Hydrogen in Zirconium Alloys: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coupled Thermomechanical Responses of Zirconium Alloy System Claddings Under Neutron Irradiation
applied sciences Article Coupled Thermomechanical Responses of Zirconium Alloy System Claddings under Neutron Irradiation Hui Zhao 1,†, Chong Yang 1,†, Dongxu Guo 1, Lu Wu 2, Jianjun Mao 2, Rongjian Pan 2, Jiantao Qin 2 and Baodong Shi 1,* 1 National Engineering Research Center for Equipment and Technology of Cold Rolled Strip, School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China; [email protected] (H.Z.); [email protected] (C.Y.); [email protected] (D.G.) 2 State Key Laboratory of Nuclear Fuel and Materials, The First Sub-Institute, Nuclear Power Institute of China, Chengdu 610041, China; [email protected] (L.W.); [email protected] (J.M.); [email protected] (R.P.); [email protected] (J.Q.) * Correspondence: [email protected]; Tel.: +86-33-5838-7652 † H.Z. and C.Y. contributed equally to this work. Abstract: Zirconium (Zr) alloy is a promising fuel cladding material used widely in nuclear reactors. Usually, it is in service for a long time under the effects of neutron radiation with high temperature and high pressure, which results in thermomechanical coupling behavior during the service process. Focusing on the UO2/Zr fuel elements, the macroscopic thermomechanical coupling responses of pure Zr, Zr-Sn, and Zr-Nb binary system alloys, as well as Zr-Sn-Nb ternary system alloy as cladding materials, were studied under neutron irradiation. As a heat source, the thermal conductivity and thermal expansion coefficient models of the UO2 core were established, and an irradiation growth model of a pure Zr and Zr alloy multisystem was built. -
Electromagnetic Evaluation of Hydrogen Content in Zr 2.5%Nb Alloy
Electromagnetic evaluation of hydrogen content in Zr 2.5%Nb alloy R.Grimberg 1, M.L.Craus 1,2 , A.Savin 1, R.Steigmann 2, M.Ruch 3 1 National Institute of Research and Development for Technical Physics, Iasi, Romania 2 Joint Institute for Nuclear Research, Dubna, Russia 3 CNEA, Buenos Aires, Argentina Abstract Zr 2.5%Nb alloys have wide utilization in nuclear energy engineering, being used at the fabrication of pressure tubes from Pressurized Heavy Water Reactors (PHWR). This paper proposes to present an electromagnetic method for determination of diffused hydrogen/deuterium content based on the measurement of conductivity, correlating the theoretical results with those experimental obtained on samples cropped from non-irradiated pressure tubes. The methods can be used directly, the results being obtained by data inversion. Keywords: PHWR, hydrogen content, electromagnetic nondestructive evaluation method, conductivity 1. Introduction Zirconium alloys represents the majority of structural materials from nuclear reactors, Light Water Reactors types (LWR) and Pressurized Heavy Water reactor” (PHWR). Zirconium alloys are exclusively used at the manufacturing of nuclear fuel cladding, nuclear fuel bundle subassemblies and fuel channels. During the reactor functioning, the zirconium alloy absorbs hydrogen or deuterium that can appear due to the radiolysis of water used as coolant agent or due to heavy water according to the reactions → + HO2 H 2 O (a) → + D2 O D 2 O (b) Also, hydrogen and deuterium can appear due to oxidation of zirconium alloys + → + Zr 2H2 O ZrO 2 2H 2 (c) + → + Zr 2D2 O ZrO 2 2D 2 (d) Hydrogen in solid solution diffuses due to the existence of concentration, temperature and stress gradients. -
Fuel Geometry Options for a Moderated Low-Enriched Uranium Kilowatt-Class Space Nuclear Reactor T ⁎ Leonardo De Holanda Mencarinia,B,Jeffrey C
Nuclear Engineering and Design 340 (2018) 122–132 Contents lists available at ScienceDirect Nuclear Engineering and Design journal homepage: www.elsevier.com/locate/nucengdes Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor T ⁎ Leonardo de Holanda Mencarinia,b,Jeffrey C. Kinga, a Nuclear Science and Engineering Program, Colorado School of Mines (CSM), 1500 Illinois St, Hill Hall, 80401 Golden, CO, USA b Subdivisão de Dados Nucleares - Instituto de Estudos Avançados (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, n 1, 12228-001 São José dos Campos, SP, Brazil ABSTRACT A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel and could be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. The HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) serves as a basis for a similar reactor fueled with LEU fuel. Based on MCNP6™ neutronics performance estimates, the size of a 5 kWe reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core in four different configurations (a homogeneous fuel/moderator mixture and spherical, disc, and helical fuel geometries) to reduce the mass of uranium required to produce the same excess reactivity, decreasing the size of the reactor. The lowest mass reactor with a given moderator represents a balance between the reflector thickness and core diameter needed to maintain the multiplication factor equal to 1.035, with a H/D ratio of 1.81. -
Delayed Hydride Cracking in Zirconium Alloys in Pressure Tube Nuclear Reactors
IAEA-TECDOC-1410 Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors Final report of a coordinated research project 1998–2002 October 2004 IAEA-TECDOC-1410 Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors Final report of a coordinated research project 1998–2002 October 2004 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria DELAYED HYDRIDE CRACKING IN ZIRCONIUM ALLOYS IN PRESSURE TUBE NUCLEAR REACTORS IAEA, VIENNA, 2004 IAEA-TECDOC-1410 ISBN 92–0–110504–5 ISSN 1011–4289 © IAEA, 2004 Printed by the IAEA in Austria October 2004 FOREWORD This report documents the work performed in the Coordinated Research Project (CRP) on Hydrogen and Hydride Degradation of the Mechanical and Physical Properties of Zirconium Alloys. The Project consisted of hydriding samples of Zr-2.5 Nb pressure tube materials used in CANDU-type and RBMK reactors, the measurement of delayed hydride cracking (DHC) rates under specified conditions, and analysis of hydrogen concentrations. The project was overseen by a supervisory group of experts in the field who provided advice and assistance to the participants as required. All of the research work undertaken as part of the CRP is described in this report, which includes a review of the state of the art in understanding crack propagation by DHC and details of the experimental procedures that produced the most consistent set of DHC rates reported in an international round-robin exercise to this date. All of the participants and many of their co-workers in the laboratories involved in the CRP contributed results and material used in the drafting of this report, which contains compilations of all of the results, their analysis, discussions of their interpretation and conclusions and recommendations for further work. -
NETS 2020 Template
بÀƵƧǘȁǞƧƊǶ §ȲȌǐȲƊǿ ƊƧDzɈȌɈǘƵwȌȌȁƊȁƮȌȁ ɈȌwƊȲȺɈǘȲȌɐǐǘƊƮɨƊȁƧǞȁǐ خȁɐƧǶƵƊȲɈƵƧǘȁȌǶȌǐǞƵȺƊȁƮ ǞȁȁȌɨƊɈǞȌȁ ǞȺ ȺȯȌȁȺȌȲƵƮ Ʀɯ ɈǘƵ ƊDz ªǞƮǐƵ yƊɈǞȌȁƊǶ ׁׂ׀ׂ y0À² ÀǘǞȺ ƧȌȁǏƵȲƵȁƧƵ خׁׂ׀ׂ ةɈǘ׀׃ƊȁƮ ɩǞǶǶƦƵ ǘƵǶƮ ǏȲȌǿȯȲǞǶ ׂ׆ɈǘٌةmƊƦȌȲƊɈȌȲɯ ɩǞǶǶ ƦƵ ǘƵǶƮ ɨǞȲɈɐƊǶǶɯ ȺȌ ɈǘƊɈ ɈǘƵ ƵȁɈǞȲƵ y0À² خƧȌǿǿɐȁǞɈɯǿƊɯȯƊȲɈǞƧǞȯƊɈƵǞȁɈǘǞȺƵɮƧǞɈǞȁǐǿƵƵɈǞȁǐ ǐȌɨخȌȲȁǶخخׁׂ׀ȁƵɈȺׂششبǘɈɈȯȺ Nuclear and Emerging Technologies for Space Sponsored by Oak Ridge National Laboratory, April 26th-30th, 2021. Available online at https://nets2021.ornl.gov Table of Contents Table of Contents .................................................................................................................................................... 1 Thanks to the NETS2021 Sponsors! ...................................................................................................................... 2 Nuclear and Emerging Technologies for Space 2021 – Schedule at a Glance ................................................. 3 Nuclear and Emerging Technologies for Space 2021 – Technical Sessions and Panels By Track ............... 6 Nuclear and Emerging Technologies for Space 2021 – Lightning Talk Final Program ................................... 8 Nuclear and Emerging Technologies for Space 2021 – Track 1 Final Program ............................................. 11 Nuclear and Emerging Technologies for Space 2021 – Track 2 Final Program ............................................. 14 Nuclear and Emerging Technologies for Space 2021 – Track 3 Final Program ............................................. 18 -
Evaluate the Contribution of the Fuel Cladding Oxidation Process on The
Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor Florian Haurais To cite this version: Florian Haurais. Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor. Materials. Université Paris-Saclay, 2016. English. NNT : 2016SACLS375. tel-01519349 HAL Id: tel-01519349 https://tel.archives-ouvertes.fr/tel-01519349 Submitted on 6 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS375 THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY PRÉPARÉE À L’UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE N°576 Particules Hadrons Énergie et Noyau : Instrumentation, Image, Cosmos et Simulation Spécialité de doctorat : Énergie Nucléaire Par M. Florian Haurais Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor Thèse présentée et soutenue à Palaiseau, le Lundi 14 Novembre 2016. Composition du Jury : M. Frédérico Garrido, Professeur des universités, Université Paris-Sud, Président du jury M. Arthur Motta, Professeur, Pennsylvania State University, Rapporteur M. -
Catalytic Systems Based on Cp2zrx2 (X = Cl, H), Organoaluminum
catalysts Article Catalytic Systems Based on Cp2ZrX2 (X = Cl, H), Organoaluminum Compounds and Perfluorophenylboranes: Role of Zr,Zr- and Zr,Al-Hydride Intermediates in Alkene Dimerization and Oligomerization Lyudmila V. Parfenova 1,* , Pavel V. Kovyazin 1, Almira Kh. Bikmeeva 1 and Eldar R. Palatov 2 1 Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Prospekt Oktyabrya, 141, 450075 Ufa, Russia; [email protected] (P.V.K.); [email protected] (A.K.B.) 2 Bashkir State University, st. Zaki Validi, 32, 450076 Ufa, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-347-284-3527 i i Abstract: The activity and chemoselectivity of the Cp2ZrCl2-XAlBu 2 (X = H, Bu ) and [Cp2ZrH2]2- ClAlEt2 catalytic systems activated by (Ph3C)[B(C6F5)4] or B(C6F5)3 were studied in reactions with 1-hexene. The activation of the systems by B(C6F5)3 resulted in the selective formation of head- to-tail alkene dimers in up to 93% yields. NMR studies of the reactions of Zr complexes with organoaluminum compounds (OACs) and boron activators showed the formation of Zr,Zr- and Zr,Al-hydride intermediates, for which diffusion coefficients, hydrodynamic radii, and volumes were estimated using the diffusion ordered spectroscopy DOSY. Bis-zirconium hydride clusters of type x[Cp ZrH ·Cp ZrHCl·ClAlR ]·yRnAl(C F ) − were found to be the key intermediates of alkene 2 2 2 2 6 5 3 n dimerization, whereas cationic Zr,Al-hydrides led to the formation of oligomers. Citation: Parfenova, L.V.; Kovyazin, P.V.; Bikmeeva, A.K.; Palatov, E.R. -
5.03 Corrosion of Zirconium Alloys
This article was originally published in the Comprehensive Nuclear Materials published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Allen T.R., Konings R.J.M., and Motta A.T. (2012) Corrosion of Zirconium Alloys. In: Konings R.J.M., (ed.) Comprehensive Nuclear Materials, volume 5, pp. 49-68 Amsterdam: Elsevier. © 2012 Elsevier Ltd. All rights reserved. Author's personal copy 5.03 Corrosion of Zirconium Alloys T. R. Allen University of Wisconsin, Madison, WI, USA R. J. M. Konings European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany A. T. Motta The Pennsylvania State University, University Park, PA, USA ß 2012 Elsevier Ltd. All rights reserved. 5.03.1 Introduction 49 5.03.2 General Considerations 50 5.03.2.1 Oxidation 50 5.03.2.2 Hydrogen Uptake 51 5.03.2.3 Controlling Factors for Corrosion 52 5.03.3 Uniform -
Calcium Hydride, Grade S
TECHNICAL DATA SHEET Date of Issue: 2016/09/02 Calcium Hydride, Grade S CAS-No. 7789-78-8 EC-No. 232-189-2 Molecular Formula CaH₂ Product Number 455150 APPLICATION Calcium hydride is used primarily as a source of hydrogen, as a drying agent for liquids and gases, and as a reducing agent for metal oxides. SPECIFICATION Ca total min. 92 % H min. 980 ml/g CaH2 Mg max. 0.8 % N max. 0.2 % Al max. 0.01 % Cl max. 0.5 % Fe max. 0.01 % METHOD OF ANALYSIS Calcium complexometric, impurities by spectral analysis and special analytical procedures. Gas volumetric determination of hydrogen. Produces with water approx. 1,010 ml hydrogen per gram. PHYSICAL PROPERTIES Appearance powder Color gray white The information presented herein is believed to be accurate and reliable, but is presented without guarantee or responsibility on the part of Albemarle Corporation and its subsidiaries and affiliates. It is the responsibility of the user to comply with all applicable laws and regulations and to provide for a safe workplace. The user should consider any health or safety hazards or information contained herein only as a guide, and should take those precautions which are necessary or prudent to instruct employees and to develop work practice procedures in order to promote a safe work environment. Further, nothing contained herein shall be taken as an inducement or recommendation to manufacture or use any of the herein materials or processes in violation of existing or future patent. Technical data sheets may change frequently. You can download the latest version from our website www.albemarle-lithium.com. -
High Temperature Oxidation of Zirconium Base Alloy in Steam
HIGH TEMPERATURE OXDATION OF A ZIRCONIUM BASE ALLOY IN STEAM KWANGHEON PARK"), TAEGEUN YOO', SUNGKWONKIM') HYUN-GlL KIM2 YONGHWAN JEONG2I, KYUTAE KIM3 ) 1)=ghee University, South Korea 2\Comra Atomic Energy Research Institute 3)KEPCO Nuclear Fuel Company, South Korea Abstract High temperature steam oxidation behaviors of a Zirconium alloy, Zr-1%oNb alloy was examined for the comparison to those of Zircaloy-4 (Zry-4). Testing temperatures were 700 - 12000C. At atmospheric steam pressure, oxidation kinetics of Zr-lNb alloy follows parabolic-rate law, instead of cubic-rate as was observed in Zry-4 below 900 C. The oxidation rate ofZr-lNb alloy is slightly lower than that ofZry-4. A double layer autoclave, that can make high steam pressures up to 50bar and temperatures up to 900 0C, was used to get the steam pressure effects on high temperature oxidation. Zry-4 was very sensitive to the steam pressure, and the oxidation rate increases exponentially with applied steam pressure. Zr-IlNb alloy was less sensitive to the high-pressure steam. The enhancement parameter is about 3 to 13 times lower than that of Zry-4. The stability oftetragonal phase in the Zr-I %oNb alloy comparing Zry-4 seems to make the differcnue in oxidation kinetics. 1. INTRODUCTION Zr-base alloys are used as cladding materials for nuclear fuel in light and heavy water reactors. Zricaloy-4 (Zry-4) has been used satisfactorily as a cladding material in pressurized water reactors. Nowadays, light water reactors tend to extend their fuel cycle length with high bum-up of nuclear fuel to get the improved economy. -
Surface Chemistry of Zirconium
Progress in Surface Science 78 (2005) 101–184 www.elsevier.com/locate/progsurf Review Surface chemistry of zirconium N. Stojilovic, E.T. Bender, R.D. Ramsier * Departments of Physics and Chemistry, The University of Akron, 250 Buchtel Commons, Ayer Hall 111, Akron, OH 44325-4001, USA Abstract This article presents an overview of the surface chemistry of zirconium, focusingon the relationship of what is known from model studies and how this connects to current and future applications of Zr-based materials. The discussion includes the synergistic nature of adsorbate interactions in this system, the role of impurities and alloyingelements, and temperature- dependent surface–subsurface transport. Finally, some potential uses of zirconium and its alloys for biomedical and nanolithographic applications are presented. Ó 2005 Elsevier Ltd. All rights reserved. Keywords: Zirconium; Oxidation; Surface chemistry; Subsurface species; Diffusion; Water; Oxygen; Hydrogen; Nuclear materials; Alloys; Zircaloy Contents 1. Contextual overview........................................ 102 2. Systems of interest ......................................... 104 2.1. Water ............................................. 104 2.2. Oxygen ............................................ 122 2.3. Hydrogen .......................................... 132 2.4. Sulfur ............................................. 143 2.5. Carbon ............................................ 147 * Correspondingauthor. Tel.: +1 330 9724936; fax: +1 330 9726918. E-mail address: [email protected] (R.D. -
2013 Book Modernorganoalum
41 Topics in Organometallic Chemistry Editorial Board: M. Beller l J. M. Brown l P. H. Dixneuf A. Fu¨rstner l L. J. Gooßen l L. S. Hegedus P. Hofmann l T. Ikariya l L. A. Oro l Q.-L. Zhou Topics in Organometallic Chemistry Recently Published Volumes Organometallic Pincer Chemistry Photophysics of Organometallics Volume Editors: Gerard van Koten, Volume Editor: A. J. Lees David Milstein Vol. 29, 2010 Vol. 40, 2013 Molecular Organometallic Materials Organometallics and Renewables for Optics Volume Editors: Michael A. R. Meier, Volume Editors: H. Le Bozec, V. Guerchais Bert M. Weckhuysen, Pieter C. A. Bruijnincx Vol. 28, 2010 Vol. 39, 2012 Transition Metal Catalyzed Enantioselective Conducting and Magnetic Organometallic Allylic Substitution in Organic Synthesis Molecular Materials Volume Editor: Uli Kazmaier Volume Editors: M. Fourmigue´, L. Ouahab Vol. 38, 2011 Vol. 27, 2009 Bifunctional Molecular Catalysis Metal Catalysts in Olefin Polymerization Volume Editors: T. Ikariya, M. Shibasaki Volume Editor: Z. Guan Vol. 37, 2011 Vol. 26, 2009 Asymmetric Catalysis from a Chinese Perspective Bio-inspired Catalysts Volume Editor: Shengming Ma Volume Editor: T. R. Ward Vol. 36, 2011 Vol. 25, 2009 Higher Oxidation State Organopalladium Directed Metallation and Platinum Chemistry Volume Editor: N. Chatani Volume Editor: A. J. Canty Vol. 24, 2007 Vol. 35, 2011 Regulated Systems for Multiphase Catalysis Iridium Catalysis Volume Editors: W. Leitner, M. Ho¨lscher Volume Editor: P. G. Andersson Vol. 23, 2008 Vol. 34, 2011 Iron Catalysis – Fundamentals and Organometallic Oxidation Catalysis Applications Volume Editors: F. Meyer, C. Limberg Volume Editor: B. Plietker Vol. 22, 2007 Vol. 33, 2011 N-Heterocyclic Carbenes in Transition Medicinal Organometallic Chemistry Metal Catalysis Volume Editors: G.