Chassis Control Systems for Safety, Environmental Performance, and Driving Comfort
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tire Inflation Using Suspension (Tis)
TIRE INFLATION USING SUSPENSION (TIS) CH. Sai Phani Kumar CH. Bhanu Sai Teja G. Praveen Kumar Singaiah.G B.Tech (Mechanical B.Tech (Mechanical B.Tech (Mechanical Assistant Professor Engineering) Engineering) Engineering) Hyderabad Institute of Hyderabad Institute of Hyderabad Institute of Hyderabad Institute of Technology and Technology and Technology and Technology and Management, Management, Management, Management, Hyderabad, Hyderabad, Telangana. Hyderabad,Telangana. Hyderabad,Telangana. Telangana. Abstract are front-wheel-drive monologue/uni-body designs, In this project we are collecting compressed air from with transversely mounted engines. the vehicle shock absorber (which is a foot pump in this case) and storing the compressed air into the storage tank which holds the air without losing the pressure. This project combines the concepts of both conventional spring coil type suspension and air suspension, thereby introducing spring coil type Fig 1:Leaf spring, Coil spring, Air suspensions suspension with the working fluid as air instead of oil as in the case of conventional one. This concept Introduction to TIS functions both as a shock absorber and produces In addition to this technology, an advanced system is compressed air output during the course of interaction introduced into this phase called Tire Inflation using with road noise. The stored air can be used for various suspension (TIS). TIS are a system which is introduced applications such as to inflate the tires, cleaning to inflate the tires using vehicle suspension. The auxiliary components of vehicle etc.., our project deals system increases tire life, fuel economy and safety by with the usage of compressed air energy to inflate the helping to compensate for pressure losses resulting tires with required pressures. -
Development of Active Air Suspension System for Small Agricultural Vehicles
Big Data In Agriculture (BDA) 2(2) (2020) 41-46 Big Data In Agriculture (BDA) DOI: http://doi.org/10.26480/bda.02.2020.41.46 ISSN: 2682-7786 (Online) CODEN: BDAIDR RESEARCH ARTICLE DEVELOPMENT OF ACTIVE AIR SUSPENSION SYSTEM FOR SMALL AGRICULTURAL VEHICLES Kamran Ikrama, Yasir Niaza, Shanawar Hamida, Muhammad Usman Ghanib, Muhammad Zeeshan Manshad, Muhammad Adnan Bodlaha, Muhammad Nadeemb,f, Muhammad Mubashar Omarb, Faizan Shabira, Muhammad Mohsin Waqasa*, Hassan Arshadc, Robeel Alic, Ghulam Yasine, Shoaib Hassanc, M. Bilal Akramc a Departmennt of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan. Pakistan b University of Agriculture, Faisalabad, Pakistan c Department of Mechanical Engineering, IEFR, Pakistan d Department of Plant Pathology, College of Agriculture BZU, Bahadur Sub-campus Layyah, Pakistan e Department of Forestry and Range Management, BZU, Multan, Pakistan f Department of Engineering, Faculty of Agriculture, Dalhousie University, Canada *Corresponding Author Email: [email protected] This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited ARTICLE DETAILS ABSTRACT Article History: Air ride suspension carries the load on each axle with a pressurized air bag just as a high pressure balloon. This system provides the smoothest and most shock free ride of any of the known vehicle suspension system. Received 11 January 2020 An air suspension includes a multiple air spring assemblies that each includes a piston airbag and a primary Accepted 13 February 2020 airbag mounted over the piston airbag. -
Multi-Axle Air Suspension System for a Vehicle
Europaisches Patentamt European Patent Office Office europeen des brevets (g) Publication number: 0 435 587 A2 12 EUROPEAN PATENT APPLICATION @ Application number : 90314050.7 © Int CI.5 : B60G 5/00, B60G 11/27, B60G 17/052 (22) Date of filing : 20.12.90 (So) Priority : 23.12.89 GB 8929185 @ Inventor : Griffiths, Paul John 13 East Green, Sealand Manor, Sealand Deeside, Clwyd, CH5 2SG, Wales (GB) (43) Date of publication of application : 03.07.91 Bulletin 91/27 @ Representative : Spall, Christopher John et al BARKER, BRETTELL & DUNCAN 138 Hagley @ Designated Contracting States : Road BE DE DK ES FR IT NL Edgbaston Birmingham B16 9PW (GB) (71) Applicant : RUBERY OWEN-ROCKWELL LIMITED P.O. Box 10, Booth Street, Darlaston Wednesbury West Midlands WS10 8JD (GB) (3) Multi-axle air suspension system for a vehicle. @ A multi-axle air suspension system for a tipping vehicle having towards its near a rear axle (7'") and at least one other axle (7", T) forward of the rear axle, provides selective over-riding of the normal load equalising system between the axles during tipping so as to alleviate hogging bending moments on the vehicle's chassis. A selectively operable pressure reducing valve (41) is in circuit with a pressure air source, air springs (7C, 8C) of the rear axle (7"') and with first and second valves (23, 32), selectively operated by a third valve (39), which are in circuit with the air springs (7C, 8C ; 7B, 8B ; 7A, 8A) of the rear axle (7"') and the other axle(s) (7", 7). Operation of the first and second valves (23, 32) isolates the air springs (7C, 8C) of at least the rear axles (7"') from those of the other axle or axles (7", 7') and connects the pressure reducing valve (41) to the latter air springs (7B, 8B ; 7A, 8A) so as to lower the air pressure in those air springs. -
Hydrostatic Transaxle Replacement Kit 260 Series Yard and Garden Tractor Part No
Form No. 3325–913 Hydrostatic Transaxle Replacement Kit 260 Series Yard and Garden Tractor Part No. 105–1383 Parts Catalog Ordering Replacement Parts For example, a wheel assembly might be identified by To order replacement parts, please supply: the part reference number 6, the tire by 6:1, the valve by 6:2, number, the quantity, and the description of each and the wheel by 6:3. When you order the assembly part desired. identified by reference number 6, you receive all parts identified by reference numbers 6:1, 6:2, and 6:3. Understanding Reference Numbers However, you may also order any part individually. Each identified part in an illustration has a reference Reference numbers of this type appear in illustrations number. The reference number for a part also appears in and in part lists. the parts list, along with other information about the part. Reference Numbers Indicating Quantity This catalog uses two special reference number formats, one to indicate parts in a service assembly and another In an illustration, if a reference number indicates more to indicate the quantity of a given part in an illustration. than one part, the reference number has the form nX y. The n represents the quantity of the part, the X is the Service Assembly Reference Numbers multiplication symbol, and the y represents the reference Parts in service assemblies have reference numbers in number. the form a:b. The a represents the reference number of For example, in an illustration, the reference number the entire service assembly and the b represents a 2X 37 means that two of the parts identified by reference sequential number unique to each part within the service number 37 are indicated. -
Active Air Suspension System
IJSRD - International Journal for Scientific Research & Development| Vol. 6, Issue 05, 2018 | ISSN (online): 2321-0613 Active Air Suspension System Suchit Naresh Moon Department of Mechanical Engineering Nagpur Institute of Technology, India Abstract— Air ride suspension carries the load on each axle with a pressurized air bag just as a high pressure balloon. This system provides the smoothest and most shock free ride of any of the known vehicle suspension system. An air suspension includes a multiple air spring assemblies that each includes a piston airbag and a primary airbag mounted over the piston airbag. The primary and piston airbags each have a variable volume that is controlled independently of the other for active suspension control. Air ride system provides some important following features: 1) The system automatically adjusts air pressure in the air bag so that the trailer always rides at the same height, whether lightly loaded or heavily loaded. 2) The higher air bag pressure associated with higher trailer loads automatically provides a stiffer suspension which is required for a smooth ride. 3) The lower air bag pressure for lightly loaded conditions automatically provides for a softer suspension, thus providing the same ride quality for all trailer loading conditions. Since each axle is independently supported by its own air bag, Fig. 1: Locating Suspension Units the air ride suspension is known as fully independent suspension system. The automatic control of the air bag II. FULLY ACTIVE SUSPENSION SYSTEM pressure is accomplished by a solid state electronic control system specifically designed and packaged for vehicle use. Active suspension system has the ability to response to the This system continuously checks the ride height of the vertical changes in the road input. -
Cars • Chassis & Active Safety Systems Suspension Systems in Model 164
Cars • Chassis & active safety systems Suspension systems in model 164, 221, 251 Specialist training Information module Cars • Chassis & active safety systems Suspension systems in model 164, 221, 251 Specialist training Information module r As at 12/05 This document is intended solely for use in training and is not subject to regular updating. Printed in Germany Note: © 2005 Copyright DaimlerChrysler AG The term »employees« does not imply any preference of gender and incorporated male and refers to maler Publisher: Global Training and female employees alike. This document with all its sections is protected under the laws of copyright. Its use for any purpose whatsoever requires the prior written consent of DaimlerChrysler AG. This applies in particular to its reproduction, distribution, modification, translation, recording on microfilm or storage and/or processing in electronic systems, including databases and on-line services. 1511 1724 02 - 1st Edition 12.05 42 As at 12/05 Content 11.01.2006 Title Page Suspension <> AIRmatic ..................................................................................................................................................................................................................... 1 AIRmatic W221 Signal Path / Block Diagram ..................................................................................................................................................................................... 2 AIRmatic W221 Level Stages............................................................................................................................................................................................................. -
Active Suspension Control of Electric Vehicle with In-Wheel Motors
University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2018 Active suspension control of electric vehicle with in-wheel motors Xinxin Shao University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Shao, Xinxin, Active suspension control of electric vehicle with in-wheel motors, Doctor of Philosophy thesis, School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, 2018. -
BRAKING PERFORMANCE of AIR SUSPENDED CONVERTER DOLLIES Mr
Pages 319-335 BRAKING PERFORMANCE OF AIR SUSPENDED CONVERTER DOLLIES Mr. Scott McFarlane and Dr. Peter Sweatman Roaduser Research Pty Ltd ABSTRACT In 1996 the National Road Transport Committee (NRTC) released a national heavy vehicle axle Mass Limit Review (MLR). The MLR recommended an axle mass increase for axle groups suspended by road-friendly air-suspension. For an air-suspension to be classified as Road Friendly it is required to have a bounce frequency below 2.0Hz and have damping greater than 20% of critical. It is also a requirement that the suspension group achieves load sharing within 5%. Air suspended converter dollies have become popular in Australia, particularly the triaxle type. Triaxle dollies offer a productivity benefit of between 2.5 and 4.5 tonne when compared to a tandem converter dolly. There was concern that the increased mass offered to air-suspended dollies would significantly affect the performance of road trains under braking. The Roaduser Autosim Truck Engineering Dynamics (RATED) computer simulation models were used to simulate the performance of hinged and rigid drawbar tandem and triaxle dollies under braking. The results from the simulation showed that an air-suspended tandem converter dolly could pitch significantly under braking when compared to mechanically suspended dollies. Triaxle air suspended dollies were found to pitch somewhat less than the tandem air-suspended dolly and generated a lower longitudinal force in the coupling. This indicated that the triaxle dolly has better brake balance and should be encouraged by allowing the weight increase. Rigid drawbars on converter dollies reduce the amount of dolly pitch and hence have better brake balance. -
A Comparative Study of the Suspension for an Off-Road Vehicle
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072 A Comparative study of the Suspension for an Off-Road Vehicle Sivadanus.S Department of Manufacturing Engineering, College of Engineering – Guindy, Chennai ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Humans use different vehicles to travel in is set nothing can be adjusted or moved. This type of different terrains for comfort and ease of travel. An off-terrain suspension will not be considered in the scope of this project vehicle is generally used for rugged terrain and needs a largely due to its lack of adjustability. completely different dynamics in suspension comparison to an on-road vehicle. The aim of this project is to identify and Independent suspension systems provide more effective determine the parameters of vehicle dynamics with a proper functionality in traction and stability for off-roading study of suspension and to initiate a comparative study for an applications. Independent suspension systems provide flex off-road vehicle using different models. (the ability for one wheel to move vertically while still Key Words: Suspension, Vehicle Dynamics, Off-road allowing the other wheels to stay in contact with the Vehicle, Control arms, Camber surface). 1.INTRODUCTION There are many different versions and variations of independent suspensions, which include swing axle Suspension suspensions, transverse leaf spring suspensions, trailing and The role of a suspension system within a vehicle is to ensure semi-trailing suspensions, Macpherson strut suspensions, that contact between the tires and driving surface is and double wishbone suspensions. Control arms are used for continuously maintained. -
Modelling, Testing and Analysis of a Regenerative Hydraulic Shock Absorber System
energies Article Modelling, Testing and Analysis of a Regenerative Hydraulic Shock Absorber System Ruichen Wang *, Fengshou Gu, Robert Cattley and Andrew D. Ball School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; [email protected] (F.G.); [email protected] (R.C.); [email protected] (A.D.B.) * Correspondence: [email protected]; Tel.: +44-01484-473640 Academic Editor: Paul Stewart Received: 31 March 2016; Accepted: 12 May 2016; Published: 19 May 2016 Abstract: To improve vehicle fuel economy whilst enhancing road handling and ride comfort, power generating suspension systems have recently attracted increased attention in automotive engineering. This paper presents our study of a regenerative hydraulic shock absorber system which converts the oscillatory motion of a vehicle suspension into unidirectional rotary motion of a generator. Firstly a model which takes into account the influences of the dynamics of hydraulic flow, rotational motion and power regeneration is developed. Thereafter the model parameters of fluid bulk modulus, motor efficiencies, viscous friction torque, and voltage and torque constant coefficients are determined based on modelling and experimental studies of a prototype system. The model is then validated under different input excitations and load resistances, obtaining results which show good agreement between prediction and measurement. In particular, the system using piston-rod dimensions of 50–30 mm achieves recoverable power of 260 W with an efficiency of around 40% under sinusoidal excitation of 1 Hz frequency and 25 mm amplitude when the accumulator capacity is set to 0.32 L with the load resistance 20 W. -
Roadmaster, Experts in Dinghy Towing, Introduces the Comfort Ride Slipper Leaf Spring and Shock Absorber Systems to Road-Weary Trailer and Fifth-Wheel Owners
article and photos by Bob Livingston SUSPENSION NIRVANA Roadmaster, experts in dinghy towing, introduces the Comfort Ride Slipper Leaf Spring and Shock Absorber systems to road-weary trailer and fifth-wheel owners railers and fifth-wheels take a lot of punishment a company immersed in the tow-bar business, catering on the road. Suspensions, designed to counter this to owners towing vehicles behind their motorhomes, has Tabuse, have not changed much over the years, and expanded its offerings in the towable arena with the intro- in most cases are the same ones found on chassis that date duction of the Comfort Ride Slipper Leaf Spring Suspension back a very long time. (The old line “This isn’t your grand- and Shock Absorber systems. father’s vehicle” does not apply.) While stock suspensions The concept is simple, and the result is a game changer hold the chassis off the ground, controlling the ride is not in the way trailers and fifth-wheels handle all road conditions. a strong attribute. One might ask, “Why worry about ride quality inside Leaf springs tied to shackles and a center-mounted a trailer when towing since no one is back there to feel equalizer are supposed to counter the bumps in the road the shakes, rattles and rolls? That’s a valid question, but but, with few exceptions, are not very effective. Roadmaster, subjecting a trailer to a constant 4.0-magnitude earthquake 74 TRAILER LIFE July 2018 Roadmaster’s Comfort Ride Slipper Leaf Spring and Shock Absorber systems bolt on to the frame with only minor drilling needed to mount the center box. -
Provisions Governing the Disposition of State Motor-Vehicle and Motor-Carrier Receipts 1
PROVISIONS GOVERNING THE DISPOSITION OF STATE MOTOR-VEHICLE AND MOTOR-CARRIER RECEIPTS 1/ BASED ON INFORMATION OBTAINED FROM STATE TABLE MV-106 AUTHORITIES AND FROM STATE LAW CODES STATUS AS OF JANUARY 1, 1998 CLASSIFICATION NAME OF FUND AMOUNT OR STATE CODE OF FEE 2/ OR AGENCY PROPORTION OBJECTS OF EXPENDITURE REMARKS SECTION ALABAMA 1 Counties 35.25 percent of 42.16 percent is allocated equally among counties. 57.84 percent is 40-12-270 additional truck allocated on the basis of population. registration fee State Public Road and 64.75 percent of 40-12-270 Bridge Fund additional truck registration fee Remainder Distributed as follows: State Treasurer 5 percent For collection, administration and cost of tags. 40-12-269 County Probate Judges 2.5 percent Collection and administration. 40-12-269 County Probate Judges $1.25 per registration Collection and administration. Service fee charged by local officials. 40-12-271 Department of Public Additional car, light Traffic regulation and enforcement of State traffic $10.00 per car; $10.00 per truck under 8001 lbs.; $8.00 per motorcycle. This is 40-12-274 Safety truck, and and motor vehicle laws. an additional tax to the regular license tax or registration fee and is paid to motorcycle State General Fund for the Department of Public Safety. registration fees Remainder Distributed as follows: Municipalities and 21 percent Administration, construction, maintenance and Distributed to municipality where motor vehicle resides or is registered or to 40-12-270 counties debt service on bonds for highways. county where fee is paid if not registered or residing in an incorporated municipality.