Santos Powerpoint Template Toolkit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dorado & Bedout Sub-Basin Update
Dorado & Bedout Sub-basin update 1 December 2020 Carnarvon Petroleum Limited (“Carnarvon” or “the Company”) is pleased to advise that its partner in the Dorado field development and Bedout sub-basin exploration permits has today provided the ASX with an update on the project. The material is available on the Santos website as part of their Investor Day presentation. The Dorado field is an important development in the Australia energy landscape with exciting upside potential in the surrounding exploration acreage that Carnarvon holds an interest in. At Carnarvon’s recent Annual General Meeting the Company made a number of key points on this project which have been reiterated by its partner today. These highlights include: • The Bedout sub-basin is a highly prospective, liquids rich region with very large volume potential; • A substantial amount of work is being undertaken in advancing the Dorado field development; • The initial Dorado liquids development is expected to deliver low cost production from late 2025; • A phased and disciplined development is planned to ensure optimised FPSO and infrastructure design is capable of realising the value potential from the discovered Dorado resource and importantly a number of nearby exploration targets; and • The material Pavo and Apus prospects, which are capable of being tied back to Dorado, are being advanced for drilling to commence in late 2021. Carnarvon holds interests in four exploration permits covering a substantial portion of the Bedout sub-basin. These interests include 20% in WA-435-P -
Apus Constellation Visible at Latitudes Between +5° and -90°
Apus Constellation Visible at latitudes between +5° and -90°. Best visible at 21:00 (9 p.m.) during the month of July. Apus is a small constellation in the southern sky. It represents a bird-of-paradise, and its name means "without feet" in Greek because the bird-of-paradise was once wrongly believed to lack feet. First depicted on a celestial globe by Petrus Plancius in 1598, it was charted on a star atlas by Johann Bayer in his 1603 Uranometria. The French explorer and astronomer Nicolas Louis de Lacaille charted and gave the brighter stars their Bayer designations in 1756. The five brightest stars are all reddish in hue. Shading the others at apparent magnitude 3.8 is Alpha Apodis, an orange giant that has around 48 times the diameter and 928 times the luminosity of the Sun. Marginally fainter is Gamma Apodis, another ageing giant star. Delta Apodis is a double star, the two components of which are 103 arcseconds apart and visible with the naked eye. Two star systems have been found to have planets. Apus was one of twelve constellations published by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman who had sailed on the first Dutch trading expedition, known as the Eerste Schipvaart, to the East Indies. It first appeared on a 35-cm diameter celestial globe published in 1598 in Amsterdam by Plancius with Jodocus Hondius. De Houtman included it in his southern star catalogue in 1603 under the Dutch name De Paradijs Voghel, "The Bird of Paradise", and Plancius called the constellation Paradysvogel Apis Indica; the first word is Dutch for "bird of paradise". -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Educator's Guide: Orion
Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations. -
Sydney Observatory Night Sky Map September 2012 a Map for Each Month of the Year, to Help You Learn About the Night Sky
Sydney Observatory night sky map September 2012 A map for each month of the year, to help you learn about the night sky www.sydneyobservatory.com This star chart shows the stars and constellations visible in the night sky for Sydney, Melbourne, Brisbane, Canberra, Hobart, Adelaide and Perth for September 2012 at about 7:30 pm (local standard time). For Darwin and similar locations the chart will still apply, but some stars will be lost off the southern edge while extra stars will be visible to the north. Stars down to a brightness or magnitude limit of 4.5 are shown. To use this chart, rotate it so that the direction you are facing (north, south, east or west) is shown at the bottom. The centre of the chart represents the point directly above your head, called the zenith, and the outer circular edge represents the horizon. h t r No Star brightness Moon phase Last quarter: 08th Zero or brighter New Moon: 16th 1st magnitude LACERTA nd Deneb First quarter: 23rd 2 CYGNUS Full Moon: 30th rd N 3 E LYRA th Vega W 4 LYRA N CORONA BOREALIS HERCULES BOOTES VULPECULA SAGITTA PEGASUS DELPHINUS Arcturus Altair EQUULEUS SERPENS AQUILA OPHIUCHUS SCUTUM PISCES Moon on 23rd SERPENS Zubeneschamali AQUARIUS CAPRICORNUS E SAGITTARIUS LIBRA a Saturn Centre of the Galaxy Antares Zubenelgenubi t s Antares VIRGO s t SAGITTARIUS P SCORPIUS P e PISCESMICROSCOPIUM AUSTRINUS SCORPIUS Mars Spica W PISCIS AUSTRINUS CORONA AUSTRALIS Fomalhaut Centre of the Galaxy TELESCOPIUM LUPUS ARA GRUSGRUS INDUS NORMA CORVUS INDUS CETUS SCULPTOR PAVO CIRCINUS CENTAURUS TRIANGULUM -
THE CONSTELLATION MUSCA, the FLY Musca Australis (Latin: Southern Fly) Is a Small Constellation in the Deep Southern Sky
THE CONSTELLATION MUSCA, THE FLY Musca Australis (Latin: Southern Fly) is a small constellation in the deep southern sky. It was one of twelve constellations created by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman and it first appeared on a 35-cm diameter celestial globe published in 1597 in Amsterdam by Plancius and Jodocus Hondius. The first depiction of this constellation in a celestial atlas was in Johann Bayer's Uranometria of 1603. It was also known as Apis (Latin: bee) for two hundred years. Musca remains below the horizon for most Northern Hemisphere observers. Also known as the Southern or Indian Fly, the French Mouche Australe ou Indienne, the German Südliche Fliege, and the Italian Mosca Australe, it lies partly in the Milky Way, south of Crux and east of the Chamaeleon. De Houtman included it in his southern star catalogue in 1598 under the Dutch name De Vlieghe, ‘The Fly’ This title generally is supposed to have been substituted by La Caille, about 1752, for Bayer's Apis, the Bee; but Halley, in 1679, had called it Musca Apis; and even previous to him, Riccioli catalogued it as Apis seu Musca. Even in our day the idea of a Bee prevails, for Stieler's Planisphere of 1872 has Biene, and an alternative title in France is Abeille. When the Northern Fly was merged with Aries by the International Astronomical Union (IAU) in 1929, Musca Australis was given its modern shortened name Musca. It is the only official constellation depicting an insect. Julius Schiller, who redrew and named all the 88 constellations united Musca with the Bird of Paradise and the Chamaeleon as mother Eve. -
MECATX December 2019 Sky Tour Remote Video Astronomy Group
MECATX December 2019 Sky Tour Remote Video Astronomy Group (1) Caelum, the Engraving Tool - December 1 (2) Orion, the Hunter- December 13 (3) Lepus, the Hare- December 14 (4) Mensa, the Table Mountain - December 14 (5) Pictor, the Painter’s Easel- December 16 (6) Dorado, the Swordfish- December 17 (7) Columba, the Dove- December 18 (8) Auriga, the Charrioteer- December 21 (9) Camelopardalis, the Giraffe- December 23 MECATX RVA December 2018 - www.mecatx.ning.com – Youtube – MECATX – www.ustream.tv – dfkott Revised by: Alyssa Donnell 12.01.2019 December 1 Caelum (SEE-lum), the Engraving Tool Cae, Caeli (SEE-lye) MECATX RVA December 2018 - www.mecatx.ning.com – Youtube – MECATX – www.ustream.tv – dfkott 1 Caelum Meaning: The Sculptor's Chisel Pronunciation: see' lum Abbreviation: Cae Possessive form: Caeli (see' lee) Asterisms: none Bordering constellations: Columba, Dorado, Eridanus, Horologium, Lepus, Pictor Overall brightness: 3.204 (85) Central point: RA = 4h40m Dec. = -38° Directional extremes: N = -27° S = -49° E = 5h03m W = 4h18m Messier objects: none Meteor showers: none Midnight culmination date: 1 Dec Bright stars: none Named stars: none Near stars: none Size: 124.86 square degrees (0.303% of the sky) Rank in size: 81 Solar conjunction date: 2 Jun Visibility: completely visible from latitudes: S of +41° completely invisible from latitudes: N of +63° Visible stars: (number of stars brighter than magnitude 5.5): 4 Interesting facts: (1) This was one of the 14 constellations invented by Lacaille during his stay at the Cape of Good -
These Sky Maps Were Made Using the Freeware UNIX Program "Starchart", from Alan Paeth and Craig Counterman, with Some Postprocessing by Stuart Levy
These sky maps were made using the freeware UNIX program "starchart", from Alan Paeth and Craig Counterman, with some postprocessing by Stuart Levy. You’re free to use them however you wish. There are five equatorial maps: three covering the equatorial strip from declination −60 to +60 degrees, corresponding roughly to the evening sky in northern winter (eq1), spring (eq2), and summer/autumn (eq3), plus maps covering the north and south polar areas to declination about +/− 25 degrees. Grid lines are drawn at every 15 degrees of declination, and every hour (= 15 degrees at the equator) of right ascension. The equatorial−strip maps use a simple rectangular projection; this shows constellations near the equator with their true shape, but those at declination +/− 30 degrees are stretched horizontally by about 15%, and those at the extreme 60−degree edge are plotted twice as wide as you’ll see them on the sky. The sinusoidal curve spanning the equatorial strip is, of course, the Ecliptic −− the path of the Sun (and approximately that of the planets) through the sky. The polar maps are plotted with stereographic projection. This preserves shapes of small constellations, but enlarges them as they get farther from the pole; at declination 45 degrees they’re about 17% oversized, and at the extreme 25−degree edge about 40% too large. These charts plot stars down to magnitude 5, along with a few of the brighter deep−sky objects −− mostly star clusters and nebulae. Many stars are labelled with their Bayer Greek−letter names. Also here are similarly−plotted maps, based on galactic coordinates. -
Saber and Scroll Journal Volume VI Issue I Winter 2017 Saber And
Saber and Scroll Journal Volume VI Issue I Winter 2017 Saber and Scroll Historical Society 1 © Saber and Scroll Historical Society, 2018 Logo Design: Julian Maxwell Cover Design: Joan at the coronation of Charles VII, oil on canvas by Jean Auguest Dominique Ingres, c. 1854. Currently at Louvre Museum. Members of the Saber and Scroll Historical Society, the volunteer staff at the Saber and Scroll Journal publishes quarterly. saberandscroll.weebly.com 2 Journal Staff Editor in Chief Michael Majerczyk Copy Editors Anne Midgley, Michael Majerczyk Content Editors Tormod Engvig, Joe Cook, Mike Gottert, Kathleen Guler, Michael Majerczyk, Anne Midgley, Jack Morato, Chris Schloemer, Christopher Sheline Proofreaders Aida Dias, Tormod Engvig, Frank Hoeflinger, Anne Midgley, Michael Majerczyk, Jack Morato, John Persinger, Chris Schloemer, Susanne Watts Webmaster Jona Lunde Academic Advisors Emily Herff, Dr. Robert Smith, Jennifer Thompson 3 Contents Letter from the Editor 5 The Hundred Years War: A Different Contextual Overview Dr. Robert G. Smith 7 The Maiden of France: A Brief Overview of Joan of Arc and the Siege of Orléans 17 Cam Rea Joan of Arc through the Ages: In Art and Imagination 31 Anne Midgley Across the Etowah and into the Hell-Hole: Johnston’s Lost Chance for Victory in the Atlanta Campaign 47 Greg A. Drummond Cape Esperance: The Misunderstood Victory of Admiral Norman Scott 67 Jeffrey A. Ballard “Died on the Field of Honor, Sir.” Virginia Military Institute in the American Civil War and the Cadets Who Died at the Battle of New Market: May 15, 1864 93 Lew Taylor Exhibit and Book Reviews 105 4 Letter from the Editor Michael Majerczyk Hi everyone. -
SFA Star Chart 1
Nov 20 SFA Star Chart 1 - Northern Region 0h Dec 6 Nov 5 h 23 30º 1 h d Dec 21 h p Oct 21h s b 2 h 22 ANDROMEDA - Daughter of Cepheus and Cassiopeia Mirach Local Meridian for 8 PM q m ANTLIA - Air Pumpe p 40º APUS - Bird of Paradise n o i b g AQUILA - Eagle k ANDROMEDA Jan 5 u TRIANGULUM AQUARIUS - Water Carrier Oct 6 h z 3 21 LACERTA l h ARA - Altar j g ARIES - Ram 50º AURIGA - Charioteer e a BOOTES - Herdsman j r Schedar b CAELUM - Graving Tool x b a Algol Jan 20 b o CAMELOPARDALIS - Giraffe h Caph q 4 Sep 20 CYGNUS k h 20 g a 60º z CAPRICORNUS - Sea Goat Deneb z g PERSEUS d t x CARINA - Keel of the Ship Argo k i n h m a s CASSIOPEIA - Ethiopian Queen on a Throne c h CASSIOPEIA g Mirfak d e i CENTAURUS - Half horse and half man CEPHEUS e CEPHEUS - Ethiopian King Alderamin a d 70º CETUS - Whale h l m Feb 5 5 CHAMAELEON - Chameleon h i g h 19 Sep 5 i CIRCINUS - Compasses b g z d k e CANIS MAJOR - Larger Dog b r z CAMELOPARDALIS 7 h CANIS MINOR - Smaller Dog e 80º g a e a Capella CANCER - Crab LYRA Vega d a k AURIGA COLUMBA - Dove t b COMA BERENICES - Berenice's Hair Aug 21 j Feb 20 CORONA AUSTRALIS - Southern Crown Eltanin c Polaris 18 a d 6 d h CORONA BOREALIS - Northern Crown h q g x b q 30º 30º 80º 80º 40º 70º 50º 60º 60º 70º 50º CRATER - Cup 40º i e CRUX - Cross n z b Rastaban h URSA CORVUS - Crow z r MINOR CANES VENATICI - Hunting Dogs p 80º b CYGNUS - Swan h g q DELPHINUS - Dolphin Kocab Aug 6 e 17 DORADO - Goldfish q h h h DRACO o 7 DRACO - Dragon s GEMINI t t Mar 7 EQUULEUS - Little Horse HERCULES LYNX z i a ERIDANUS - River j -
May 30 2012 Stars2 FASI Book
Summary You now know the four Guidepost You are also on your way to learning more constellations: Orion, The Big Dipper, The advanced astronomy. Swan, and Cassiopeia. In Book 3 of this series, Seasons & the Round and round they go, year after Celestial Sphere, we expand our presentation year. The jealous Big Dipper follows Orion, to three dimensions. This will enable you to the thirsty Swan fies after the Big Dipper, understand the seasons, the way sundials tell Cassiopeia the queen pursues the beautiful time, and the entire celestial sphere of stars. Swan, and Orion chases the queen. Here we introduce the Horizon Globe, which is a device that simulates what you see on the You also know when Orion is by the Sun, celestial sphere. It’s like going to a 3-D movie, which allows you to know where and when to except you won’t have to wear the glasses! look for your favorite constellations. After these three introductory books, you You’ve heard the Four (expanded) Stories, will be ready to quantify what you observe in which helps you fnd other interesting stars near the sky. We’ll measure angles and estimate the Guidepost constellations. distances to the Sun and Moon. We’ll estimate the size of the Earth, Moon and Sun. These You know about the North Star, and how to measurements will make it possible to develop fnd it from any of the Guideposts. You’ve seen theories that explain the observations. the Zodiac, which is interesting because the most important object in the sky—the Sun— As a reminder of what was covered in this goes through these star constellations. -
81 Southern Objects for a 10” Telescope. 0-4Hr 4-8Hr 8-12Hr
81 southern objects for a 10” telescope. 0-4hr NGC55|00h 15m 22s|-39 11’ 35”|33’x 5.6’|Sculptor|Galaxy| NGC104|00h 24m 17s|-72 03’ 30”|31’|Tucana|Globular NGC134|00h 30m 35s|-33 13’ 00”|8.5’x2’|Sculptor|Galaxy| ESO350-40|00h 37m 55s|-33 41’ 20”|1.5’x1.2’|Sculptor|Galaxy|The Cartwheel NGC300|00h 55m 06s|-37 39’ 24”|22’x15.5’|Sculptor|Galaxy| NGC330|00h 56m 27s|-72 26’ 37”|Tucana|1.9’|SMC open cluster| NGC346|00h 59m 14s|-72 09’ 19”|Tucana|5.2’|SMC Neb| ESO351-30|01h 00m 22s|-33 40’ 50”|60’x56’|Sculptor|Galaxy|Sculptor Dwarf NGC362|01h 03m 23s|-70 49’ 42”|13’|Tucana|Globular| NGC2573| 01h 37m 21s|-89 25’ 49”|Octans| 2.0x 0.8|galaxy|polarissima australis| NGC1049|02h 39m 58s|-34 13’ 52”|24”|Fornax|Globular| ESO356-04|02h 40m 09s|-34 25’ 43”|60’x100’|Fornax|Galaxy|Fornax Dwarf NGC1313|03h 18m 18s|-66 29’ 02”|9.1’x6.3’|Reticulum|Galaxy| NGC1316|03h 22m 51s|-37 11’ 22”|12’x8.5’|Fornax|Galaxy| NGC1365|03h 33m 46s|-36 07’ 13”|11.2’x6.2’|Fornax|Galaxy NGC1433|03h 42m 08s|-47 12’ 18”|6.5’x5.9’|Horologium|Galaxy| 4-8hr NGC1566|04h 20m 05s|-54 55’ 42”|Dorado|Galaxy| Reticulum Dwarf|04h 31m 05s|-58 58’ 00”|Reticulum|LMC globular| NGC1808|05h 07m 52s|-37 30’ 20”|6.4’x3.9’|Columba|Galaxy| Kapteyns Star|05h 11m 35s|-45 00’ 16”|Stellar|Pictor|Nearby star| NGC1851|05h 14m 15s|-40 02’ 30”|11’|Columba|Globular| NGC1962group|05h 26m 17s|-68 50’ 28”|?| Dorado|LMC neb/cluster NGC1968group|05h 27m 22s|-67 27’ 36”|12’ for group|Dorado| LMC Neb/cluster| NGC2070|05h 38m 37s|-69 05’ 52”|11’|Dorado|LMC Neb|Tarantula| NGC2442|07h 36m 24s|-69 32’ 38”|5.5’x4.9’|Volans|Galaxy|The meat hook| NGC2439|07h 40m 59s|-31 38’36”|10’|Puppis|Open Cluster| NGC2451|07h 45m 35s|-37 57’ 27”|45’|Puppis|Open Cluster| IC2220|07h 56m 57s|-59 06’ 00”|6’x4’|Carina|Nebula|Toby Jug| NGC2516|07h 58m 29s|-60 51’ 46”|29’|Carina|Open Cluster 8-12hr NGC2547|08h 10m 50s|-49 15’ 39”|20’|Vela|Open Cluster| NGC2736|09h 00m 27s|-45 57’ 49”|30’x7’|Vela|SNR|The Pencil| NGC2808|09h 12m 08s|-64 52’ 48”|12’|Carina|Globular| NGC2818|09h 16m 11s|-36 35’ 59”|9’|Pyxis|Open Cluster with planetary.