Dorado & Bedout Sub-Basin Update

Total Page:16

File Type:pdf, Size:1020Kb

Dorado & Bedout Sub-Basin Update Dorado & Bedout Sub-basin update 1 December 2020 Carnarvon Petroleum Limited (“Carnarvon” or “the Company”) is pleased to advise that its partner in the Dorado field development and Bedout sub-basin exploration permits has today provided the ASX with an update on the project. The material is available on the Santos website as part of their Investor Day presentation. The Dorado field is an important development in the Australia energy landscape with exciting upside potential in the surrounding exploration acreage that Carnarvon holds an interest in. At Carnarvon’s recent Annual General Meeting the Company made a number of key points on this project which have been reiterated by its partner today. These highlights include: • The Bedout sub-basin is a highly prospective, liquids rich region with very large volume potential; • A substantial amount of work is being undertaken in advancing the Dorado field development; • The initial Dorado liquids development is expected to deliver low cost production from late 2025; • A phased and disciplined development is planned to ensure optimised FPSO and infrastructure design is capable of realising the value potential from the discovered Dorado resource and importantly a number of nearby exploration targets; and • The material Pavo and Apus prospects, which are capable of being tied back to Dorado, are being advanced for drilling to commence in late 2021. Carnarvon holds interests in four exploration permits covering a substantial portion of the Bedout sub-basin. These interests include 20% in WA-435-P and WA-437-P and 30% interest in WA-436-P and WA-438-P. Approved by: Adrian Cook Managing Director Investor inquiries: Media inquiries: Thomson Naude Luke Derbyshire Company Secretary Managing Director, Spoke Corporate Phone: (08) 9321 2665 Phone: 0488 664 246 Email: [email protected] Email: [email protected] Level 2, 76 Kings Park Road T: (08) 9321 2665 West Perth WA 6005 W: www.carnarvon.com.au Figure 1 – Four permits in which Carnarvon holds its interests over the Bedout sub-basin Figure 2 – Carnarvon’s portfolio including its Bedout Sub-basin interests (referred to as the Phoenix Project) .
Recommended publications
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • THE CONSTELLATION MUSCA, the FLY Musca Australis (Latin: Southern Fly) Is a Small Constellation in the Deep Southern Sky
    THE CONSTELLATION MUSCA, THE FLY Musca Australis (Latin: Southern Fly) is a small constellation in the deep southern sky. It was one of twelve constellations created by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman and it first appeared on a 35-cm diameter celestial globe published in 1597 in Amsterdam by Plancius and Jodocus Hondius. The first depiction of this constellation in a celestial atlas was in Johann Bayer's Uranometria of 1603. It was also known as Apis (Latin: bee) for two hundred years. Musca remains below the horizon for most Northern Hemisphere observers. Also known as the Southern or Indian Fly, the French Mouche Australe ou Indienne, the German Südliche Fliege, and the Italian Mosca Australe, it lies partly in the Milky Way, south of Crux and east of the Chamaeleon. De Houtman included it in his southern star catalogue in 1598 under the Dutch name De Vlieghe, ‘The Fly’ This title generally is supposed to have been substituted by La Caille, about 1752, for Bayer's Apis, the Bee; but Halley, in 1679, had called it Musca Apis; and even previous to him, Riccioli catalogued it as Apis seu Musca. Even in our day the idea of a Bee prevails, for Stieler's Planisphere of 1872 has Biene, and an alternative title in France is Abeille. When the Northern Fly was merged with Aries by the International Astronomical Union (IAU) in 1929, Musca Australis was given its modern shortened name Musca. It is the only official constellation depicting an insect. Julius Schiller, who redrew and named all the 88 constellations united Musca with the Bird of Paradise and the Chamaeleon as mother Eve.
    [Show full text]
  • MECATX December 2019 Sky Tour Remote Video Astronomy Group
    MECATX December 2019 Sky Tour Remote Video Astronomy Group (1) Caelum, the Engraving Tool - December 1 (2) Orion, the Hunter- December 13 (3) Lepus, the Hare- December 14 (4) Mensa, the Table Mountain - December 14 (5) Pictor, the Painter’s Easel- December 16 (6) Dorado, the Swordfish- December 17 (7) Columba, the Dove- December 18 (8) Auriga, the Charrioteer- December 21 (9) Camelopardalis, the Giraffe- December 23 MECATX RVA December 2018 - www.mecatx.ning.com – Youtube – MECATX – www.ustream.tv – dfkott Revised by: Alyssa Donnell 12.01.2019 December 1 Caelum (SEE-lum), the Engraving Tool Cae, Caeli (SEE-lye) MECATX RVA December 2018 - www.mecatx.ning.com – Youtube – MECATX – www.ustream.tv – dfkott 1 Caelum Meaning: The Sculptor's Chisel Pronunciation: see' lum Abbreviation: Cae Possessive form: Caeli (see' lee) Asterisms: none Bordering constellations: Columba, Dorado, Eridanus, Horologium, Lepus, Pictor Overall brightness: 3.204 (85) Central point: RA = 4h40m Dec. = -38° Directional extremes: N = -27° S = -49° E = 5h03m W = 4h18m Messier objects: none Meteor showers: none Midnight culmination date: 1 Dec Bright stars: none Named stars: none Near stars: none Size: 124.86 square degrees (0.303% of the sky) Rank in size: 81 Solar conjunction date: 2 Jun Visibility: completely visible from latitudes: S of +41° completely invisible from latitudes: N of +63° Visible stars: (number of stars brighter than magnitude 5.5): 4 Interesting facts: (1) This was one of the 14 constellations invented by Lacaille during his stay at the Cape of Good
    [Show full text]
  • May 30 2012 Stars2 FASI Book
    Summary You now know the four Guidepost You are also on your way to learning more constellations: Orion, The Big Dipper, The advanced astronomy. Swan, and Cassiopeia. In Book 3 of this series, Seasons & the Round and round they go, year after Celestial Sphere, we expand our presentation year. The jealous Big Dipper follows Orion, to three dimensions. This will enable you to the thirsty Swan fies after the Big Dipper, understand the seasons, the way sundials tell Cassiopeia the queen pursues the beautiful time, and the entire celestial sphere of stars. Swan, and Orion chases the queen. Here we introduce the Horizon Globe, which is a device that simulates what you see on the You also know when Orion is by the Sun, celestial sphere. It’s like going to a 3-D movie, which allows you to know where and when to except you won’t have to wear the glasses! look for your favorite constellations. After these three introductory books, you You’ve heard the Four (expanded) Stories, will be ready to quantify what you observe in which helps you fnd other interesting stars near the sky. We’ll measure angles and estimate the Guidepost constellations. distances to the Sun and Moon. We’ll estimate the size of the Earth, Moon and Sun. These You know about the North Star, and how to measurements will make it possible to develop fnd it from any of the Guideposts. You’ve seen theories that explain the observations. the Zodiac, which is interesting because the most important object in the sky—the Sun— As a reminder of what was covered in this goes through these star constellations.
    [Show full text]
  • 81 Southern Objects for a 10” Telescope. 0-4Hr 4-8Hr 8-12Hr
    81 southern objects for a 10” telescope. 0-4hr NGC55|00h 15m 22s|-39 11’ 35”|33’x 5.6’|Sculptor|Galaxy| NGC104|00h 24m 17s|-72 03’ 30”|31’|Tucana|Globular NGC134|00h 30m 35s|-33 13’ 00”|8.5’x2’|Sculptor|Galaxy| ESO350-40|00h 37m 55s|-33 41’ 20”|1.5’x1.2’|Sculptor|Galaxy|The Cartwheel NGC300|00h 55m 06s|-37 39’ 24”|22’x15.5’|Sculptor|Galaxy| NGC330|00h 56m 27s|-72 26’ 37”|Tucana|1.9’|SMC open cluster| NGC346|00h 59m 14s|-72 09’ 19”|Tucana|5.2’|SMC Neb| ESO351-30|01h 00m 22s|-33 40’ 50”|60’x56’|Sculptor|Galaxy|Sculptor Dwarf NGC362|01h 03m 23s|-70 49’ 42”|13’|Tucana|Globular| NGC2573| 01h 37m 21s|-89 25’ 49”|Octans| 2.0x 0.8|galaxy|polarissima australis| NGC1049|02h 39m 58s|-34 13’ 52”|24”|Fornax|Globular| ESO356-04|02h 40m 09s|-34 25’ 43”|60’x100’|Fornax|Galaxy|Fornax Dwarf NGC1313|03h 18m 18s|-66 29’ 02”|9.1’x6.3’|Reticulum|Galaxy| NGC1316|03h 22m 51s|-37 11’ 22”|12’x8.5’|Fornax|Galaxy| NGC1365|03h 33m 46s|-36 07’ 13”|11.2’x6.2’|Fornax|Galaxy NGC1433|03h 42m 08s|-47 12’ 18”|6.5’x5.9’|Horologium|Galaxy| 4-8hr NGC1566|04h 20m 05s|-54 55’ 42”|Dorado|Galaxy| Reticulum Dwarf|04h 31m 05s|-58 58’ 00”|Reticulum|LMC globular| NGC1808|05h 07m 52s|-37 30’ 20”|6.4’x3.9’|Columba|Galaxy| Kapteyns Star|05h 11m 35s|-45 00’ 16”|Stellar|Pictor|Nearby star| NGC1851|05h 14m 15s|-40 02’ 30”|11’|Columba|Globular| NGC1962group|05h 26m 17s|-68 50’ 28”|?| Dorado|LMC neb/cluster NGC1968group|05h 27m 22s|-67 27’ 36”|12’ for group|Dorado| LMC Neb/cluster| NGC2070|05h 38m 37s|-69 05’ 52”|11’|Dorado|LMC Neb|Tarantula| NGC2442|07h 36m 24s|-69 32’ 38”|5.5’x4.9’|Volans|Galaxy|The meat hook| NGC2439|07h 40m 59s|-31 38’36”|10’|Puppis|Open Cluster| NGC2451|07h 45m 35s|-37 57’ 27”|45’|Puppis|Open Cluster| IC2220|07h 56m 57s|-59 06’ 00”|6’x4’|Carina|Nebula|Toby Jug| NGC2516|07h 58m 29s|-60 51’ 46”|29’|Carina|Open Cluster 8-12hr NGC2547|08h 10m 50s|-49 15’ 39”|20’|Vela|Open Cluster| NGC2736|09h 00m 27s|-45 57’ 49”|30’x7’|Vela|SNR|The Pencil| NGC2808|09h 12m 08s|-64 52’ 48”|12’|Carina|Globular| NGC2818|09h 16m 11s|-36 35’ 59”|9’|Pyxis|Open Cluster with planetary.
    [Show full text]
  • THE SKY TONIGHT Constellation Is Said to Represent Ganymede, the Handsome Prince of Capricornus Troy
    - October Oketopa HIGHLIGHTS Aquarius and Aquila In Greek mythology, the Aquarius THE SKY TONIGHT constellation is said to represent Ganymede, the handsome prince of Capricornus Troy. His good looks attracted the attention of Zeus, who sent the eagle The Greeks associated Capricornus Aquila to kidnap him and carry him with Aegipan, who was one of the to Olympus to serve as a cupbearer Panes - a group of half-goat men to the gods. Because of this story, who often had goat legs and horns. Ganymede was sometimes seen as the god of homosexual relations. He Aegipan assumed the form of a fish- also gives his name to one of the tailed goat and fled into the ocean moons of Jupiter, which are named to flee the great monster Typhon. after the lovers of Zeus. Later, he aided Zeus in defeating Typhon and was rewarded by being To locate Aquarius, first find Altair, placed in the stars. the brightest star in the Aquila constellation. Altair is one of the To find Capricornus (highlighted in closest stars to Earth that can be seen orange on the star chart), first locate with the naked eye, at a distance the Aquarius constellation, then of 17 light years. From Altair, scan look to the south-west along the east-south-east to find Aquarius ecliptic line (the dotted line on the (highlighted in yellow on the star chart). star chart). What’s On in October? October shows at Perpetual Guardian Planetarium, book at Museum Shop or online. See website for show times and - details: otagomuseum.nz October Oketopa SKY GUIDE Capturing the Cosmos Planetarium show.
    [Show full text]
  • Santos Powerpoint Template Toolkit
    ASX / Media Release 1 December 2020 Santos upgrades 2020 guidance Santos today upgraded its 2020 production guidance to 87-89 million barrels of oil equivalent (mmboe) and lowered its production cost guidance to $8.00-8.50/boe. The upgrade in production guidance, from 83-88 mmboe, is due to strong operating performance across the base business and represents 15-18 per cent production growth for the year and more than 50 per cent growth since 2015. Santos is also on track to deliver the production cost reductions announced in March in response to the COVID pandemic, which sees 2020 guidance lowered to $8.00-8.50/boe. Capital expenditure is still expected to be approximately $900 million, consistent with the 38% reduction for the year announced in March. Integration of the ConocoPhillips acquisition completed in May 2020 is proceeding well, with guidance on acquisition synergies upgraded to $90-105 million per annum. Speaking at the company’s Investor Day in Sydney, Santos Managing Director and Chief Executive Officer Kevin Gallagher said the consistent and successful execution of Santos’ Transform-Build-Grow strategy has the company positioned for disciplined growth and sustainable shareholder returns. “Our strategy has been to establish a disciplined low-cost operating model that delivers strong free cash flows through the oil price cycle. Our 2020 forecast free cash flow breakeven oil price is less than US$25 per barrel before hedging and around US$20 per barrel after hedging,” Mr Gallagher said. “Our base business is strong with production levels expected to remain relatively steady for the next decade and providing significant free cash flow.
    [Show full text]
  • Andromeda Auriga Camelopardalis Canes Vena Cassiopeia Cepheus
    Castor NGC 2903 Eurynome Elnath Lemmon (C/2016 X1) M37 Taurus Kalliope M36 PANSTARRS (P/2017 B4) M38 Egeria Auriga Irene Catalina (P/1999 XN120) Menkalinan Honda-Mrkos-Pajdusakova (45P) McNaught (C/2009 F4) Capella Lynx Papagena ValesLeo (P/2010 Minor H2) PANSTARRS (C/2017 C2) PANSTARRS (C/2016 T3)Perseus Tuttle-Giacobini-Kresak (41P) Algol NGC 2403 Catalina (C/2013 US10) Mirfak Siding Spring (C/2013 A1) M34 Boattini (C/2010 U3) Ursa MajorLemmon (C/2012 K8) Camelopardalis Triangulum M81 (Bode's Galaxy) Dubhe Almach NGC 884 (Perseus Double Cluster) NGC 869 (Perseus Double Cluster) NEOWISE (C/2017 C1) M103 NEOWISE (C/2014 N3) PANSTARRS (C/2014 R3) NGC 457 (Owl Cluster) Alioth Polaris Matheny (C/2016 T2) Cassiopeia M63 (Sunflower Galaxy)Canes Venati AndromedaM31 (Andromeda Galaxy) M51 (Whirlpool Galaxy) Kochab Ursa Minor Alkaid M101 (Pinwheel Galaxy) NGC 7789 Catalina (C/2013 V4) M52 (TheCepheus Scorpion) NGC 7662 (Blue Snowball) Catalina (C/2016 KA) Draco PANSTARRS (C/2015 V3) NGC 6946 Lacerta M39 Johnson (C/2015 V2) IRIDIUM 76 [+] IRIDIUM 71 [-] NGC 6826 (Blinking Planetary) NGC 7000 (North America Nebula) TERRA IRAS ARIANE 40+ R/B SL-8 R/B NGC 7027 Deneb M92 Corona Borealis SL-3 R/B SONEAR (C/2014Cygnus A4) Pegasus M13 (Hercules Cluster) PANSTARRS (C/2016 N6)SERT 2 IRIDIUM 70 [+] GP-B Vega IRIDIUM 35 [+] NGC 6992 (Veil Nebula (East), NetworkIRIDIUM Nebula) 31 [+] NGC 6960 (Veil Nebula (West))Lyra SL-3Hercules R/B SL-3 R/B IRIDIUM 53 [+] IRIDIUM 914 [-] ENVISAT IRIDIUM 42 [-] IRIDIUM 33 [-] SL-14 R/B SL-3 R/B Viewing from Burlington, IA;
    [Show full text]
  • SFA Star Charts
    Nov 20 SFA Star Chart 1 - Northern Region 0h Dec 6 Nov 5 h 23 30º 1 h d Dec 21 h p Oct 21h s b 2 h 22 ANDROMEDA - Daughter of Cepheus and Cassiopeia Mirach Local Meridian for 8 PM q m ANTLIA - Air Pumpe p 40º APUS - Bird of Paradise n o i b g AQUILA - Eagle k ANDROMEDA Jan 5 u TRIANGULUM AQUARIUS - Water Carrier Oct 6 h z 3 21 LACERTA l h ARA - Altar j g ARIES - Ram 50º AURIGA - Charioteer e a BOOTES - Herdsman j r Schedar b CAELUM - Graving Tool x b a Algol Jan 20 b o CAMELOPARDALIS - Giraffe h Caph q 4 Sep 20 CYGNUS k h 20 g a 60º z CAPRICORNUS - Sea Goat Deneb z g PERSEUS d t x CARINA - Keel of the Ship Argo k i n h m a s CASSIOPEIA - Ethiopian Queen on a Throne c h CASSIOPEIA g Mirfak d e i CENTAURUS - Half horse and half man CEPHEUS e CEPHEUS - Ethiopian King Alderamin a d 70º CETUS - Whale h l m Feb 5 5 CHAMAELEON - Chameleon h i g h 19 Sep 5 i CIRCINUS - Compasses b g z d k e CANIS MAJOR - Larger Dog b r z CAMELOPARDALIS 7 h CANIS MINOR - Smaller Dog e 80º g a e a Capella CANCER - Crab LYRA Vega d a k AURIGA COLUMBA - Dove t b COMA BERENICES - Berenice's Hair Aug 21 j Feb 20 CORONA AUSTRALIS - Southern Crown Eltanin c Polaris 18 a d 6 d h CORONA BOREALIS - Northern Crown h q g x b q 30º 30º 80º 80º 40º 70º 50º 60º 60º 70º 50º CRATER - Cup 40º i e CRUX - Cross n z b Rastaban h URSA CORVUS - Crow z r MINOR CANES VENATICI - Hunting Dogs p 80º b CYGNUS - Swan h g q DELPHINUS - Dolphin Kocab Aug 6 e 17 DORADO - Goldfish q h h h DRACO o 7 DRACO - Dragon s GEMINI t t Mar 7 EQUULEUS - Little Horse HERCULES LYNX z i a ERIDANUS - River j
    [Show full text]
  • How Astronomical Objects Are Named
    How Astronomical Objects Are Named Jeanne E. Bishop Westlake Schools Planetarium 24525 Hilliard Road Westlake, Ohio 44145 U.S.A. bishop{at}@wlake.org Sept 2004 Introduction “What, I wonder, would the science of astrono- use of the sky by the societies of At the 1988 meeting in Rich- my be like, if we could not properly discrimi- the people that developed them. However, these different systems mond, Virginia, the Inter- nate among the stars themselves. Without the national Planetarium Society are beyond the scope of this arti- (IPS) released a statement ex- use of unique names, all observatories, both cle; the discussion will be limited plaining and opposing the sell- ancient and modern, would be useful to to the system of constellations ing of star names by private nobody, and the books describing these things used currently by astronomers in business groups. In this state- all countries. As we shall see, the ment I reviewed the official would seem to us to be more like enigmas history of the official constella- methods by which stars are rather than descriptions and explanations.” tions includes contributions and named. Later, at the IPS Exec- – Johannes Hevelius, 1611-1687 innovations of people from utive Council Meeting in 2000, many cultures and countries. there was a positive response to The IAU recognizes 88 constel- the suggestion that as continuing Chair of with the name registered in an ‘important’ lations, all originating in ancient times or the Committee for Astronomical Accuracy, I book “… is a scam. Astronomers don’t recog- during the European age of exploration and prepare a reference article that describes not nize those names.
    [Show full text]
  • 4398 Abbreviated Instruction
    English 4398 Abbreviated instruction • To see details of specifications and operations, refer to the instruction manual: 4398 instruction manual Component identification Constellation dial (displaying the entire sky at 35°N) Date scale Ecliptic Altitude ‒18° line Right ascension scale Celestial equator Moon dial Right ascension value of the polestar Constellation dial Rotation direction of Moon/constellation dial setting position Minute hand the constellation and moon dials (in normal Crown condition) Hour hand Time setting position Normal position Zenith Meridian Range of moon transit (southern limit) Horizon Local sidereal time display position Crown • Distortion is minimal in the northern hemisphere and approximately 94.9% of the celestial sphere visible at 35°N is displayed. (The display range of the constellation dial: declination from ‒55.57° to +65.20°) • The celestial sphere near the turning center of the constellation dial is not Moon dial displayed because it is hidden under the moon dial. Second hand Setting the time 1. Pull the crown out to position 2 when the second hand points 0 second. The second hand stops. Crown's position 2. Rotate the crown to set the time. • Move the hands 4 or 5 minutes forward and move them back to the right • Actual appearance may differ from the illustration. time to set the time more precisely. • The crown has two positions when pulling it out. 0 1 2 3. Push the crown in to position 0 in accordance with a reliable time source. The second hand starts moving. 1/3 4398 Abbreviated instruction Setting the constellation dial and the moon dial 6.
    [Show full text]