United States Patent (19) 11 Patent Number: 4,994,382 Ameyama Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 4,994,382 Ameyama Et Al United States Patent (19) 11 Patent Number: 4,994,382 Ameyama et al. 45 Date of Patent: Feb. 19, 1991 54 PROCESS FOR PRODUCTION OF rolo-Quinorine Quinone'; Agric. Biol. Chem., vol. 48, PYRROLO-QUINOLINE QUINONE No. 2, Feb. 1984, pp. 561-565. Shimao et al., "Pyrroloquinoline Quinone as an Essen (75) Inventors: Minoru Ameyama; Osao Adachi, both tial Growth Factor for a Poly(vinyl alchol)-Degrading of Yamaguchi, Japan Symbiont, Pseudomonas sp VM15C"; Agric. Biol. 73 Assignee: Ube Industries, Ltd., Yamaguchi, Chem., vol. 48, No. 11, (Nov., 1984), pp. 2873-2876. Japan DeBeer et al.; "The Prosthetic Group of Methylamine Dehydrogenase From Pseudomonas AMI"; Biochimica (21) Appl. No.: 357,668 et Biophysica Acta, vol. 622, (1980), pp. 370-374. Chemical Abstracts, vol. 100, No. 21, (1984), p. 496, 22 Filed: May 26, 1989 Abstract No. 173083r, Ameyama et al. Chemical Abstracts, vol. 99, No 15, (1983), p. 287, Ab Related U.S. Application Data stract No. 118240a, J. A. Duine et al. 63 Continuation of Ser. No. 739,046, May 29, 1985, aban Patent Abstracts of Japan, vol. 8, No. 323, (1984). doned. E. J. Corey et al., J. Am. Chen. Soc. 1981, 103, 5599-5600. 30 Foreign Application Priority Data Primary Examiner-Herbert J. Lilling May 29, 1984 JP Japan ................................ 59-1074.06 Attorney, Agent, or Firm-Finnegan, Henderson, 51) Int. Cl......................... C12N 1/20; C12P 17/18; Farabow, Garrett & Dunner C12P 17/16; C12R 1/38 57 ABSTRACT 52 U.S. C. .................................... 435/119; 435/118; There are disclosed a new process for production of 435/133; 435/247; 435/252.34; 435/253.3; pyrrolo-quinoline quinone, comprising culturing a bac 435/822; 435/874 terium belonging to the genus Paracoccus, Protamino 58 Field of Search ............... 435/119, 118, 133, 247, bacter or Pseudomonas and capable of producing pyr 435/822,874, 253.3, 252.34 rolo-quinoline quinone in a culture medium to produce 56 References Cited the pyrrolo-quinoline quinone in the cultured broth, and recovering the pyrrolo-quinoline quinone from the cul U.S. PATENT DOCUMENTS tured broth; and a new process for production of pyr 4,37,843 3/1982 MacLennan et al. ............... 435/253 rolo-quinoline quinone, comprising culturing a bacte rium belonging to the genus Paracoccus, Protaminobac FOREIGN PATENT DOCUMENTS ter or Pseudomonas and capable of producing the pyr 206471 4/1986 European Pat. Off. ............ 435/18 rolo-quinoline quinone in a culture medium to form cultured cells, separating the cells from the cultured OTHER PUBLICATIONS broth, resuspending the separated cells in a reaction Duine et al., “The Prosthetic Group of Methanol Dehy medium containing precursors of the pyrrolo-quinoline drogenase'; Biochem. J., vol. 187, (1980), pp. 221-226. quinone, incubating the reaction medium to produce the Drieg et al., Bergey's Manual of Systematic Bacteriology, pyrrolo-quinoline quinone, and recovering the pyrrolo vol. 1, Williams and Wilkins, Baltimore, Md., (1984); quinoline quinone from the reaction medium. pp. 399, 400. Ameyama et al., “Microbial Production of Pyr 2 Claims, 2 Drawing Sheets U.S. Patent Feb. 19, 1991 Sheet 1 of 2 4,994,382 Fig. I O.OO O.O5 O O 2 4 6 8 O 12 14 x O M PQQ U.S. Patent Feb. 19, 1991 Sheet 2 of 2 4,994,382 s Fi 9. 2 TIME (hour) 4,994,382 1 2 product isomers derived from the reactions, and pro PROCESS FOR PRODUCTION OF vide a rather low yield of PQQ. PYRROLO-QUINOLINE QUINONE To overcome the above-mentioned disadvantages of the chemical synthetic processes, there has been pres This application is a continuation of application Ser. 5 ented a biological process for the production of PQQ No. 06/739,046, filed May 29, 1985. wherein cells of a microorganism are cultured in a me dium to accumulate PQQ and related compounds, and BACKGROUND OF THE INVENTION the accumulated PQQ is recovered by, for example, 1. Field of the Invention extraction with solvents (see Japanese Unexamined The present invention relates to a process for the 10 Patent Application (Kokai) No. 59.113896 published on microbial production of pyrrolo-quinoline quinone June 30, 1984), or simple chromatographic method on (hereinafter referred to as PQQ). ionexchangers (see, for example, Agri Biol. Chem. Vol. 2. Description of the Related Art PQQ has the fol 48,561-565 (1984)). lowing formula: Therefore, a new process for the production of PQQ, 5 which is more practical and economical, is desired. COOH (I) SUMMARY OF THE INVENTION The present invention provides a new process for the production of PQQ comprising, culturing a bacterium belonging to the genus Paracoccus, Protaminobacter or Pseudomonas and capable of producing pyrrolo-quino line quinone in a culture medium to produce the pyr rolo-quinoline quinone in the cultured broth, and recov ering the pyrrolo-quinoline quinone from the cultured and can be reversibly reduced to a reduced type PQQ 25 broth. (PQQH2) having the following formula: There is also provided a process for the production of PQQ comprising culturing the above-mentioned bacte rium in a culture medium, to form cultured cells, sepao COOH (II) rating the cells from the cultured broth, resuspending 30 the separated cells in a reaction medium containing precursors of the pyrrolo-quinoline quinone, incubating the reaction medium to produce the pyrrolo-quinoline quinone, and recovering the pyrrolo-quinoline quinone 35 from the reaction medium. BRIEF DESCRIPTION OF THE DRAWINGS On the basis of this property, PQQ has an ability to FIG. 1 is a calibration chart showing the relationship convert apo-type quinoenzymes to the holo-type between an amount of PQQ and a difference of absorp thereof. For example, PQQ acts as a coenzyme for tion per minute at 600 nm as measured by using a mem methanol dehydrogenase in methanol-utilizing bacteria, brane of 0.16 mg as protein (AOD600/min./0.16 mg). alcohol dehydrogenase, aldehyde dehydrogenase, glyc FIG. 2 is a graph showing a profile of the culturing of erol dehydrogenase, glucose dehydrogenase, or the like Paracoccus denitrificans in Example 1. in acetic acid bacteria. PQQ is also physiologically in DESCRIPTION OF THE PREFERRED portant as a coenzyme for copper containing amine 45 EMBODIMENTS oxidase of animal, plant or microbial origin, amine de hydrogenase or choline dehydrogenase, or other vari The following bacteria are typically used in the pres ous kinds of oxidoreductases which are inhibited by ent invention: carbonyl reagents. (1) Paracoccus denitrificans (IFO 13301) Moreover, PQQ may be a very important substance 50 (2) Protaminobacter ruber (IFO 3708) having vitamin actions because it acts as a coenzyme for (3) Pseudomonas A1-2 (FERM P-7599) important enzymes as described above, taking as an (4) Pseudomonas P1-1 (FERM P-7598) analogy the fact that coenzymes for other oxidoreduc (5) Pseudomonas P2-2 (FERM P-7600) tases and transferases, such as thiamine pyrrophosphate, (6) Pseudomonas P2-3 (FERM P-7597) nicotinamide adenine dinucleotide, nicotinamide ade 55 (7) Pseudomonas N1-1 (FERM P-7596) nine dinucleotide phosphate, pyridoxal phosphate, fla The above-mentioned bacteria (1) and (2) have been vin adenine dinucleotide, and flavin mononucleotide deposited at the Institute for Fermentation, Osaka have to be taken in as vitamin, such as vitamin B1, nico (IFO) in Japan, and can be freely supplied to the public. tinic acid, vitamin B6, and vitamin B2 respectively. On The bacteria (3) to (7) were isolated by the present the basis of the above-mentioned physiological impor invention, and deposited at the Fermentation Research tance, PQQ is useful for pharmaceutical purposes. Institute (FRI) in Japan, on April 27, 1984. The bacteri Conventionally, for the production of PQQ, chemical um(7) was transferred to the international deposition synthetic processes are known (see, for example, J. Ann. under the Budapest Treaty on the International Recog Chem. Soc. Vol. 103, 5599-5600 (1981)). However, nition of the Deposit of Microorganisms for the Pur these chemical synthetic processes have various disad 65 poses of Patent Procedure on Apr. 25, 1985, and given vantages. For example, the processes are time-consum the number FERM BP-775. ing due to the necessity for multi-reaction steps, require The properties of the newly isolated bacteria are set complicated operations to remove many kinds of by forth in the following tables. 4,994,382 3 4. may be added step by step or continuously during cul TABLE 1 turing. The nitrogen source includes organic nitrogen Growth of Microorganisms on Various Carbon Sources sources such as amino acids, nucleic acids, protein hy Microorganism drolyzates, yeast extract, corn steep liquor, and inor Carbon Source Al-2 P1-1 P2-2 P2-3 N1. 5 ganic nitrogen sources such as ammonium salts, ammo Methanol -- - -- ---- -- ---- Formaldehyde - - -- - nia water, gaseous ammonia, and nitrates. The above Sodium formate - --- mentioned nitrogen sources may be used alone or in Ethanoi -- ----' -- -- --- * combination. The concentration of nitrogen source Acetaldehyde - - -- varies according to the kind of nitrogen source used, Sodium acetate -- -- * -- * -- --" IO Methylamine -- -- -- and is preferably within 0.05% to 0.5% by weight. D-Glucose ---- -- ---- ---- -- The culturing is preferably carried out under the Glycerol ---- ---- -H -- -- aerobic condition which is accomplished by aeration D-Fructose ---- - -- -- -- Malate -- - - - and agitation of the medium in a fermentor, or by shak D-Mannitol -- -- - - - -- -- ---- ing a culture flask containing the medium. The tempera Lactose ---- -- ---- -- 15 ture for culturing is generally 0° C. to 40” C., preferably Saccharose -r ----' -- ---- -- D-Galactose -- -- -- -- - 20 C. to 35° C. The pH of the medium is generally 2 to L-Arabinose -- -- -- -- - 9, preferably 5.5 to 8.0. The culturing time is generally D-Xylose -- - --- -- -- 20 to 150 hours, preferably 50 to 100 hours. In the pres Polypepton" ---- -- ---- ent embodiment, PQQ is accumulated in the cultured "Production of fluorescent pigments 20 broth.
Recommended publications
  • Adaptive Laboratory Evolution Enhances Methanol Tolerance and Conversion in Engineered Corynebacterium Glutamicum
    ARTICLE https://doi.org/10.1038/s42003-020-0954-9 OPEN Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum Yu Wang 1, Liwen Fan1,2, Philibert Tuyishime1, Jiao Liu1, Kun Zhang1,3, Ning Gao1,3, Zhihui Zhang1,3, ✉ ✉ 1234567890():,; Xiaomeng Ni1, Jinhui Feng1, Qianqian Yuan1, Hongwu Ma1, Ping Zheng1,2,3 , Jibin Sun1,3 & Yanhe Ma1 Synthetic methylotrophy has recently been intensively studied to achieve methanol-based biomanufacturing of fuels and chemicals. However, attempts to engineer platform micro- organisms to utilize methanol mainly focus on enzyme and pathway engineering. Herein, we enhanced methanol bioconversion of synthetic methylotrophs by improving cellular tolerance to methanol. A previously engineered methanol-dependent Corynebacterium glutamicum is subjected to adaptive laboratory evolution with elevated methanol content. Unexpectedly, the evolved strain not only tolerates higher concentrations of methanol but also shows improved growth and methanol utilization. Transcriptome analysis suggests increased methanol con- centrations rebalance methylotrophic metabolism by down-regulating glycolysis and up- regulating amino acid biosynthesis, oxidative phosphorylation, ribosome biosynthesis, and parts of TCA cycle. Mutations in the O-acetyl-L-homoserine sulfhydrylase Cgl0653 catalyzing formation of L-methionine analog from methanol and methanol-induced membrane-bound transporter Cgl0833 are proven crucial for methanol tolerance. This study demonstrates the importance of
    [Show full text]
  • Enzymatic Conversion of CO2 to Methanol
    Verónica Catarina Ferreira Amado Licenciada em Bioquímica “One-pot” enzymatic conversion of CO2 to methanol Dissertação para obtenção do Grau de Mestre em Biotecnologia Orientador: Susana Barreiros, Professora Associada com Agregação Universidade Nova de Lisboa Co-orientador: Alexandre Paiva, Investigador Doutorado Universidade Nova de Lisboa Júri: Presidente: Prof. Doutor Carlos Alberto Gomes Salgueiro Arguente: Doutora Ana Sofia Diogo Ferreira Vogal: Prof. Doutora Susana Filipe Barreiros Setembro de 2013 i ii “One-pot” enzymatic conversion of CO2 to methanol Copyright Verónica Catarina Ferreira Amado, FCT/UNL, UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educativos ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. iii iv Ao meu irmão Rafael v AGRADECIMENTOS Gostaria de agradecer a todos aqueles que me apoiaram nesta jornada e que, de algum modo contribuíram para a realização desta tese. Quero expressar a mais sincera gratidão aos meus orientadores. Em primeiro lugar à minha orientadora Prof. Doutora Susana Barreiros por todo o interesse e entusiasmo que demonstrou no meu trabalho, por todas as críticas científicas que tanto o enriqueceram, e por estar sempre disponível para discutir o mesmo. Gostaria de agradecer também ao meu co-orientador o Doutor Alexandre Paiva pela paciência, concelhos dados, discussão de ideias e alternativas, pelo espírito crítico sempre incisivo em pontos fulcrais e também pelos momentos de descontracção.
    [Show full text]
  • Enzyme Immobilization for Use in Biofuel Cells and Sensors
    (19) & (11) EP 2 343 766 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 13.07.2011 Bulletin 2011/28 H01M 8/16 (2006.01) C12Q 1/00 (2006.01) (21) Application number: 10179649.8 (22) Date of filing: 21.11.2003 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Minteer, Shelly, D. HU IE IT LI LU MC NL PT RO SE SI SK TR Pacific, MO 63069 (US) Designated Extension States: • Akers, Niki, L. AL LT LV MK St Louis, MO 63129 (US) • Moore, Christine, M. (30) Priority: 27.11.2002 US 429829 P St Louis, MO 63125 (US) 10.07.2003 US 486076 P 11.07.2003 US 617452 (74) Representative: Smaggasgale, Gillian Helen W.P. Thompson & Co (62) Document number(s) of the earlier application(s) in 55 Drury Lane accordance with Art. 76 EPC: London WC2B 5SQ (GB) 03812443.4 / 1 565 957 Remarks: (71) Applicant: ST. LOUIS UNIVERSITY This application was filed on 24-09-2010 as a St. Louis, MO 63110-0250 (US) divisional application to the application mentioned under INID code 62. (54) Enzyme immobilization for use in biofuel cells and sensors (57) Disclosed are bioanodes comprising a quater- cleotide. The ion conducting polymer membrane lies jux- nary ammonium treated Nation(R) polymer membrane taposed to a polymethylene green redox polymer mem- and a dehydrogenase incorporated within the treated Na- brane, which serves to electro-oxidize the reduced ade- tion(R) polymer. The dehydrogenase catalyzes the oxi- nine dinucleotide.
    [Show full text]
  • University of Groningen Physiology and Biochemistry of Primary Alcohol
    University of Groningen Physiology and biochemistry of primary alcohol oxidation in the gram-positive bacteria "amycolatopsis methanolica" and "bacillus methanolicus" Hektor, Harm Jan IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1997 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hektor, H. J. (1997). Physiology and biochemistry of primary alcohol oxidation in the gram-positive bacteria "amycolatopsis methanolica" and "bacillus methanolicus". s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 Chapter 2 Formaldehyde dismutase activities in Gram-positive bacteria oxidizing methanol L.V.
    [Show full text]
  • Original Article Compensatory Upregulation of Aldo-Keto Reductase 1B10 to Protect Hepatocytes Against Oxidative Stress During Hepatocarcinogenesis
    Am J Cancer Res 2019;9(12):2730-2748 www.ajcr.us /ISSN:2156-6976/ajcr0097527 Original Article Compensatory upregulation of aldo-keto reductase 1B10 to protect hepatocytes against oxidative stress during hepatocarcinogenesis Yongzhen Liu1, Jing Zhang1, Hui Liu1, Guiwen Guan1, Ting Zhang1, Leijie Wang1, Xuewei Qi1, Huiling Zheng1, Chia-Chen Chen1, Jia Liu1, Deliang Cao2, Fengmin Lu3, Xiangmei Chen1 1State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China; 2Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute at Southern Illinois University School of Medicine, 913 N, Rutledge Street, Springfield, IL 62794, USA; 3Peking University People’s Hospital, Peking University Hepatology Institute, Beijing 100044, P. R. China Received May 26, 2019; Accepted November 15, 2019; Epub December 1, 2019; Published December 15, 2019 Abstract: Aldo-keto reductase 1B10 (AKR1B10), a member of aldo-keto reductase superfamily, contributes to detox- ification of xenobiotics and metabolization of physiological substrates. Although increased expression of AKR1B10 was found in hepatocellular carcinoma (HCC), the role of AKR1B10 in the development of HCC remains unclear. This study aims to illustrate the role of AKR1B10 in hepatocarcinogenesis based on its intrinsic oxidoreduction abilities. HCC cell lines with AKR1B10 overexpression or knockdown were treated with doxorubicin or hydrogen peroxide to determinate the influence of aberrant AKR1B10 expression on cells’ response to oxidative stress. Using Akr1b8 (the ortholog of human AKR1B10) knockout mice, diethylnitrosamine (DEN) induced liver injury, chronic inflammation and hepatocarcinogenesis were explored. Clinically, the pattern of serum AKR1B10 relevant to disease progres- sion was investigated in a patient cohort with chronic hepatitis B (n=30), liver cirrhosis (n=30) and HCC (n=40).
    [Show full text]
  • Polyol Pathway Links Glucose Metabolism to the Aggressiveness
    Published OnlineFirst January 17, 2018; DOI: 10.1158/0008-5472.CAN-17-2834 Cancer Metabolism and Chemical Biology Research Polyol Pathway Links Glucose Metabolism to the Aggressiveness of Cancer Cells Annemarie Schwab1, Aarif Siddiqui1, Maria Eleni Vazakidou1, Francesca Napoli1, Martin Bottcher€ 2, Bianca Menchicchi3, Umar Raza4, Ozge€ Saatci4, Angela M. Krebs5, Fulvia Ferrazzi6, Ida Rapa7, Katja Dettmer-Wilde8, Maximilian J. Waldner3, Arif B. Ekici6, Suhail Ahmed Kabeer Rasheed9, Dimitrios Mougiakakos2, Peter J. Oefner8, Ozgur Sahin4, Marco Volante7, Florian R. Greten10, Thomas Brabletz5, and Paolo Ceppi1 Abstract Cancer cells alter their metabolism to support their malig- sequencing confirmed a profound alteration of EMT in PP- nant properties. In this study, we report that the glucose- deficient cells, revealing a strong repression of TGFb signature transforming polyol pathway (PP) gene aldo-keto-reductase- genes. Excess glucose was found to promote EMT through 1-member-B1 (AKR1B1) strongly correlates with epithelial-to- autocrine TGFb stimulation, while PP-deficient cells were mesenchymal transition (EMT). This association was con- refractory to glucose-induced EMT. These data show that PP firmed in samples from lung cancer patients and from an represents a molecular link between glucose metabolism, can- EMT-driven colon cancer mouse model with p53 deletion. In cer differentiation, and aggressiveness, and may serve as a novel vitro, mesenchymal-like cancer cells showed increased AKR1B1 therapeutic target. levels, and AKR1B1 knockdown was sufficient to revert EMT. An Significance: A glucose-transforming pathway in TGFb-driven equivalent level of EMT suppression was measured by targeting epithelial-to-mesenchymal transition provides novel mecha- the downstream enzyme sorbitol-dehydrogenase (SORD), fur- nistic insights into the metabolic control of cancer differenti- ther pointing at the involvement of the PP.
    [Show full text]
  • C1-Pathways in Methyloversatilis Universalis FAM5: Genome Wide Gene Expression and Mutagenesis Studies
    Microorganisms 2015, 3, 175-197; doi:10.3390/microorganisms3020175 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Article C1-Pathways in Methyloversatilis universalis FAM5: Genome Wide Gene Expression and Mutagenesis Studies Nathan M. Good 1,†, Andrew Lamb 1,2,‡, David A. C. Beck 2,3, N. Cecilia Martinez-Gomez 2,† and Marina G. Kalyuzhnaya 1,4,* 1 Department of Microbiology, University of Washington, Seattle, WA 98195-1700, USA; E-Mails: [email protected] (N.M.G.); [email protected] (A.L.) 2 Department of Chemical Engineering, University of Washington, Seattle, WA 98195-7735, USA; E-Mails: [email protected] (D.A.C.B.); [email protected] (N.C.M.G.) 3 eScience Institute, University of Washington, Seattle, WA 98195-1570, USA 4 Biology Department, San Diego State University, North Life Science Room 401, San Diego, CA 92182-4614, USA † Current address: Department of Microbiology and Molecular Genetics, Michigan State University, 6198 Biomedical Physical Sciences. East Lansing, MI 48824, USA. ‡ Current address: College of Science, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-619-594-5626. Academic Editor: Ludmila Chistoserdova Received: 5 January 2015 / Accepted: 26 March 2015 / Published: 9 April 2015 Abstract: Methyloversatilis universalis FAM5 utilizes single carbon compounds such as methanol or methylamine as a sole source of carbon and energy. Expression profiling reveals distinct sets of genes altered during growth on methylamine vs methanol. As expected, all genes for the N-methylglutamate pathway were induced during growth on methylamine.
    [Show full text]
  • Functional Investigation of Methanol Dehydrogenase-Like Protein Xoxf in Methylobacterium Extorquens AM1
    Research Collection Doctoral Thesis Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1 Author(s): Schmidt, Sabrina Publication Date: 2010 Permanent Link: https://doi.org/10.3929/ethz-a-006212345 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 19282 Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1 A dissertation submitted to the ETH ZURICH for the degree of DOCTOR OF SCIENCES Presented by SABRINA SCHMIDT Diplom biologist, TU Braunschweig Born on May 23, 1982 Citizen of Germany Accepted on the recommendation of Prof. Dr. Julia Vorholt Prof. Dr. Hauke Hennecke 2010 2 | Microbiology ETH Zurich ABSTRACT ....................................................................................................................... 5 ZUSAMMENFASSUNG .................................................................................................. 7 CHAPTER 1: INTRODUCTION .................................................................................... 9 1.1 AEROBIC METHYLOTROPHIC BACTERIA .................................................................... 9 1.2 THE HABITAT OF AEROBIC METHYLOTROPHIC BACTERIA ......................................... 9 1.3 THE OXIDATION OF METHANOL TO FORMALDEHYDE IN METHYLOTROPHIC MICROORGANISMS..................................................................................................
    [Show full text]
  • Characterization and Evolution of an Activator-Independent Methanol Dehydrogenase from Cupriavidus Necator N-1
    UCLA UCLA Previously Published Works Title Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1. Permalink https://escholarship.org/uc/item/9bd5n89m Journal Applied microbiology and biotechnology, 100(11) ISSN 0175-7598 Authors Wu, Tung-Yun Chen, Chang-Ting Liu, Jessica Tse-Jin et al. Publication Date 2016-06-01 DOI 10.1007/s00253-016-7320-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Appl Microbiol Biotechnol (2016) 100:4969–4983 DOI 10.1007/s00253-016-7320-3 BIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1 Tung-Yun Wu1 & Chang-Ting Chen1 & Jessica Tse-Jin Liu1 & Igor W. Bogorad1 & Robert Damoiseaux2 & James C. Liao1 Received: 2 October 2015 /Revised: 15 December 2015 /Accepted: 13 January 2016 /Published online: 5 February 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract Methanol utilization by methylotrophic or non- enzyme exhibited higher or comparable activity and affinity methylotrophic organisms is the first step toward methanol toward methanol relative to the B. methanolicus Mdh with or bioconversion to higher carbon-chain chemicals. Methanol without ACT in a wide range of temperatures. Furthermore, oxidation using NAD-dependent methanol dehydrogenase using directed molecular evolution, we engineered a variant + (Mdh) is of particular interest because it uses NAD as the (CT4-1) of Mdh2 that showed a 6-fold higher Kcat/Km for electron carrier. To our knowledge, only a limited number of methanol and 10-fold lower Kcat/Km for n-butanol. Thus, NAD-dependent Mdhs have been reported.
    [Show full text]
  • View PDF Version
    RSC Advances View Article Online REVIEW View Journal | View Issue Guidance for engineering of synthetic methylotrophy based on methanol metabolism in Cite this: RSC Adv.,2017,7,4083 methylotrophy Wenming Zhang, Ting Zhang, Sihua Wu, Mingke Wu, Fengxue Xin, Weiliang Dong, Jiangfeng Ma, Min Zhang and Min Jiang* Methanol is increasingly becoming an attractive substrate for production of different metabolites, such as commodity chemicals, and biofuels via biological conversion, due to the increment of annual production capacity and decrement of prices. In recent years, genetic engineering towards native menthol utilizing organisms – methylotrophy has developed rapidly and attracted widespread attention. Therefore, it is vital to elucidate the distinct pathways that involve methanol oxidation, formaldehyde assimilation and disassimilation in the different methylotrophies for future synthetic work. In addition, this will also help to genetically construct some new and non-native methylotrophies. This review summarizes the Received 19th November 2016 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. current knowledge about the methanol metabolism pathways in methylotrophy, discusses and Accepted 26th December 2016 compares different pathways on methanol utilization, and finally presents the strategies to integrate DOI: 10.1039/c6ra27038g the methanol metabolism with other chemicals, biofuels or other high value-added product formation www.rsc.org/advances pathways. 1. Introduction million tons per year and an expected annual growth rate in the range of 10–20%, a methanol-based bioeconomy has been With the rapid growth of the world population and develop- proposed.3 Especially recently, with the rise of the methanol This article is licensed under a ment of industry and society, energy demand is dramatically production process, the price of methanol steadily declined.
    [Show full text]
  • Isolation and Characterization of Paracoccus Denitrificans Mutants with Defects in the Metabolism of One-Carbon Compounds NELLIE HARMS,'* GERT E
    JOURNAL OF BACTERIOLOGY, Dec. 1985, p. 1064-1070 Vol. 164, No. 3 0021-9193/85/121064-07$02.00/0 Copyright © 1985, American Society for Microbiology Isolation and Characterization of Paracoccus denitrificans Mutants with Defects in the Metabolism of One-Carbon Compounds NELLIE HARMS,'* GERT E. DE VRIES,2 KICK MAURER,' EDUARD VELTKAMP,2 AND ADRIAAN H. STOUTHAMER' Department of Microbiology' and Department of Genetics,2 Biological Laboratory, Free University, 1007 MC Amsterdam, The Netherlands Received 11 June 1985/Accepted 12 September 1985 Mutants deficient in the metabolism of one-carbon compounds have been obtained by treating Paracoccus denitrificans with the mutagen N-methyl-N'-nitro-N-nitrosoguanidine. Mutants were selected without enrich- ment procedures by newly developed plate screening tests. The obtained mutants were characterized by their growth responses, cytochrome composition, ehizyme activities, and immunogenic reaction with antisera against methanol dehydrogenase. By these criteria five mttant classes could be distinguished. Class I mutants are involved in the expression of methaniol dehydrogenase. Three mutants of this class have a defect in the structural gene. A double mutant was found with defects in the expression of both methanol dehydrogenase and hydrogenase. Class II mutants have a defect in a regulatory gene involved in the regulation of both methanol dehydrogenase and methylamine dehydrogenase. Class III mutants are deficient in formaldehyde metabolism. A defect may exist in the expression of a second non-NAD-linked formaldehyde dehydrogenase which was postulated to be involved in C1 metabolism. Class IV mutants are deficient in cytochrome c. Mutants of class V have a defect in synthesis of the molybdenum cofactor essential for the function of formate dehydrogenase.
    [Show full text]
  • ABSTRACT BOZDAG, AHMET. Investigation of Methanol and Formaldehyde Metabolism in Bacillus Methanolicus
    ABSTRACT BOZDAG, AHMET. Investigation of Methanol and Formaldehyde Metabolism in Bacillus methanolicus.(Under the direction of Prof. Michael C. Flickinger). Bacillus methanolicus is a Gram-positive aerobic methylotroph growing optimally at 50-53 °C. Wild-type strains of B. methanolicus have been reported to secrete 58 g/l of L- glutamate in fed-batch cultures. Mutants of B. methanolicus created via classical mutangenesis can secrete 37 g/l of L-lysine, at 50 °C. The genes required for methylotrophyin B. methanolicus are encoded by an endogenous plasmid, pBM19 in strain MGA3, except for hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) which are encoded on the chromosome.It is a promising candidate for industrial production of chemical intermediates or amino acids from methanol. B. methanolicus employs the ribulose monophospate (RuMP) pathway to assimilate the carbon derived from the methanol, but enzymes that dissimilate carbon are not identified, although formaldehyde and formate were identified as intermediates by 13C NMR. It is important to understand how methanol is oxidized to formaldehyde and then, to formate and carbon dioxide. This study aims to elucidate the methanol dissimilation pathway of B. methanolicus. Growth rates of B. methanolicus MGA3 were assessed on methanol, mannitol, and glucose as a substrate. B. methanolicus achieved maximum growth rate, µmax, when growing on 25 mM methanol, 0.65±0.007 h-1, and it gradually decreased to 0.231±0.004 h-1 at 2Mmethanol concentration which demonstrates substrate inhibition. The maximum growth rates (µmax) of B. methanolicus MGA3 on mannitol and glucose are 0.532±0.002 and 0.336±0.003 h-1, respectively.
    [Show full text]