical atomic spectrometry embraces a multitude of techni- metry slowed down in recent years; particularly, a trend towards a ques of elemental analysis that are based on the decomposition of decreasing number of scientific publications occurred. -
Atomic Absorption Spectroscopy
ATOMIC ABSORPTION SPECTROSCOPY Edited by Muhammad Akhyar Farrukh Atomic Absorption Spectroscopy Edited by Muhammad Akhyar Farrukh Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2011 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Anja Filipovic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team Image Copyright kjpargeter, 2011. DepositPhotos First published January, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Atomic Absorption Spectroscopy, Edited by Muhammad Akhyar Farrukh p. -
Atomic Spectroscopy Atomic Spectra
Atomic Spectroscopy Atomic Spectra • energy Electron excitation n = 1 ∆E – The excitation can occur at n = 2 different degrees n = 3, etc. • low E tends to excite the outmost e-’s first • when excited with a high E (photon of high v) an e- can jump more than one levels - 4f • even higher E can tear inner e ’s 4d n=4 away from nuclei 4p 3d - – An e at its excited state is not stable and tends to 4s return its ground state n=3 3p - – If an e jumped more than one energy levels because 3s of absorption of a high E, the process of the e- Energy n=2 2p returning to its ground state may take several steps, - 2s i.e. to the nearest low energy level first then down to n=1 next … 1s Atomic Spectra • Atomic spectra energy – The level and quantities of energy n = 1 - ∆E supplied to excite e ’s can be measured n = 2 & studied in terms of the frequency and n = 3, the intensity of an e.m.r. - the etc. absorption spectroscopy – The level and quantities of energy emitted by excited e-’s, as they return to their ground state, can be measured & studied by means of the emission spectroscopy 4f – The level & quantities of energy 4d n=4 absorbed or emitted (v & intensity of 4p e.m.r.) are specific for a substance 3d 4s n=3 3p 3s – Atomic spectra are mostly in UV Energy (sometime in visible) regions n=2 2p 2s n=1 1s Atomic spectroscopy • Atomic emission – Zero background (noise) • Atomic absorption – Bright background (noise) – Measure intensity change – More signal than emission – Trace detection Signal is proportional top number of atoms AES - low noise (background) AAS - high signal The energy gap for emission is exactly the same as for absorption. -
SOLID STATE PHYSICS PART II Optical Properties of Solids
SOLID STATE PHYSICS PART II Optical Properties of Solids M. S. Dresselhaus 1 Contents 1 Review of Fundamental Relations for Optical Phenomena 1 1.1 Introductory Remarks on Optical Probes . 1 1.2 The Complex dielectric function and the complex optical conductivity . 2 1.3 Relation of Complex Dielectric Function to Observables . 4 1.4 Units for Frequency Measurements . 7 2 Drude Theory{Free Carrier Contribution to the Optical Properties 8 2.1 The Free Carrier Contribution . 8 2.2 Low Frequency Response: !¿ 1 . 10 ¿ 2.3 High Frequency Response; !¿ 1 . 11 À 2.4 The Plasma Frequency . 11 3 Interband Transitions 15 3.1 The Interband Transition Process . 15 3.1.1 Insulators . 19 3.1.2 Semiconductors . 19 3.1.3 Metals . 19 3.2 Form of the Hamiltonian in an Electromagnetic Field . 20 3.3 Relation between Momentum Matrix Elements and the E®ective Mass . 21 3.4 Spin-Orbit Interaction in Solids . 23 4 The Joint Density of States and Critical Points 27 4.1 The Joint Density of States . 27 4.2 Critical Points . 30 5 Absorption of Light in Solids 36 5.1 The Absorption Coe±cient . 36 5.2 Free Carrier Absorption in Semiconductors . 37 5.3 Free Carrier Absorption in Metals . 38 5.4 Direct Interband Transitions . 41 5.4.1 Temperature Dependence of Eg . 46 5.4.2 Dependence of Absorption Edge on Fermi Energy . 46 5.4.3 Dependence of Absorption Edge on Applied Electric Field . 47 5.5 Conservation of Crystal Momentum in Direct Optical Transitions . 47 5.6 Indirect Interband Transitions .