Evaluate the Contribution of the Fuel Cladding Oxidation Process on The

Total Page:16

File Type:pdf, Size:1020Kb

Evaluate the Contribution of the Fuel Cladding Oxidation Process on The Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor Florian Haurais To cite this version: Florian Haurais. Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor. Materials. Université Paris-Saclay, 2016. English. NNT : 2016SACLS375. tel-01519349 HAL Id: tel-01519349 https://tel.archives-ouvertes.fr/tel-01519349 Submitted on 6 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS375 THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY PRÉPARÉE À L’UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE N°576 Particules Hadrons Énergie et Noyau : Instrumentation, Image, Cosmos et Simulation Spécialité de doctorat : Énergie Nucléaire Par M. Florian Haurais Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor Thèse présentée et soutenue à Palaiseau, le Lundi 14 Novembre 2016. Composition du Jury : M. Frédérico Garrido, Professeur des universités, Université Paris-Sud, Président du jury M. Arthur Motta, Professeur, Pennsylvania State University, Rapporteur M. Daniel Monceau, Directeur de recherche, CNRS, Rapporteur M. Christian Duriez, Docteur - Chargé de recherche, IRSN, Examinateur M. Jean-Christophe Brachet, Docteur - Chargé de Recherche, CEA, Examinateur M. Éric Simoni, Professeur des universités, Université Paris-Sud, Directeur de thèse Mme Émilie Beuzet, Docteur - Chargée de Recherche, EDF, Encadrante de thèse M. Martin Steinbrück, Docteur - Chargé de Recherche, KIT, Invité 1 Remerciements Les trois années d’une thèse de doctorat sont très paradoxales. À la fois extrêmement courtes au regard des nombreuses et passionnantes questions qui émergent au fur et à mesure et qui ne peuvent pas toutes être traitées. Et en même temps suffisamment longues pour requérir une certaine endurance mentale… Mais aussi et surtout de bonnes conditions de vie et de travail ! Je souhaite donc naturellement remercier les nombreuses personnes qui y ont contribué. J’adresse mes premiers remerciements aux membres de mon jury de thèse. Merci à Éric Simoni qui m’a fait confiance en acceptant d’être mon directeur de thèse et qui m’a guidé avec sérieux et bienveillance pendant trois ans. Je remercie Daniel Monceau et Arthur Motta d’avoir accepté d’être rapporteurs de ce travail de doctorat et d’avoir pleinement rempli cette importante mission à travers leurs lectures attentives et leurs remarques constructives. Similairement, merci aux examinateurs de ma thèse qui ont parfaitement joué leur rôle, notamment avec les nombreuses questions pertinentes posées lors de la soutenance : Christian Duriez, Jean-Christophe Brachet, ainsi que Frederico Garrido qui a également été président de ce jury de thèse. Je tiens également à remercier Martin Steinbrück qui, en plus d’avoir été notre correspondant privilégié au KIT, s’est investi à 100 % dans la progression de ma thèse. Enfin, je remercie très sincèrement Émilie Beuzet, mon encadrante de thèse chez EDF, dont la clarté des explications, le suivi idéalement dosé, et les conseils très avisés, m’ont permis d’être rapidement autonome et d’avancer sereinement pendant trois ans. Merci également pour ton humour qui a été très bénéfique, notamment les dernières semaines ! J’en profite pour remercier mon second encadrant chez EDF : Antoine Ambard, dont l’expérience et l’expertise m’ont beaucoup aidé et m’ont indéniablement fait progresser. Cette thèse s’est déroulée chez EDF R&D, au sein du département SINETICS, groupe I28, dans le cadre du projet MAGESTIC. Je remercie donc Stéphane Bugat, chef du département, Jean-Sylvestre Lamy et Franck Lavaud, successivement chefs du groupe, ainsi qu’Andreas Schumm et Mohamed Torkhani, chefs de projet successifs, tous deux très impliqués dans le suivi de ma thèse. Plus globalement, merci aux agents des groupes I28 et I27 pour leur accueil, leur sympathie, leur humour, et leurs (très diverses) personnalités ! Je retiendrai notamment les (très diverses) discussions aux pauses café, les concours de pronostics, les QUENCH workshops, les voyages de département et les sorties footing pour celles et ceux qui en avaient le courage (et qui n’oubliaient pas leurs chaussures) ! J’adresse également une dédicace aux agents I28 impliqués sur MAGESTIC (Mohamed Torkhani, David Lemasson, Martin Boissavit, Jérémy Bittan, Léna Gosmain et Nikolaï Bakouta) et en particulier aux membres du B4 de Palaiseau (Émilie Beuzet, Alix Le Belguet et Virginie Lombard) qui m’ont parfaitement bien intégré, humainement et scientifiquement ! Ce sujet de thèse s’inscrivait par ailleurs dans le cadre d’une collaboration européenne de recherche scientifique sur la compréhension et la modélisation des phénomènes d’accidents graves en réacteurs nucléaires. À ce titre, je souhaite remercier nos collègues français du CEA, de l’IRSN et d’AREVA, ainsi que nos homologues allemands du KIT et de GRS, suisses de PSI, hongrois de MTA EK, et russes d’IBRAE. Les échanges avec vous, et en particulier avec le KIT, ont conféré à ce travail de thèse une dimension partenariale et européenne passionnante. Enfin, je remercie très chaleureusement ma famille qui m’a toujours soutenu, et ce dans tous les domaines : mes parents, mon frère, ma sœur, et bien entendu ma Pauline. Merci infiniment pour ta patience, ton soutien, tes conseils et pour ta présence inconditionnelle pendant ces trois ans de thèse, et même ces huit longues années d’études ! Tu mérites cette thèse autant que moi. Et plus généralement merci pour tout ce que l’on a déjà partagé en bientôt 9 ans… 2 Abstract In nuclear power plants, a severe accident is a very unlikely sequence of events during which components of the reactor core get significantly damaged, through chemical interactions and/or melting, because of very high temperatures. This may potentially lead to radiotoxic releases in the containment building and to air ingress in the reactor core. In that context, this thesis led at EDF R&D aimed at modeling the deterioration of the nuclear fuel cladding, made of zirconium alloys, in accidental conditions: high temperature and either pure steam or air-steam mixture. The final objective was to improve the simulation by the MAAP code of the cladding oxidation and of the hydrogen production, in particular during a core reflooding with water. Due to the progressive thickening of a dense and protective ZrO2 layer, the oxidation kinetics of Zr in steam at high temperatures is generally (sub-)parabolic. However, at certain temperatures, this oxide layer may crack, becoming porous and not protective anymore. By this “breakaway” process, the oxidation kinetics becomes rather linear. Additionally, the temperature increase can lead core materials to melt and to relocate down to the vessel lower head whose failure may induce air ingress into the reactor core. In this event, oxygen and nitrogen both react with the pre-oxidized claddings, successively through oxidation of Zr (thickening the ZrO2 layer), nitriding of Zr (forming ZrN particles) and oxidation of ZrN (creating oxide and releasing nitrogen). These self-sustained reactions enhance the cracking of the cladding and of its ZrO2 layer, inducing a rise of its open porosity. In order to quantify this cladding porosity, an innovative two-step experimental protocol was defined and applied: it consisted in submitting ZIRLO® cladding samples first to various accidental conditions during several time periods and then to measurements of the open porosity through porosimetry by mercury intrusion. The tested corrosion conditions included numerous temperatures ranging from 1100 up to 1500 K as well as both pure steam and a 50-50 mol% air-steam mixture. For the ZIRLO® samples oxidized in pure steam, except at 1200 and 1250 K, the “breakaway” kinetic transitions do not occur and the open porosity remains negligible along the oxidation process. However, for all other samples, corroded in air-steam or oxidized in pure steam at 1200 or 1250 K, “breakaway” transitions are observed and the porosimetries show that the open porosity increases along the corrosion process, proportionally to the mass gain. Moreover, it was evidenced that the pore size distribution of ZIRLO® samples significantly extends during corrosion, especially after “breakaway” transitions. Indeed, the detected pore sizes ranged from 60 μm down to around: 2 μm before the transition, 50 nm just after and 2 nm longer after. Finally, a two-step numerical model was developed in the MAAP code to improve its simulation of the cladding oxidation. First, thanks to the proportionality between open porosity and mass gain of cladding samples, porosity correlations were implemented for each tested corrosion condition. Second, the calculated porosity values are used to proportionally enhance the cladding oxidation rate. This improved model thus simulates not only chemical
Recommended publications
  • Coupled Thermomechanical Responses of Zirconium Alloy System Claddings Under Neutron Irradiation
    applied sciences Article Coupled Thermomechanical Responses of Zirconium Alloy System Claddings under Neutron Irradiation Hui Zhao 1,†, Chong Yang 1,†, Dongxu Guo 1, Lu Wu 2, Jianjun Mao 2, Rongjian Pan 2, Jiantao Qin 2 and Baodong Shi 1,* 1 National Engineering Research Center for Equipment and Technology of Cold Rolled Strip, School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China; [email protected] (H.Z.); [email protected] (C.Y.); [email protected] (D.G.) 2 State Key Laboratory of Nuclear Fuel and Materials, The First Sub-Institute, Nuclear Power Institute of China, Chengdu 610041, China; [email protected] (L.W.); [email protected] (J.M.); [email protected] (R.P.); [email protected] (J.Q.) * Correspondence: [email protected]; Tel.: +86-33-5838-7652 † H.Z. and C.Y. contributed equally to this work. Abstract: Zirconium (Zr) alloy is a promising fuel cladding material used widely in nuclear reactors. Usually, it is in service for a long time under the effects of neutron radiation with high temperature and high pressure, which results in thermomechanical coupling behavior during the service process. Focusing on the UO2/Zr fuel elements, the macroscopic thermomechanical coupling responses of pure Zr, Zr-Sn, and Zr-Nb binary system alloys, as well as Zr-Sn-Nb ternary system alloy as cladding materials, were studied under neutron irradiation. As a heat source, the thermal conductivity and thermal expansion coefficient models of the UO2 core were established, and an irradiation growth model of a pure Zr and Zr alloy multisystem was built.
    [Show full text]
  • Electromagnetic Evaluation of Hydrogen Content in Zr 2.5%Nb Alloy
    Electromagnetic evaluation of hydrogen content in Zr 2.5%Nb alloy R.Grimberg 1, M.L.Craus 1,2 , A.Savin 1, R.Steigmann 2, M.Ruch 3 1 National Institute of Research and Development for Technical Physics, Iasi, Romania 2 Joint Institute for Nuclear Research, Dubna, Russia 3 CNEA, Buenos Aires, Argentina Abstract Zr 2.5%Nb alloys have wide utilization in nuclear energy engineering, being used at the fabrication of pressure tubes from Pressurized Heavy Water Reactors (PHWR). This paper proposes to present an electromagnetic method for determination of diffused hydrogen/deuterium content based on the measurement of conductivity, correlating the theoretical results with those experimental obtained on samples cropped from non-irradiated pressure tubes. The methods can be used directly, the results being obtained by data inversion. Keywords: PHWR, hydrogen content, electromagnetic nondestructive evaluation method, conductivity 1. Introduction Zirconium alloys represents the majority of structural materials from nuclear reactors, Light Water Reactors types (LWR) and Pressurized Heavy Water reactor” (PHWR). Zirconium alloys are exclusively used at the manufacturing of nuclear fuel cladding, nuclear fuel bundle subassemblies and fuel channels. During the reactor functioning, the zirconium alloy absorbs hydrogen or deuterium that can appear due to the radiolysis of water used as coolant agent or due to heavy water according to the reactions → + HO2 H 2 O (a) → + D2 O D 2 O (b) Also, hydrogen and deuterium can appear due to oxidation of zirconium alloys + → + Zr 2H2 O ZrO 2 2H 2 (c) + → + Zr 2D2 O ZrO 2 2D 2 (d) Hydrogen in solid solution diffuses due to the existence of concentration, temperature and stress gradients.
    [Show full text]
  • 5.03 Corrosion of Zirconium Alloys
    This article was originally published in the Comprehensive Nuclear Materials published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Allen T.R., Konings R.J.M., and Motta A.T. (2012) Corrosion of Zirconium Alloys. In: Konings R.J.M., (ed.) Comprehensive Nuclear Materials, volume 5, pp. 49-68 Amsterdam: Elsevier. © 2012 Elsevier Ltd. All rights reserved. Author's personal copy 5.03 Corrosion of Zirconium Alloys T. R. Allen University of Wisconsin, Madison, WI, USA R. J. M. Konings European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany A. T. Motta The Pennsylvania State University, University Park, PA, USA ß 2012 Elsevier Ltd. All rights reserved. 5.03.1 Introduction 49 5.03.2 General Considerations 50 5.03.2.1 Oxidation 50 5.03.2.2 Hydrogen Uptake 51 5.03.2.3 Controlling Factors for Corrosion 52 5.03.3 Uniform
    [Show full text]
  • High Temperature Oxidation of Zirconium Base Alloy in Steam
    HIGH TEMPERATURE OXDATION OF A ZIRCONIUM BASE ALLOY IN STEAM KWANGHEON PARK"), TAEGEUN YOO', SUNGKWONKIM') HYUN-GlL KIM2 YONGHWAN JEONG2I, KYUTAE KIM3 ) 1)=ghee University, South Korea 2\Comra Atomic Energy Research Institute 3)KEPCO Nuclear Fuel Company, South Korea Abstract High temperature steam oxidation behaviors of a Zirconium alloy, Zr-1%oNb alloy was examined for the comparison to those of Zircaloy-4 (Zry-4). Testing temperatures were 700 - 12000C. At atmospheric steam pressure, oxidation kinetics of Zr-lNb alloy follows parabolic-rate law, instead of cubic-rate as was observed in Zry-4 below 900 C. The oxidation rate ofZr-lNb alloy is slightly lower than that ofZry-4. A double layer autoclave, that can make high steam pressures up to 50bar and temperatures up to 900 0C, was used to get the steam pressure effects on high temperature oxidation. Zry-4 was very sensitive to the steam pressure, and the oxidation rate increases exponentially with applied steam pressure. Zr-IlNb alloy was less sensitive to the high-pressure steam. The enhancement parameter is about 3 to 13 times lower than that of Zry-4. The stability oftetragonal phase in the Zr-I %oNb alloy comparing Zry-4 seems to make the differcnue in oxidation kinetics. 1. INTRODUCTION Zr-base alloys are used as cladding materials for nuclear fuel in light and heavy water reactors. Zricaloy-4 (Zry-4) has been used satisfactorily as a cladding material in pressurized water reactors. Nowadays, light water reactors tend to extend their fuel cycle length with high bum-up of nuclear fuel to get the improved economy.
    [Show full text]
  • Surface Chemistry of Zirconium
    Progress in Surface Science 78 (2005) 101–184 www.elsevier.com/locate/progsurf Review Surface chemistry of zirconium N. Stojilovic, E.T. Bender, R.D. Ramsier * Departments of Physics and Chemistry, The University of Akron, 250 Buchtel Commons, Ayer Hall 111, Akron, OH 44325-4001, USA Abstract This article presents an overview of the surface chemistry of zirconium, focusingon the relationship of what is known from model studies and how this connects to current and future applications of Zr-based materials. The discussion includes the synergistic nature of adsorbate interactions in this system, the role of impurities and alloyingelements, and temperature- dependent surface–subsurface transport. Finally, some potential uses of zirconium and its alloys for biomedical and nanolithographic applications are presented. Ó 2005 Elsevier Ltd. All rights reserved. Keywords: Zirconium; Oxidation; Surface chemistry; Subsurface species; Diffusion; Water; Oxygen; Hydrogen; Nuclear materials; Alloys; Zircaloy Contents 1. Contextual overview........................................ 102 2. Systems of interest ......................................... 104 2.1. Water ............................................. 104 2.2. Oxygen ............................................ 122 2.3. Hydrogen .......................................... 132 2.4. Sulfur ............................................. 143 2.5. Carbon ............................................ 147 * Correspondingauthor. Tel.: +1 330 9724936; fax: +1 330 9726918. E-mail address: [email protected] (R.D.
    [Show full text]
  • Effect of Alloying Elements on Hydrogen Pickup in Zirconium Alloys
    ZIRCONIUM IN THE NUCLEAR INDUSTRY: 17TH INTERNATIONAL SYMPOSIUM 479 STP 1543, 2014 / available online at www.astm.org / doi: 10.1520/STP154320120215 Adrien Couet,1 Arthur T. Motta,2 and Robert J. Comstock3 Effect of Alloying Elements on Hydrogen Pickup in Zirconium Alloys Reference Couet, Adrien, Motta, Arthur T., and Comstock, Robert J., “Effect of Alloying Elements on Hydrogen Pickup in Zirconium Alloys,” Zirconium in the Nuclear Industry: 17th International Symposium, STP 1543, Robert Comstock and Pierre Barberis, Eds., pp. 479–509, doi:10.1520/ STP154320120215, ASTM International, West Conshohocken, PA 2014.4 Abstract Although the optimization of zirconium-based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, we conducted a systematic study of the alloy effect on hydrogen pickup, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pickup fraction was accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure, and corrosion kinetics on hydrogen uptake. Two different techniques for measuring hydrogen concentrations were used: a destructive technique, vacuum hot extraction, and a non-destructive one, cold neutron prompt gamma activation analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy, but also during the corrosion process for a given alloy. These variations result from the process of charge balance during the corrosion reaction, such that the pickup of hydrogen decreases when the rate of electron transport or Manuscript received December 25, 2012; accepted for publication June 26, 2013; published online June 17, 2014.
    [Show full text]
  • Towards an Understanding of Zirconium Alloy Corrosion
    v V.. AECL-5548 ATOMIC ENERGY L'ENERGIE ATOMIQUE OF CANADA LIMITED DU CANADA LIMITEE TOWARDS AN UNDERSTANDING OF ZIRCONIUM ALLOY CORROSION by B. COX Presented on the occasion of the award of the William J, Kroll Medal, Quebec City, P.Q. August 1976 Chalk River Nuclear Laboratories Chalk River, Ontario August 1976 Cover Photograph: Large columnar oxide grains on zirconium oxidised in air at 650°C, magnification x20,000. TOWARDS AW UNDERSTANDING OF ZIRCONIUM ALLOY CORROSION by B. Cox (M.A., Ph.D., Cantab.) Head of Materials Science Branch Atomic Energy of Canada Limited Chalk River Nuclear Laboratories Chalk River, Ontario KOJ 1J0 on the occaiZon o & the William J. Kroll Medal Presentation Quebec City, P.Q. August 11, 19 76 AECL-5548 ^^mjrrejid_re_lji corrosion des alliages de zi rconium par B. Cox à l'occasion de la présentation de la Médaille William J. Krol 1 Québec, P.Q. 11 août 1976 Résumé On donne un bref historique du développement d'un programme visant à mieux comprendre les mécanismes de corrosion qui jouent dans les alliages de zirconium. Un sommaire général indique les progrès réalisés jusqu'à présent dans la mise en oeuvre de ce programme. L'Energie Atomique du Canada, Limitée Laboratoires Nucléaires de Chalk River Chalk River, Ontario AoQt 1976 AECL-5548 TOWARDS AN UNDERSTANDING OF ZIRCONIUM ALLOY CORROSION by B . Cox on the occasion of th(. William J. Kroll Medal Presentation Quebec City, P.Q. August 11, 1976 ABSTRACT A brief historical summary is given of the development of a programme for understanding the corrosion mechanisms operating for zirconium alloys.
    [Show full text]
  • Zirconium Alloys in Nuclear Technology
    Proc. Indian Aead. Sci. (Engg. Sei.) Vol. 4, Pt. 1, April 1981: pp. 41-56. ~) Printed in India. Zirconium alloys in nuclear technology R KRISHNAN and M K ASUNDI Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085 MS received 17 October 1980 Abstract. This paper describes the historical development of zirconium and its alloys as structural materials for nuclear reactors. The various problems encountered in the early stages of the development of zircaloys and their performance in reactors operating presently are described in detail. The development of Zr-2.5~o Nb alloys for pressure tube applications is discussed. The paper concludes with a detailed dis- cussion on the development potential of zirconium alloys for high temperature appli- cations and a brief account of the work carried out at Trombay in this field. Keywords. Zirconium; zirconium alloys; structural materials; nuclear reactors; corrosion; high strength alloys. 1. Introduction The development of zirconium metallurgy is essentially due to the nuclear industry, where zirconium alloys have come to be regarded as the proven structural material. This is primarily because of their unique combination of good corrosion resistance in water near 300~ and low capture cross-section for thermal neutrons (Douglass 1971). It is quite likely that the application of zirconium in the nuclear industry will remain its dominant use. This paper begins with an account of the present day use of zirconium alloys in the nuclear industry mainly to acquaint non-nuclear techno- logists with the various sizes, shapes and functions of such structural materials. Then the history of the development of presently accepted zirconium alloys--zirca- loy-2 and zircaloy-4---is given some consideration.
    [Show full text]
  • Comparison of the Mechanical Properties and Corrosion Resistance of Zirlo and Other Zirconium Alloys
    2007 International Nuclear Atlantic Conference - INAC 2007 Santos, SP, Brazil, September 30 to October 5, 2007 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-02-1 COMPARISON OF THE MECHANICAL PROPERTIES AND CORROSION RESISTANCE OF ZIRLO AND OTHER ZIRCONIUM ALLOYS Celso A. Teodoro, José E. Rosa da Silva, Luís A. Albiac Terremoto, Myrthes Castanheira, Antonio Teixeira e Silva, Georgi Lucki and Margaret de A. Damy Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP) Av. Professor Lineu Prestes, 2242 05508-000 São Paulo, SP [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] ABSTRACT The metallic materials employed in water cooled reactors must have several requisites, depending on their use. Some materials are used as cladding of nuclear fuels, preventing the contact of the cooling water with the fuel, and also avoid the release of fission products produced in the fuel during irradiation. Others are used as structural materials, to support the reactor core and avoid the distortion of the fuel elements under the action of several forces. The materials therefore should present good corrosion resistance, good mechanical properties and when used as a fuel cladding, should also present good thermal conductivity. Regarding nuclear properties, it is necessary that the cladding material presents low absorption cross section for thermals neutron. Zirlo is winning importance as cladding tubes material of nuclear fuels. The most promising aspects of this alloy are: low corrosion rate, best creep properties under irradiation, increase of mechanical resistance and capability of resisting the highest burn-ups.
    [Show full text]
  • Chapter 5. Clad-Coolant Chemical Interaction
    NEA/NSC/R(2015)5 Chapter 5. Clad-coolant chemical interaction F.C. Iglesias1, B.J. Lewis1, C. Desgranges2, C. Toffolon3 1University of Ontario Institute of Technology, Canada, 2CEA, DEN, DPC, Centre de Saclay, France, 3CEA, DEN, DANS, Centre de Saclay, France Abstract This paper provides an overview of the kinetics for zircaloy clad oxidation behaviour in steam and air during reactor accident conditions. The generation of chemical heat from metal/water reaction is considered. Low-temperature oxidation of zircaloy due to water-side corrosion is further described. Introduction The prediction of high-temperature fuel rod behaviour is of particular importance for nuclear safety analysis. An understanding of fuel rod behaviour has been well advanced through many decades of experimental research and efforts in modelling and code development [79]. Various types of component and system computer codes have been developed by the international fuel community to describe nuclear fuel rod behaviour and performance during normal, up-set and severe accident conditions [38,27,16,4,70,82,14]. These various codes describe the complex and linked phenomena associated with the thermomechanical and chemical behaviour of the fuel rod/bundle. Zircaloy oxidation will affect the behaviour of fuel cladding during normal reactor operation. More importantly, it is also a key source of chemical heat due to metal-water reaction at high temperature during reactor accident situations. The uptake of oxygen can also embrittle the zircaloy sheath. For instance, if the oxygen concentration over half of the clad wall thickness exceeds ~0.7 wt%, it can fail upon rewet during the introduction of emergency core cooling in a reactor accident [68,28], or fail by overstrain under oxide cracks at strains as low as ~2% [67].
    [Show full text]
  • Zr Alloy Corrosion and Hydrogen Pickup
    Bales, Michelle From: Angela Olpretean <[email protected]> Sent: Tuesday, September 08, 2015 7:55 AM To: Bales, Michelle Cc: 'Peter Rudling'; Rhodes, Bebbie Subject: [External_Sender] SV: Permission Request Good morning Ms. Bales, Hereby, we confirm that ANT International grants permission for the U.S. Nuclear Regulatory Commission (NRC) to make an excerpt from the article, “Zr alloy corrosion and hydrogen pickup” available to the public in the NRC’s ADAMS system. The version of the excerpt that contains only material under ANT copyright will be sent to you by UPS. Please let me know if you have any questions. Best regards, Angela Olpretean On behalf of Peter Rudling Från: Bales, Michelle [mailto:[email protected]] Skickat: den 2 september 2015 22:17 Till: Angela Olpretean <[email protected]> Kopia: Peter Rudling ([email protected]) <[email protected]>; Rhodes, Bebbie <[email protected]> Ämne: Permission Request Good morning Mrs. Olpretean, I am writing to request permission for the U.S. Nuclear Regulatory Commission (NRC) to make an excerpt from the article, “Zr Alloy Corrosion and Hydrogen Pickup” available to the public in NRC’s Agencywide Documents Access & Management System (ADAMS). The excerpt of interest is on the subject of hydrogen pickup data and models for Zircaloy-2 cladding material. The NRC staff used information in this article in the development of RG of Regulatory Guide 1.224, “Establishing Analytical Limits for Zirconium Cladding Material.” By placing this document into ADAMS, the public will be able to freely access and print the document for their personal use.
    [Show full text]
  • "Corrosion and Hydriding of Zircaloy Fuel Cladding
    CORROSION AND HYDRIDING OF ZIRCALOY FUEL CLADDING -THE INSIDE (AND OUTSDE) STORY B. COX Centre for Nuclear Engineering University of Toronto 184 College Street Toronto, ON M5S 3E4 ,Abstc Zirconium alloy fuel cladding corrodes, and absorbs hydrogen, both from the inside and the outside. The detailed mechanisms for oxide growth and hydrogen absorption are quite different, however, because of the different conditions ("protectiveness") of the oxide films formed in the two environments. Historical changes in the understanding of the processes in the two very different chemical environments on the two sides of the cladding are summarised, and current views of the hydrogen uptake process are summarised. The lack of protectiveness of the inside oxide also contributes to easy PCI corrosion. Since this is an historical session, it may be interesting to start with an anecdote illustrating the aphorism "that what goes around, comes around". One of the earliest studies of zirconium alloy corrosion that I was involved in was an attempt at AERE Harwell to develop alloys that could be used in the SCHWR (Steam Cooled Heavy Water Reactor), an aborted predecessor of the SGHWR design (Steam Generating Heavy Water Reactor) which, like its close relation Gentilly - 1, got to the prototype stage. SCHWR was to produce a steam-cycle as nearly identical as possible to the standard steam-cycle of U.K coal fired generating stations (500 - 550°C, 1000 - 1500 psi). After much study of many zirconium alloys in 500 - 6000C steam it became evident that there was an irreducible minimum degradation of all zirconium alloys at these temperatures determined by the diffusion of (and embrittlement by) oxygen in the metal.
    [Show full text]