Aug. 21, 1973 3,753,883

Total Page:16

File Type:pdf, Size:1020Kb

Aug. 21, 1973 3,753,883 Aug. 21, 1973 B GRIGGS 3,753,883 PROCESS FOR PROVIDING A HYDRIDE-FREE AND OXIDE-FREE SURFACE ON ZIRCONIUM AND ZIRCONIUM-ALLOY BODIES Filed June 26, 1972 (&J.70A) ~7£//J. Al3J- OcJ 3,753,883 United States Patent Office Patented Aug. 21, 1973 1 3,753,883 The single figure of the drawing is a graph showing the PROCESS FOR PROVIDING A HYDRIDE-FREE current-potential-time relationship employed^ in carrying AND OXIDE-FREE SURFACE ON ZIRCO- out the present invention in accordance with one em- NIUM AND ZIRCONIUM-ALLOY BODIES bodiment thereof. Bruce Griggs, Richland, Wash., assignor to the United 5 In accordance with this invention, a body consisting States of America as represented by the United States essentially of zirconium and having a zirconium hydride Atomic Energy Commission surface layer is electrolytically anodized in aqueous nitric Filed June 26, 1972, Ser. No. 266,110 Int. CI. C23b J/00,1/02 acid solution to remove the hydride surface, fluoride ion U.S. CI. 204—144.5 7 Claims is added to the solution and electrolytic anodization is 10 continued to render the surface susceptible to chemical etching and chemical etching is performed in situ using ABSTRACT OF THE DISCLOSURE the anodization bath as etchant, or the body may be A zirconium or zirconium-alloy body having a zirco- etched in a separate HN03-HF etching solution. nium hydride surface layer is electrolytically anodized In the anodization operation, nitric acid is suitably in aqueous nitric acid solution to remove the hydride 15 present in 2.0% to 20% by weight of the aqueous solu- surface. Fluoride ions are then added to the solution and tion, preferably about 3% by weight. electrolytic anodization is continued. Chemical etching The cathode of the electrolyte cell may suitably be with HNO3-HF solution thereupon provides a hydride- stainless steel or other conductor resistant to nitric acid, free and oxide-free surface. Chemical etching may be such as graphite. in situ employing the anodization bath as etchant if the 20 The anode current density is governed by the resistance concentration of fluoride ions therein is high or a separate of the oxide film and the applied potential. Many different etchant solution may be employed. anode current densities were tested and found satisfactory. The upper limiting current densities will usually be determined by the geometry of the anode (its current- CONTRACTUAL ORIGIN OF THE INVENTION 25 carrying capacity) and heating effects of the current. Thus The invention described herein was made in the course a high surface area to volume ratio anode will probably of, or under, a contract with the United States Atomic have its current density limited by the ability of the Energy Commission. anode to carry the current. The electrolyte is heated by current passage and thus the total current input can be SPECIFICATION 30 limited by the heat dissipation capability of the electro- The invention relates to a process for providing a lyte system. The potential of the process is adjusted to hydride-free and oxide-free surface on zirconium and maintain the maximum current density suitable for the zirconium-alloy bodies. particular system until the maximum potential (80-100 Zirconium and its alloys tend to react with or absorb volts) is reached. Initially about 5 volts may be employed. hydrogen under certain processing or use conditions.' The 35 The current density is then allowed to decay to a low hydrogen thus absorbed forms a hydrogen-rich phase in value which indicates all the surface hydride has been the metal. This zirconium hydride phase can distribute removed. itself as a surface layer, a uniformly distributed precip- Apparently the anodic removal of the surface hydride is itate, or both, depending on the conditions of its formation 4n accomplished in stages. The first stage appears to be and3 subsequen1 ta treatmentj. a .1.. ThT"1 e presence o_ fr zirconiu_* * m electrochemicaQlaf'trr\r,nOtnir>n1l attacof fn r>V-k of the continuou+J«-»Tt/-»f«f<s annn/di fairl-Poiy densea hydride in zirconium or its alloys usually produces unde- hydride layer. The electrical conductivity of the hydride sirable properties for structural applications. The removal allows current flow at low potentials and one expects the of a zirconium hydride surface layer from a zirconium current density to be fairly constant over the anodic alloy is frequently desirable to avoid its future redis- 45 surface. This stage could be considered dissolution of tribution throughout the metal during subsequent process- the hydride. ing or use conditions. The second stage occurs when zirconium metal is Surface layers of zirconium hydride can be removed by exposed at the surface and begins to anodize or form chemical etching in HN03-HF solutions, abrasive blast a protective oxide layer. The cell potential increases became of tbe techniques, machining or grinding. None of these methods 5q increasing^ resistance to current flow at are selectiv1 J.; e andJ thuil s requir... 2 e a detailei,.»t1d t knowledg1 4 e ofC thttteQ Zircalo7lt*r>r\ 1 ATyT surfaceo »•»•»-£<-> nn . DurinT\n ntn g thiI s„ seconnnnMM dJ stagen^n , "L.hydridJ e» the amount and distribution of the zirconium hydride to is still being removed. However, spalling or sloughing of be removed. Hot vacuum extraction can only be employed the hydride, oxide and/or metal is noted, apparently due for hydrogen removal if the part be sufficiently heated in to undercutting of the surface along hydride precipitates. a high vacuum. 5g The third stage occurs when the potential rapidly An object of this invention is to provide a process for increases to a high value, above 80 volts. This is an indi- the selective removal of dense zirconium hydride layers cation that the current paths on the Zircaloy-2 sample from zirconium and its alloys, and the obtaining of a have been effectively blocked by the anodic film formed hydride-free and oxide-free surface. on the surface. The hydride case will have essentially Another object is to provide an efficient and econom- 60 teen removed by this time. ical process for the removal of surface hydride layers The electrolyte may be at any temperature between 20" present on nuclear reactor process tubes made of zirco- and 40° C., the upper limit being specified because slight nium or zirconium alloys consisting essentially of zirco- pitting of the zirconium body has been observed at elec- nium, such as Zircaloy-2 (an alloy of zirconium with trolyte temperatures above 40° C. 1.5% by weight Sn, 0.15% Fe, 0.10% Cr and 0.0-0.05% 65 Subsequent to the nitric acid anodizing, fluoride ions Ni). (HF, NH4F, NH4-HF, etc.) are added to the solution and 5 3,754,138 4 electrolytic anodization is continued to render the anod- The specimen was removed from the anodizing treat- ically formed oxide layer susceptible to chemical etching. ment and immersed for about 7 minutes in standard The amount of fluoride added affects the subsequent HNO3-HF etch solution at room temperature which anodizing process. Small amounts of fluorides such as caused all the visible oxide layer to flake off and the part 0.04% will require a high (50-100 v.) anodizing voltage g to etch normally. Continued chemical etching to remove to make the oxide film subject to removal in a standard about 1 mil of metal produced a normal etched surface zirconium etch solution (approximately 33% HN03, appearance. This combined process will also remove any 1.6% HF and 65% H20 by weight). Alternatively, a layer of detached platelets of zirconium hydride that larger amount of fluoride (<~1%) will require a lower escape removal in the plain nitric acid anodizing treat- anodizing voltage (5 to 20 v.) and can also act as the io ment. etch solution by reducing the potential after decomposing For some applications, in situ etching is very desirable, the oxide layer. Any of these processes can be conducted particularly since the sensitivity of zirconium and zir- by changing the composition of the solution in one liquid conium alloys to the rate of flow of a standard etching system or moving the body being treated from one liquid solution is very high. For such applications a fluoride system to another having the desired composition. For 15 concentration on the order of \% may be employed and some applications one method is better and for other the initial voltage is reduced to 5 to 20 volts. Maximum applications the other method would be better. and minimum fluoride concentrations have not been es- Removal of the hydride layer by electrical anodiza- tablished; however, it is clear that somewhat larger and tion in nitric acid is shown in the following. smaller concentrations would be acceptable. The process, as applied to one particular specimen, con- 20 According to a specific example of this embodiment of sisted of making a 20-inch section of 1.8 inch-diameter the invention, a Zircaloy tube was electrolytically anodized Zircaloy-2 tubing the anode of an electrolytic cell. The while flowing 3% nitric acid through the tube as described cathode of the cell was a central piece of Vi -inch-diameter above. After the potential reached 100 volts the current stainless steel tubing which also carried the 3% nitric was shut off and 1.2 weight percent ammonium bifluoride acid solution which was pumped into the Zircaloy tube 25 (NH4F-HF) was added to the anodizing solution. A po- section from a recirculation reservoir containing 24 liters tential of 5 volts was applied and maintained until the of the acid solution. The Zircaloy tube section had an current density reached 100 ma./cm.2 at which time internal surface layer of zirconium hydride approximately the voltage was backed off to hold the current steady.
Recommended publications
  • Fuel Geometry Options for a Moderated Low-Enriched Uranium Kilowatt-Class Space Nuclear Reactor T ⁎ Leonardo De Holanda Mencarinia,B,Jeffrey C
    Nuclear Engineering and Design 340 (2018) 122–132 Contents lists available at ScienceDirect Nuclear Engineering and Design journal homepage: www.elsevier.com/locate/nucengdes Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor T ⁎ Leonardo de Holanda Mencarinia,b,Jeffrey C. Kinga, a Nuclear Science and Engineering Program, Colorado School of Mines (CSM), 1500 Illinois St, Hill Hall, 80401 Golden, CO, USA b Subdivisão de Dados Nucleares - Instituto de Estudos Avançados (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, n 1, 12228-001 São José dos Campos, SP, Brazil ABSTRACT A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel and could be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. The HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) serves as a basis for a similar reactor fueled with LEU fuel. Based on MCNP6™ neutronics performance estimates, the size of a 5 kWe reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core in four different configurations (a homogeneous fuel/moderator mixture and spherical, disc, and helical fuel geometries) to reduce the mass of uranium required to produce the same excess reactivity, decreasing the size of the reactor. The lowest mass reactor with a given moderator represents a balance between the reflector thickness and core diameter needed to maintain the multiplication factor equal to 1.035, with a H/D ratio of 1.81.
    [Show full text]
  • Delayed Hydride Cracking in Zirconium Alloys in Pressure Tube Nuclear Reactors
    IAEA-TECDOC-1410 Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors Final report of a coordinated research project 1998–2002 October 2004 IAEA-TECDOC-1410 Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors Final report of a coordinated research project 1998–2002 October 2004 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria DELAYED HYDRIDE CRACKING IN ZIRCONIUM ALLOYS IN PRESSURE TUBE NUCLEAR REACTORS IAEA, VIENNA, 2004 IAEA-TECDOC-1410 ISBN 92–0–110504–5 ISSN 1011–4289 © IAEA, 2004 Printed by the IAEA in Austria October 2004 FOREWORD This report documents the work performed in the Coordinated Research Project (CRP) on Hydrogen and Hydride Degradation of the Mechanical and Physical Properties of Zirconium Alloys. The Project consisted of hydriding samples of Zr-2.5 Nb pressure tube materials used in CANDU-type and RBMK reactors, the measurement of delayed hydride cracking (DHC) rates under specified conditions, and analysis of hydrogen concentrations. The project was overseen by a supervisory group of experts in the field who provided advice and assistance to the participants as required. All of the research work undertaken as part of the CRP is described in this report, which includes a review of the state of the art in understanding crack propagation by DHC and details of the experimental procedures that produced the most consistent set of DHC rates reported in an international round-robin exercise to this date. All of the participants and many of their co-workers in the laboratories involved in the CRP contributed results and material used in the drafting of this report, which contains compilations of all of the results, their analysis, discussions of their interpretation and conclusions and recommendations for further work.
    [Show full text]
  • NETS 2020 Template
    بÀƵƧǘȁǞƧƊǶ §ȲȌǐȲƊǿ ƊƧDzɈȌɈǘƵwȌȌȁƊȁƮȌȁ ɈȌwƊȲȺɈǘȲȌɐǐǘƊƮɨƊȁƧǞȁǐ خȁɐƧǶƵƊȲɈƵƧǘȁȌǶȌǐǞƵȺƊȁƮ ǞȁȁȌɨƊɈǞȌȁ ǞȺ ȺȯȌȁȺȌȲƵƮ Ʀɯ ɈǘƵ ƊDz ªǞƮǐƵ yƊɈǞȌȁƊǶ ׁׂ׀ׂ y0À² ÀǘǞȺ ƧȌȁǏƵȲƵȁƧƵ خׁׂ׀ׂ ةɈǘ׀׃ƊȁƮ ɩǞǶǶƦƵ ǘƵǶƮ ǏȲȌǿȯȲǞǶ ׂ׆ɈǘٌةmƊƦȌȲƊɈȌȲɯ ɩǞǶǶ ƦƵ ǘƵǶƮ ɨǞȲɈɐƊǶǶɯ ȺȌ ɈǘƊɈ ɈǘƵ ƵȁɈǞȲƵ y0À² خƧȌǿǿɐȁǞɈɯǿƊɯȯƊȲɈǞƧǞȯƊɈƵǞȁɈǘǞȺƵɮƧǞɈǞȁǐǿƵƵɈǞȁǐ ǐȌɨخȌȲȁǶخخׁׂ׀ȁƵɈȺׂششبǘɈɈȯȺ Nuclear and Emerging Technologies for Space Sponsored by Oak Ridge National Laboratory, April 26th-30th, 2021. Available online at https://nets2021.ornl.gov Table of Contents Table of Contents .................................................................................................................................................... 1 Thanks to the NETS2021 Sponsors! ...................................................................................................................... 2 Nuclear and Emerging Technologies for Space 2021 – Schedule at a Glance ................................................. 3 Nuclear and Emerging Technologies for Space 2021 – Technical Sessions and Panels By Track ............... 6 Nuclear and Emerging Technologies for Space 2021 – Lightning Talk Final Program ................................... 8 Nuclear and Emerging Technologies for Space 2021 – Track 1 Final Program ............................................. 11 Nuclear and Emerging Technologies for Space 2021 – Track 2 Final Program ............................................. 14 Nuclear and Emerging Technologies for Space 2021 – Track 3 Final Program ............................................. 18
    [Show full text]
  • Catalytic Systems Based on Cp2zrx2 (X = Cl, H), Organoaluminum
    catalysts Article Catalytic Systems Based on Cp2ZrX2 (X = Cl, H), Organoaluminum Compounds and Perfluorophenylboranes: Role of Zr,Zr- and Zr,Al-Hydride Intermediates in Alkene Dimerization and Oligomerization Lyudmila V. Parfenova 1,* , Pavel V. Kovyazin 1, Almira Kh. Bikmeeva 1 and Eldar R. Palatov 2 1 Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Prospekt Oktyabrya, 141, 450075 Ufa, Russia; [email protected] (P.V.K.); [email protected] (A.K.B.) 2 Bashkir State University, st. Zaki Validi, 32, 450076 Ufa, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-347-284-3527 i i Abstract: The activity and chemoselectivity of the Cp2ZrCl2-XAlBu 2 (X = H, Bu ) and [Cp2ZrH2]2- ClAlEt2 catalytic systems activated by (Ph3C)[B(C6F5)4] or B(C6F5)3 were studied in reactions with 1-hexene. The activation of the systems by B(C6F5)3 resulted in the selective formation of head- to-tail alkene dimers in up to 93% yields. NMR studies of the reactions of Zr complexes with organoaluminum compounds (OACs) and boron activators showed the formation of Zr,Zr- and Zr,Al-hydride intermediates, for which diffusion coefficients, hydrodynamic radii, and volumes were estimated using the diffusion ordered spectroscopy DOSY. Bis-zirconium hydride clusters of type x[Cp ZrH ·Cp ZrHCl·ClAlR ]·yRnAl(C F ) − were found to be the key intermediates of alkene 2 2 2 2 6 5 3 n dimerization, whereas cationic Zr,Al-hydrides led to the formation of oligomers. Citation: Parfenova, L.V.; Kovyazin, P.V.; Bikmeeva, A.K.; Palatov, E.R.
    [Show full text]
  • 2013 Book Modernorganoalum
    41 Topics in Organometallic Chemistry Editorial Board: M. Beller l J. M. Brown l P. H. Dixneuf A. Fu¨rstner l L. J. Gooßen l L. S. Hegedus P. Hofmann l T. Ikariya l L. A. Oro l Q.-L. Zhou Topics in Organometallic Chemistry Recently Published Volumes Organometallic Pincer Chemistry Photophysics of Organometallics Volume Editors: Gerard van Koten, Volume Editor: A. J. Lees David Milstein Vol. 29, 2010 Vol. 40, 2013 Molecular Organometallic Materials Organometallics and Renewables for Optics Volume Editors: Michael A. R. Meier, Volume Editors: H. Le Bozec, V. Guerchais Bert M. Weckhuysen, Pieter C. A. Bruijnincx Vol. 28, 2010 Vol. 39, 2012 Transition Metal Catalyzed Enantioselective Conducting and Magnetic Organometallic Allylic Substitution in Organic Synthesis Molecular Materials Volume Editor: Uli Kazmaier Volume Editors: M. Fourmigue´, L. Ouahab Vol. 38, 2011 Vol. 27, 2009 Bifunctional Molecular Catalysis Metal Catalysts in Olefin Polymerization Volume Editors: T. Ikariya, M. Shibasaki Volume Editor: Z. Guan Vol. 37, 2011 Vol. 26, 2009 Asymmetric Catalysis from a Chinese Perspective Bio-inspired Catalysts Volume Editor: Shengming Ma Volume Editor: T. R. Ward Vol. 36, 2011 Vol. 25, 2009 Higher Oxidation State Organopalladium Directed Metallation and Platinum Chemistry Volume Editor: N. Chatani Volume Editor: A. J. Canty Vol. 24, 2007 Vol. 35, 2011 Regulated Systems for Multiphase Catalysis Iridium Catalysis Volume Editors: W. Leitner, M. Ho¨lscher Volume Editor: P. G. Andersson Vol. 23, 2008 Vol. 34, 2011 Iron Catalysis – Fundamentals and Organometallic Oxidation Catalysis Applications Volume Editors: F. Meyer, C. Limberg Volume Editor: B. Plietker Vol. 22, 2007 Vol. 33, 2011 N-Heterocyclic Carbenes in Transition Medicinal Organometallic Chemistry Metal Catalysis Volume Editors: G.
    [Show full text]
  • 中文名稱英文名稱CAS.NO. 二乙縮醛acetal 105-57-7 乙醛
    中文名稱 英文名稱 CAS.NO.
    [Show full text]
  • 2020 Emergency Response Guidebook
    2020 A guidebook intended for use by first responders A guidebook intended for use by first responders during the initial phase of a transportation incident during the initial phase of a transportation incident involving hazardous materials/dangerous goods involving hazardous materials/dangerous goods EMERGENCY RESPONSE GUIDEBOOK THIS DOCUMENT SHOULD NOT BE USED TO DETERMINE COMPLIANCE WITH THE HAZARDOUS MATERIALS/ DANGEROUS GOODS REGULATIONS OR 2020 TO CREATE WORKER SAFETY DOCUMENTS EMERGENCY RESPONSE FOR SPECIFIC CHEMICALS GUIDEBOOK NOT FOR SALE This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors. https://www.phmsa.dot.gov/hazmat https://www.tc.gc.ca/TDG http://www.sct.gob.mx SHIPPING PAPERS (DOCUMENTS) 24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS For the purpose of this guidebook, shipping documents and shipping papers are synonymous. CANADA Shipping papers provide vital information regarding the hazardous materials/dangerous goods to 1. CANUTEC initiate protective actions. A consolidated version of the information found on shipping papers may 1-888-CANUTEC (226-8832) or 613-996-6666 * be found as follows: *666 (STAR 666) cellular (in Canada only) • Road – kept in the cab of a motor vehicle • Rail – kept in possession of a crew member UNITED STATES • Aviation – kept in possession of the pilot or aircraft employees • Marine – kept in a holder on the bridge of a vessel 1. CHEMTREC 1-800-424-9300 Information provided: (in the U.S., Canada and the U.S. Virgin Islands) • 4-digit identification number, UN or NA (go to yellow pages) For calls originating elsewhere: 703-527-3887 * • Proper shipping name (go to blue pages) • Hazard class or division number of material 2.
    [Show full text]
  • Hazardous Materials Descriptions and Codes
    2012 Commodity Flow Survey Hazardous Materials Descriptions and Codes Hazardous Materials Descriptions and Proper Shipping Names UN or NA Code Accellerene, see p-Nitrosodimethylaniline Accumulators, electric, see Batteries, wet etc Accumulators, pressurized, pneumatic or hydraulic (containing non-flammable gas), see Articles pressurized, pneumatic or hydraulic (containing non-flammable gas) Acetal 1088 Acetaldehyde 1089 Acetaldehyde ammonia 1841 Acetaldehyde oxime 2332 Acetic acid, glacial or Acetic acid solution, with more than 80 percent acid, by mass 2789 Acetic acid solution, not less than 50 percent but not more than 80 percent acid, by 2790 mass Acetic acid solution, with more than 10 percent and less than 50 percent acid, by mass 2790 Acetic anhydride 1715 Acetone 1090 Acetone cyanohydrin, stabilized 1541 Acetone oils 1091 Acetonitrile 1648 Acetyl bromide 1716 Acetyl chloride 1717 Acetyl iodide 1898 Acetyl methyl carbinol 2621 Acetylene, dissolved 1001 Acetylene tetrabromide, see Tetrabromoethane Acid butyl phosphate, see Butyl acid phosphate Acid, sludge, see Sludge acid Acridine 2713 Acrolein dimer, stabilized 2607 Acrolein, stabilized 1092 Acrylamide, solid 2074 Acrylamide solution 3426 Acrylic acid, stabilized 2218 Acrylonitrile, stabilized 1093 Actuating cartridge, explosive, see Cartridges, power device Adhesives, containing a flammable liquid 1133 Adiponitrile 2205 Aerosols, poison, Packing Group III (each not exceeding 1 L capacity) 1950 Aerosols, flammable, (each not exceeding 1 L capacity) 1950 Source: Electronic Code of Federal Regulations http://ecfr.gpoaccess.gov/cgi/t/text/text- idx?c=ecfr&sid=dfec99df9f21ef29b59a8565433a56cd&rgn=div6&view=text&node=49:2.1.1.3.8.2&idno=49 1 Hazardous Materials Descriptions and Proper Shipping Names UN or NA Code Aerosols, flammable, n.o.s.
    [Show full text]
  • Hydrogen-Enhanced Combustion of a Composite Propellant with Zrh2 As
    Combustion and Flame 187 (2018) 67–76 Contents lists available at ScienceDirect Combustion and Flame journal homepage: www.elsevier.com/locate/combustflame Hydrogen-enhanced combustion of a composite propellant with ZrH 2 as the fuel ∗ Yanjing Yang a, Fengqi Zhao a, , Huixiang Xu a, Qing Pei a, Hanyu Jiang a, Jianhua Yi a, Chunlei Xuan a, Sanping Chen b a Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, Shaanxi, China b Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi’an 710065, Shaanxi, China a r t i c l e i n f o a b s t r a c t Article history: The reaction mechanisms of metal hydrides in the combustion of solid propellants are closely related to Received 20 February 2017 their effects on the energetic and combustion properties of propellants. Here, we report a first attempt to Revised 1 September 2017 investigate the reaction mechanisms of ZrH 2 , a promising candidate for fuels, in the combustion of HTPB Accepted 5 September 2017 propellants using ammonium perchlorate (NH ClO , AP) as the oxidizer. ZrH is determined to possess a Available online 16 October 2017 4 4 2 good resistance to the direct oxidation by AP. Thus, it would dehydrogenate independently to generate Keywords: H 2 and metallic Zr, which is believed to be very favorable for decreasing the gaseous molecular masses. Solid propellant On the other hand, due to the attachment of gaseous reactants to it, ZrH 2 was found to tune the de- Combustion composition behaviors of AP by enhancing the generation of NO in the high-temperature decomposition Reaction mechanism stage.
    [Show full text]
  • Hydrogen in Zirconium Alloys: a Review
    Journal of Nuclear Materials 518 (2019) 440e460 Contents lists available at ScienceDirect Journal of Nuclear Materials journal homepage: www.elsevier.com/locate/jnucmat Hydrogen in zirconium alloys: A review * Arthur T. Motta a, , Laurent Capolungo b, Long-Qing Chen c, Mahmut Nedim Cinbiz d, Mark R. Daymond e, Donald A. Koss c, Evrard Lacroix a, Giovanni Pastore f, Pierre-Clement A. Simon a, Michael R. Tonks g, Brian D. Wirth h, Mohammed A. Zikry i a Department of Mechanical and Nuclear Engineering, 138 Reber Bldg, Penn State University, University Park, PA, 16802, USA b Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA c Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802-5006, USA d Reactor and Nuclear Systems Division, Nuclear Fuel Materials Group, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA e Dept. of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada f Idaho National Laboratory, Fuel Modeling and Simulation Department, Idaho Falls, ID, 83415, USA g Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA h Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, 37996-1410, USA i Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695-7910, USA article info abstract Article history: Hydrogen absorbed into zirconium alloy nuclear fuel cladding as a result of the waterside corrosion Received 4 January 2019 reaction can affect the properties of nuclear fuel, principally through the precipitation of brittle hydride Received in revised form particles.
    [Show full text]
  • Chemical Upcycling of Polymers
    Report of the Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers April 30–May 1, 2019 Bethesda, Maryland Chair: Phillip F. Britt, Oak Ridge National Laboratory Co-Chair: Geoffrey W. Coates, Cornell University Co-Chair: Karen I. Winey, University of Pennsylvania Participants: Phillip Britt, Oak Ridge National Laboratory Jeffrey Byers, Boston College Eugene Chen, Colorado State University Geoffrey Coates, Cornell University Bryan Coughlin, University of Massachusetts–Amherst Christopher Ellison, University of Minnesota Jeannette Garcia, IBM Alan Goldman, Rutgers University Javier Guzman, ExxonMobil John Hartwig, Lawrence Berkeley National Laboratory/University of California–Berkeley Brett Helms, Lawrence Berkeley National Laboratory George Huber, University of Wisconsin Cynthia Jenks, Argonne National Laboratory Jill Martin, Dow Chemical Maureen McCann, Purdue University Steve Miller, University of Florida Hugh O'Neill, Oak Ridge National Laboratory Aaron Sadow, Ames Laboratory Susannah Scott, University of California–Santa Barbara Lawrence Sita, University of Maryland Dion Vlachos, University of Delaware Karen Winey, University of Pennsylvania Robert Waymouth, Stanford University Contents List of Figures .............................................................................................................................................. v List of Sidebar Figures ............................................................................................................................... v Abbreviations, Acronyms
    [Show full text]
  • Development of a Prototypic Tie-Tube for a Low Enriched Uranium (LEU) Nuclear Thermal Rocket (NTR)
    Development of a Prototypic Tie-Tube for a Low Enriched Uranium (LEU) Nuclear Thermal Rocket (NTR) Team Members: Kelsa Benensky, Jacob Harry, and Jeffrey Clemens NASA Propulsion Academy Principal Investigator: Omar Mireles NASA Marshall Space Flight Center ER-24 2015 Nuclear and Emerging Technologies for Space Conference Albuquerque, NM February 23 - 25 Presentation Overview 1. Background and Project Overview 2. Tie-Tube Mechanical Design 3. Neutronic Studies 4. Moderator Production Experiments 5. Tie-Tube Test Rig (T3R) Setup 6. Conclusions and Recommendations 2015 Nuclear and Emerging Technologies for Space Conference Albuquerque, NM February 23 - 25 2 Nuclear thermal propulsion (NTP) systems use the energy from fission to provide high power levels for long periods of time Liquid hydrogen stored in the propellant tank first cools the reactor Thrust provided to the rocket via expansion of the propellant through the nozzle NTP is considered by many to be the preferred form of propulsion for manned missions to Mars 2015 Nuclear and Emerging Technologies for Space Conference Albuquerque, NM February 23 - 25 3 NTP is a proven technology with 20 reactors ground tested in the Rover/NERVA Programs Tie-tubes played an important role in the past to provide in-core cooling and neutronic moderation for fuel test reactors during the later Rover/NERVA tests 2015 Nuclear and Emerging Technologies for Space Conference Albuquerque, NM February 23 - 25 4 A LEU NTR has the potential to greatly decrease the cost of developing NTP One of the major costs associated with developing NTP is the specific facilities needed to produce, handle, and test highly enriched uranium for nuclear fuel forms 2015 Nuclear and Emerging Technologies for Space Conference Albuquerque, NM February 23 - 25 5 In the LEU Reactor, tie-tubes function as in-core reactor components to provide core cooling and house the neutron moderator System Specifications Moderator Element/Tie-Tube Reactor System Performance Core power (MW) 519.2 Core average fuel power density (MW/l) 17.21 1.8 cm Max Fuel Temp.
    [Show full text]