Introduction Groupers Are Territorial Predatory Reef Fish That Are Widely Distributed Throughout the Tropical and Subtropical Se

Total Page:16

File Type:pdf, Size:1020Kb

Introduction Groupers Are Territorial Predatory Reef Fish That Are Widely Distributed Throughout the Tropical and Subtropical Se Introduction Groupers are territorial predatory reef fish that are widely distributed throughout the tropical and subtropical seas of the world, and notably, those of the Indo-Pacific region. A very diverse group of fish comprising more than 90 species in five main genera of the family Serranidae, they are highly prized in the live reef fish markets of Hong Kong and Singapore where they fetch from US$10-12/kg for orange-spot grouper Epinephelus coioides, US$40-50/kg for coral trout Plectropomus spp to more than US$80/kg for humpback grouper Cromileptes altivelis (Sim, 2005). Targeting of spawning aggregations and destructive fishing practices such as the use of cyanide and explosives have resulted in these fish being severely depleted in the wild. A major impediment to aquaculture production of groupers has been the limited supply of fry. While a significant industry has been established in South East Asia based on wild- capture fry, only the lower value estuarine species such as orange-spot grouper and marbled grouper Epinephelus malabaricus are caught in any significant numbers. Fry of the higher value, coral reef-dwelling species such as coral trout and humpback grouper are seldom caught other than as incidental catches by those targeting the aquarium trade. Until recently, commercial hatchery-production of grouper fry has been very Market-size coral trout, Plectropomus leopardus, difficult with survival rates to metamorphosis typically less Photo credit: SY Sim, NACA than 5%. Advances in grouper hatchery technology (Rimmer et al., 2004; Sim et al., 2005a) are now overcoming this Trash fish still the preferred feed for groupers bottleneck. Fry of many grouper species, including orange- spot, tiger (Epinephelus fuscoguttatus) and humpback grouper, Throughout the Asia-Pacific region, the traditional are becoming more readily available for aquaculture grow-out. and still preferred method of culturing groupers, is to feed them on low-value fresh fish ('trash fish'). Trash fish that is fresh, properly prepared and carefully managed can be a very good, and often inexpensive, source of food for carnivorous marine fish such as groupers. Sadly, this is often not the case and even in well managed systems, the feeding of trash fish can have negative financial, environmental and social impacts 'triple bottom line' consequences. There are three main concerns: depletion of fish stocks and the resultant increased competition between man and aquaculture for a dwindling (and more expensive) supply of wild fish, adverse environmental impacts associated with the feeding of trash fish and spread of diseases to wild and cultured fish. The demand for low-value fish in the region has steadily increased with continued expansion of mariculture. Satisfying this demand has caused a severe problem of over- fishing, not only of the traditionally-fished stocks, but also of Market-size orange spotted grouper, Epinephelus coioides those fish and invertebrates closer to the bottom of marine food Photo credit: SY Sim, NACA chains. Many coastal fish stocks in SE Asia are reported to be 20 Aqua Feeds: Formulation & Beyond, Volume 2 Issue 2 2005 10 to 30% below the levels of three decades ago (Williams, 2002). The feeding of trash fish itself is a significant source of pollution. Feed losses associated with feeding trash fish to carnivorous fish are four times greater than feeding pelleted feeds. However, this may be an underestimate. New (1996) cites a 1991 study in Hong Kong where 45,000 t of trash fish were needed to produce just 3,000 t of high-value food fish in marine cages i.e., a FCR of 15:1. Where trash fish is carefully fed, as for example under experimental conditions, FCRs for cage-cultured groupers can be as good as 3.5:1 on a wet basis. However, under practical farming conditions, FCRs are more typically 6:1 and up to 17:1 (Tacon et al., 1991). An often ignored consequence of feeding trash fish is the likelihood of it being a direct or indirect source of introduced disease. Of particular concern are viral diseases such as viral nervous necrosis (VNN), bacterial infections, particularly by Vibrio and Streptococci, and parasites. While the main mode of VNN transmission is vertical from the egg, horizontal transmission from other infected fish, including trash fish, is also a real threat. Too often, the nutritional inadequacy of the trash fish, Fingerlings of humpback grouper, Cromileptes altivelis especially where spoilage occurs prior to it being fed, is a real, Photo credit: SY Sim, NACA but generally unrecognized problem that results in slow growth, poor FCRs and lower survival. flow to ensure fish have well oxygenated water. Fingerlings of 25-75 mm (14 g/fish) are stocked at 100-150 fish/m2 and cannibalism reduced by grading the fish every one to two weeks until they are 125-150 mm (30-80 g/fish). At this size, the fish are transferred from nursery cages into production cages where stocking density is typically 50-60 fish/m2 initially, reducing to about 10-20 fish/m2 for fish of 500+ g. Another, but less common, culture system is to use brackish water ponds, often reclaimed shrimp ponds of any size up to about 0.5 ha. This culture system is suitable for estuary species such as orange-spot or marbled groupers but has not proved very successful for true marine groupers such as tiger or humpback. For brackish water pond culture, newly introduced fingerlings are restricted to a small netted enclosure of the pond for several weeks while being trained to the feeding method. The fish are then let out of the enclosure to free-range in the pond. Groupers are fed to apparent satiation during the day with feeding frequency decreasing as the size of the fish increases. Farmers check cages and ponds daily to remove uneaten food and to adjust feeding rate so as to minimize food wastage. Broodstock of humpback grouper, Cromileptes altivelis Guidelines for the amount and frequency of feeding trash fish Photo credit: SY Sim, NACA or compounded (pelleted or extruded) dry feeds are given in Table 1. The preferred harvest size of farmed groupers is 600 g Farming practices to 1.2 kg, depending on the market. Under farm conditions, orange-spot and tiger grouper will reach weights of 600 g in Groupers are most commonly farmed using knotless nylon or about 6-8 months and 1-1.2 kg in about 12 months after being polyethylene net sea cages, typically as a raft of floating cages, stocked as 100 mm fingerlings. Survival rates after 100 mm each of 2 to 5 m sides and 2-3 m deep. Where possible, cages are size are typically 85% or better. situated in channels where there is deep water and good tidal Table 1: Guidelines1 for feeding trash fish or compounded (pelleted) dry feeds to Epinephelus species of groupers Daily feeding rate (% of average body weight) Fish size (g) Number of feeds/day Trash fish Dry feed 1-5 20 20 10 4 3-5 5-25 20 15 4 2 2-3 25-100 15 10 2 1.5 2 100-200 10 8 1.5 1.2 1-2 > 200 6 4 1 0.8 1 1 The amount of food to be given and the frequency of feeding must be carefully monitored and adjusted for each farm situation,. The feeding schedule in the table should only be used as a guide. For slow growing species such as humpback grouper (C. altivelis), the amount to feed should be reduced by about a half. Aqua Feeds: Formulation & Beyond, Volume 2 Issue 2 2005 21 Preparation of trash fish for feeding to groupers Farm-made pellet feeds for groupers Photo credit: SY Sim, NACA Photo credit: SY Sim, NACA Table 2: The dry matter, crude protein and energy apparent digestibility coefficients (mean ± SD) determined with groupers for selected ingredients available in SE Asia Digestibility (%)1 Feed ingredient Dry Matter Crude Protein Energy Marine product Acetes shrimp meal (72% CP) 76.0 ±4.00 95.0 ±0.72 Fish meal (Chilean, 65% CP) 83.6 ±3.09 98.0 ±0.07 Fish meal (local, 45% CP) 59.1 ±1.23 82.4 ±1.99 77.2 ± 1.91 Fish meal (sardine, 65% CP) 87.2 ±2.53 85.2 ± 0.90 92.5 ±1.40 Fish meal (tuna, 50% CP) 75.4 ±3.61 76.2 ±1.92 Fish meal (white, 69% CP) 89.2 ±1.69 98.6 ±0.31 Shrimp head meal (50% CP) 58.5 ±3.33 78.0 ±1.32 63.6 ±0.89 Squid meal (71% CP) 99.4 ±0.95 94.2 ±0.21 Terrestrial animal product Blood meal (ring-dried, 84% CP) 36.9 ± 0.98 15.5 ± 2.01 Blood meal (oven-dried, 84% CP) 48.1 ± 0.85 55.2 ± 1.35 Blood meal (formic, 87% CP)2 67.9 ± 1.63 87.5 ± 0.55 Blood meal (propionic, 84% CP)2 61.7 ± 2.60 84.2 ± 0.69 Meat meal (Australian, 44% CP) 60.8 ± 0.80 98.9 ± 1.32 Meat meal (Philippine, 45% CP) 77.7 ± 0.09 83.8 ± 1.66 Meat solubles (Danish, 73% CP) 99.3 ± 0.45 97.6 ± 0.08 Poultry feather meal (67% CP) 74.3 ± 3.06 81.8 ± 2.58 Terrestrial plant product Corn meal (8% CP) 85.2 ± 2.81 82.9 ± 4.71 Corn gluten meal (56% CP) 94.0 ± 2.03 99.5 ± 0.65 Cowpea meal (white, 24% CP) 74.2 ± 3.14 93.5 ± 1.22 Lucaena (ipil-ipil) meal (19% CP) 56.0 ± 0.04 78.8 ± 2.64 Lupin albus meal (26% CP) 54.1 ± 1.24 97.5 ± 3.65 Palm oil cake meal (11% CP) 45.3 ± 2.37 80.5 ± 1.30 40.4 ± 3.74 Rice bran (11% CP) 22.2 ± 1.52 59.5 ± 1.41 44.3 ± 0.97 Rice bran (14% CP) 68.5 ± 7.02 42.7 ± 5.38 Soybean meal (full-fat, 41% CP) 54.8 ± 2.72 67.2 ± 1.29 51.1 ± 0.89 Soybean meal (solvent-extracted, 75.7 ± 1.98 96.0 ± 0.13 50-54% CP) Wheat flour (9% CP) 72.8 ± 0.85 82.9 ± 1.26 1Mean ± SD.
Recommended publications
  • Cultural Fish Cultivation in Floating Network in Kelurahan Belawan Sicanang Kota Medan
    ISSN Printed Version : 2549-4341 ISSN Online Version : 2549-418X ABDIMAS TALENTA 4 (1) 2019 : 32-37 http://jurnal.usu.ac.id/abdimas Salmiah. et al. Cultural Fish Cultivation In Floating Network In Kelurahan Belawan Sicanang Kota Medan. CULTURAL FISH CULTIVATION IN FLOATING NETWORK IN KELURAHAN BELAWAN SICANANG KOTA MEDAN Salmiah1*, Charloq2, Thomson Sebayang3 123 Faculty of Agriculture University of North Sumatra Abstract Grouper is one of the non-oil and gas export commodities that has the potential to be developed. As fish, fish consumption is much needed for restaurants and luxury hotels. The weight range of 500 - 100 grams / head, especially in living conditions, has a high price compared to in the form of dead fish. In 1999, research and development for multi-species harchery carried out jointly by the Gondol Marine Aquaculture Research Center with JICA first successfully produced mass of duck grouper seeds, cromileptes altivelis and tiger grouper seeds (Kawahara, et. Al ., 2000; Sugama et.al., 2001). Whereas to mass produce sunu grouper seeds in 2005. Technology development has been disseminated to government and private hatcheries, so that the production of duck grouper seeds has increased dramatically and more than 1 million seeds in 2001 (Kawahara and Ismi, 2003). This technology is also applied to the production of tiger grouper seeds, Ephinephelus fuscoguttatus by private hatcheries. In 2002, tiger grouper seed production was more than 2.6 million. For sunu groupers up to now, more than 0.5 million in 2006. Belawan Sicanang Village Medan Belawan District Medan City is an island surrounded by several tributaries which empties into the Deli River.
    [Show full text]
  • Download Book (PDF)
    e · ~ e t · aI ' A Field Guide to Grouper and Snapper Fishes of Andaman and Nicobar Islands (Family: SERRANIDAE, Subfamily: EPINEPHELINAE and Family: LUTJANIDAE) P. T. RAJAN Andaman & Nicobar Regional Station Zoological Survey of India Haddo, Port Blair - 744102 Edited by the Director, Zoological Survey of India, Kolkata Zoological Survey of India Kolkata CITATION Rajan, P. T. 2001. Afield guide to Grouper and Snapper Fishes of Andaman and Nicobar Islands. (Published - Director, Z.5.1.) Published : December, 2001 ISBN 81-85874-40-9 Front cover: Roving Coral Grouper (Plectropomus pessuliferus) Back cover : A School of Blue banded Snapper (Lutjanus lcasmira) © Government of India, 2001 ALL RIGHTS RESERVED • No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. • This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher'S consent, in any form of binding or cover other than that in which it is published. • The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. PRICE Indian Rs. 400.00 Foreign $ 25; £ 20 Published at the Publication Division by the Director, Zoological Survey of India, 234/4, AJe Bose Road, 2nd MSO Building, (13th Floor), Nizam Palace, Calcutta-700 020 after laser typesetting by Computech Graphics, Calcutta 700019 and printed at Power Printers, New Delhi - 110002.
    [Show full text]
  • V a Tion & Management of Reef Fish Sp a Wning Aggrega Tions
    handbook CONSERVATION & MANAGEMENT OF REEF FISH SPAWNING AGGREGATIONS A Handbook for the Conservation & Management of Reef Fish Spawning Aggregations © Seapics.com Without the Land and the Sea, and their Bounties, the People and their Traditional Ways would be Poor and without Cultural Identity Fijian Proverb Why a Handbook? 1 What are Spawning Aggregations? 2 How to Identify Spawning Aggregations 2 Species that Aggregate to Spawn 2 Contents Places Where Aggregations Form 9 Concern for Spawning Aggregations 10 Importance for Fish and Fishermen 10 Trends in Exploited Aggregations 12 Managing & Conserving Spawning Aggregations 13 Research and Monitoring 13 Management Options 15 What is SCRFA? 16 How can SCRFA Help? 16 SCRFA Work to Date 17 Useful References 18 SCRFA Board of Directors 20 Since 2000, scientists, fishery managers, conservationists and politicians have become increasingly aware, not only that many commercially important coral reef fish species aggregate to spawn (reproduce) but also that these important reproductive gatherings are particularly susceptible to fishing. In extreme cases, when fishing pressure is high, aggregations can dwindle and even cease to form, sometimes within just a few years. Whether or not they will recover and what the long-term effects on the fish population(s) might be of such declines are not yet known. We do know, however, that healthy aggregations tend to be associated with healthy fisheries. It is, therefore, important to understand and better protect this critical part of the life cycle of aggregating species to ensure that they continue to yield food and support livelihoods. Why a Handbook? As fishing technology improved in the second half of the twentieth century, engines came to replace sails and oars, the cash economy developed rapidly, and human populations and demand for seafood grew, the pressures on reef fishes for food, and especially for money, increased enormously.
    [Show full text]
  • Academic Paper on “Restricting the Size of Groupers (Serranidae
    ACADEMIC PAPER ON “RESTRICTING THE SIZE OF GROUPERS (SERRANIDAE) EXPORTED FROM INDONESIA IN THE LIVE REEF FOOD FISH TRADE” Coastal and Marine Resources Management in the Coral Triangle-Southeast Asia (TA 7813-REG) Tehcnical Report ACADEMIC PAPER ON RESTRICTING THE SIZE OFLIVE GROUPERS FOR EXPORT ACADEMIC PAPER ON “RESTRICTING THE SIZE OF GROUPERS (SERRANIDAE) EXPORTED FROM INDONESIA IN THE LIVE REEF FOOD FISH TRADE” FINAL VERSION COASTAL AND MARINE RESOURCES MANAGEMENT IN THE CORAL TRIANGLE: SOUTHEAST ASIA, INDONESIA, MALAYSIA, PHILIPPINES (TA 7813-REG) ACADEMIC PAPER ON RESTRICTING THE SIZE OFLIVE GROUPERS FOR EXPORT Page i FOREWORD Indonesia is the largest exporter of live groupers for the live reef fish food trade. This fisheries sub-sector plays an important role in the livelihoods of fishing communities, especially those living on small islands. As a member of the Coral Triangle Initiative (CTI), in partnership with the Asian Development Bank (ADB) under RETA [7813], Indonesia (represented by a team from Hasanuddin University) has compiled this academic paper as a contribution towards sustainable management of live reef fish resources in Indonesia. Challenges faced in managing the live grouper fishery and trade in Indonesia include the ongoing activities and practices which damage grouper habitat; the lack of protection for grouper spawning sites; overfishing of groupers which have not yet reached sexual maturity/not reproduced; and the prevalence of illegal and unreported fishing for live groupers. These factors have resulted in declining wild grouper stocks. The Aquaculture sector is, at least as yet, unable to replace or enable a balanced wild caught fishery, and thus there is still a heavy reliance on wild-caught groupers.
    [Show full text]
  • Epinephelus Coioides) from Northern Oman
    490 NOAA First U.S. Commissioner National Marine Fishery Bulletin established 1881 of Fisheries and founder Fisheries Service of Fishery Bulletin Abstract—Age, growth, and monthly reproductive characteristics were Demographic profile of an overexploited determined for the orange-spotted serranid, the orange-spotted grouper grouper (Epinephelus coioides) from northern Oman. This species is char- (Epinephelus coioides), from northern Oman acterized by a prevalence of females (1–11 years old), and males make up 1,2 6.5% of the total sample. Growth pa- Jennifer L. McIlwain rameters indicate a typical pattern Aisha Ambu-ali1 for groupers with a low growth co- Nasr Al Jardani1 efficient (K=0.135). The trajectory of 3 the von Bertalanffy growth function Andrew. R. Halford was almost linear with no evidence Hamed S. Al-Oufi4 of asymptotic growth. Estimates of David A. Feary (contact author)5 mortality revealed a low natural mortality of 0.14/year but a high Email address for contact author: [email protected] fishing mortality of 0.59/year. More alarming was the high rate of exploi- 1 Department of Marine Science and Fisheries 4 tation (0.81/year), considered unsus- Ministry of Agriculture and Fisheries College of Agricultural and Marine Sciences tainable for a slow-growing grouper. P.O. Box 1700, Muscat 111 Sultan Qaboos University The population off southern Oman Sultanate of Oman P.O. Box 34, Al-Khod 123 is diandric protogynous, and sex 5 School of Life Sciences Sultanate of Oman change takes place between 449 and University of Nottingham 748 mm in total length (TL) or over 2 Department of Environment and Agriculture University Park a period of 4–8 years.
    [Show full text]
  • PP-4. Monitoring of Fish Supply to Resorts and Setting up of an Ecolabel Certification
    PP-4. Monitoring of Fish Supply to Resorts and Setting up of an Ecolabel Certification 1) Report on Survey on Reef Fish Landings to Tourist Resorts 2) Guidelines on Best Fishing and Fish Handling Practices 3) Overview of reef fish sampling in K. Dhiffushi – Nov-Dec 2016 REPORT ON SURVEY ON REEF FISH LANDINGS TO TOURIST RESORTS May 2016 Muawin YOOSUF, Ministry of Fisheries and Agriculture with the technical assistance of Bernard ADRIEN, MASPLAN This survey was carried out as part of a Pilot Project under the Project for the Formulation of Master Plan for Sustainable Fisheries (MASPLAN), a technical cooperation project of the Japan International Cooperation Agency (JICA). All pictures taken by Bernard Adrien. REPORT ON SURVEY ON REEF FISH LANDINGS TO RESORTS – MAY 2016 1 Table of Contents 1 INTRODUCTION .................................................................................................................................3 2 METHOD ..............................................................................................................................................4 3 RESULTS & ANALYSIS .....................................................................................................................5 3.1 Estimates on reef fish production ..................................................................................................5 Estimate of Annual Reef Fish Landings to Resorts from the present survey ................................5 Comparison on Annual Reef Fish Landings to Resorts with previous surveys ............................5
    [Show full text]
  • Habitat Partitioning Between Species of the Genus Cephalopholis (Pisces, Serranidae) Across the Fringing Reef of the Gulf of Aqaba (Red Sea)
    MARINE ECOLOGY PROGRESS SERIES Published December 15 Mar. Ecol. Prog. Ser. Habitat partitioning between species of the genus Cephalopholis (Pisces, Serranidae) across the fringing reef of the Gulf of Aqaba (Red Sea) Muki Shpigel*,Lev Fishelson Department of Zoology, Tel Aviv University, Tel Aviv, Israel ABSTRACT: Spatial partitioning of sympatric fish species of the genus Cephalopholis (Serranidae, Teleostei) was studied on the coral reef of the southern part of the Gulf of Aqaba. Data obtained from observations on 290 individuals over 3000 m2 of transects In 4 reef formations demonstrated partitioning related to substrate, depth and time. The studied groupers occupy species-specific habitats over the reef: C. argus (Bloch and Schneider) was found to dominate the shallow reef tables and reef wall; C. miniata (Forsskal) dwells on coral knolls and up to depths of 10 to 30 m; C. hemistiktos (Riippell) is common on flat bottom and coral rubble areas; and C. sexmaculata (Riippell) dominated at depths exceeding 30 m. All 4 species are diurnal fish, although C. sexmaculata IS active nocturnally in shallow water and diurnally in deeper water. On sites where the territories of the various species overlap, agonistic behaviour and a size-related dominance hierarchy was observed. INTRODUCTION 1984). Despite the fact that many coral fishes are preda- tors (Goldman & Talbot 1976), only a few studies deal Coral reefs, which provide a wide range of ecological with the distribution and interactions of predators niches, harbor some of the most diverse species dwelling in coral reefs (Odum & Odum 1955, Bardach & assemblages known (Fishelson et al. 1974, Ehrlich Menzel 1957, Harmelin-Vivien & Bouchon 1976, 1975, Sale 1980, Waldner & Robertson 1980).
    [Show full text]
  • Snapper and Grouper: SFP Fisheries Sustainability Overview 2015
    Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Patrícia Amorim | Fishery Analyst, Systems Division | [email protected] Megan Westmeyer | Fishery Analyst, Strategy Communications and Analyze Division | [email protected] CITATION Amorim, P. and M. Westmeyer. 2016. Snapper and Grouper: SFP Fisheries Sustainability Overview 2015. Sustainable Fisheries Partnership Foundation. 18 pp. Available from www.fishsource.com. PHOTO CREDITS left: Image courtesy of Pedro Veiga (Pedro Veiga Photography) right: Image courtesy of Pedro Veiga (Pedro Veiga Photography) © Sustainable Fisheries Partnership February 2016 KEYWORDS Developing countries, FAO, fisheries, grouper, improvements, seafood sector, small-scale fisheries, snapper, sustainability www.sustainablefish.org i Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 EXECUTIVE SUMMARY The goal of this report is to provide a brief overview of the current status and trends of the snapper and grouper seafood sector, as well as to identify the main gaps of knowledge and highlight areas where improvements are critical to ensure long-term sustainability. Snapper and grouper are important fishery resources with great commercial value for exporters to major international markets. The fisheries also support the livelihoods and food security of many local, small-scale fishing communities worldwide. It is therefore all the more critical that management of these fisheries improves, thus ensuring this important resource will remain available to provide both food and income. Landings of snapper and grouper have been steadily increasing: in the 1950s, total landings were about 50,000 tonnes, but they had grown to more than 612,000 tonnes by 2013.
    [Show full text]
  • First Record of the Oblique-Banded Grouper, Epinephelus Radiatus (Perciformes: Serranidae) from Korea
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 26, No. 2, 143-146, June 2014 Received: November 27, 2013 ISSN: 1225-8598 (Print), 2288-3371 (Online) Revised: March 21, 2014 Accepted: June 21, 2014 First Record of the Oblique-banded Grouper, Epinephelus radiatus (Perciformes: Serranidae) from Korea By Song-Hun Han, Maeng Jin Kim1 and Choon Bok Song* Department of Aquatic Biomedical Sciences, Jeju National University, Jeju 690-756, Korea 1Subtropical Fisheries Research Center, National Fisheries Research and Development Institute, Jeju 690-192, Korea ABSTRACT A single serranid specimen of Epinephelus radiatus was collected by a hook for the commercial longline fisheries occurred near Marado, Jeju Island, Korea. The present specimen was characterized by five irregular dark brown bands passing downward and forward from upper edge of body, scales in longitudinal row 107, and pored lateral line scales 55. This species is easily distinguishable from the morphologically similar Korean serranid species of E. poecilonotus based on band patterns on body. That is, the former has five irregular oblique dark-edged brown bands, and the latter has several long horizontal bands on lateral body. We propose a new Korean name, “Ma-ra-ba- ri,” for Epinephelus radiatus. Key words : First record, Epinephelus radiatus, Serranidae, Jeju Island INTRODUCTION Epinephelus radiatus (Day, 1867) (New Korean name: Ma-ra-ba-ri) The family Serranidae, comprising three subfamilies (Fig. 1; Table 1) of about 64 genera with about 475 species, are widely Serranus radiatus Day, 1867: 699 (type locality: near distributed tropical and temperate seas of the world (Nel- Madras, India). son, 2006). Among them, 12 genera with 29 species of Epinephelus radiatus: Heemstra and Randall, 1986: 530 serranid fishes were known in Korea (Kim et al., 2005; (Natal, Japan); Allen and Swainston 1988: 56 (North Kim et al., 2009; Kim and Song, 2010; Myoung et al., Western Australia); Lee, 1990: 52 (East China Sea); 2013).
    [Show full text]
  • Voestalpine Essential Fish Habitat Assessment for PSD Greenhouse Gas Permit
    Essential Fish Habitat Assessment: Texas Project Site voestalpine Stahl GmbH San Patricio County, Texas January 31, 2013 www.erm.com voestalpine Stahl GmbH Essential Fish Habitat Assessment: Texas Project Site January 31, 2013 Project No. 0172451 San Patricio County, Texas Alicia Smith Partner-in-Charge Graham Donaldson Project Manager Travis Wycoff Project Consultant Environmental Resources Management 15810 Park Ten Place, Suite 300 Houston, Texas 77084-5140 T: 281-600-1000 F: 281-600-1001 Texas Registered Engineering Firm F-2393 TABLE OF CONTENTS LIST OF ACRONYMS IV EXECUTIVE SUMMARY VI 1.0 INTRODUCTION 1 1.1 PROPOSED ACTION 1 1.2 AGENCY REGULATIONS 1 1.2.1 Magnuson-Stevens Fishery Conservation and Management Act 1 1.2.1 Essential Fish Habitat Defined 2 2.0 PROJECT DESCRIPTION 4 2.1 PROJECT SCHEDULE 4 2.2 PROJECT LOCATION 4 2.3 SITE DESCRIPTION 5 2.4 SITE HISTORY 7 2.5 EMISSIONS CONTROLS 8 2.6 NOISE 9 2.7 DUST 10 2.8 WATER AND WASTEWATER 10 2.8.1 Water Sourcing and Water Rights 11 2.8.2 Wastewater Discharge 13 3.0 IDENTIFICATION OF THE ACTION AREA 15 3.1 ACTION AREA DEFINED 15 3.2 ACTION AREA DELINEATION METHODOLOGY AND RESULTS 16 3.2.1 Significant Impact Level Dispersion Modeling 16 3.2.2 Other Contaminants 17 4.0 ESSENTIAL FISH HABITAT IN THE VICINITY OF THE PROJECT 19 4.1 SPECIES OF PARTICULAR CONCERN 19 4.1.1 Brown Shrimp 19 4.1.2 Gray Snapper 20 4.1.3 Pink Shrimp 20 4.1.4 Red Drum 20 4.1.5 Spanish Mackerel 21 4.1.6 White Shrimp 21 4.2 HABITAT AREAS OF PARTICULAR CONCERN 22 5.0 ENVIRONMENTAL BASELINE CONDITIONS AND EFFECTS ANALYSIS
    [Show full text]
  • Life History Demographic Parameter Synthesis for Exploited Florida and Caribbean Coral Reef Fishes
    Please do not remove this page Life history demographic parameter synthesis for exploited Florida and Caribbean coral reef fishes Stevens, Molly H; Smith, Steven Glen; Ault, Jerald Stephen https://scholarship.miami.edu/discovery/delivery/01UOML_INST:ResearchRepository/12378179400002976?l#13378179390002976 Stevens, M. H., Smith, S. G., & Ault, J. S. (2019). Life history demographic parameter synthesis for exploited Florida and Caribbean coral reef fishes. Fish and Fisheries (Oxford, England), 20(6), 1196–1217. https://doi.org/10.1111/faf.12405 Published Version: https://doi.org/10.1111/faf.12405 Downloaded On 2021/09/28 21:22:59 -0400 Please do not remove this page Received: 11 April 2019 | Revised: 31 July 2019 | Accepted: 14 August 2019 DOI: 10.1111/faf.12405 ORIGINAL ARTICLE Life history demographic parameter synthesis for exploited Florida and Caribbean coral reef fishes Molly H. Stevens | Steven G. Smith | Jerald S. Ault Rosenstiel School of Marine and Atmospheric Science, University of Miami, Abstract Miami, FL, USA Age‐ or length‐structured stock assessments require reliable life history demo‐ Correspondence graphic parameters (growth, mortality, reproduction) to model population dynamics, Molly H. Stevens, Rosenstiel School of potential yields and stock sustainability. This study synthesized life history informa‐ Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, tion for 84 commercially exploited tropical reef fish species from Florida and the Miami, FL 33149, USA. U.S. Caribbean (Puerto Rico and the U.S. Virgin Islands). We attempted to identify a Email: [email protected] useable set of life history parameters for each species that included lifespan, length Funding information at age, weight at length and maturity at length.
    [Show full text]
  • (<I>Epinephelus Polyphekadion</I>) and Brown Marbled Grouper
    BULLETIN OF MARINE SCIENCE, 83(2): 415–431, 2008 CORAL REEF PAPER DYNAMICS OF CAMOUFLAGE (EPINEPHELUS POLYPHEKADION) AND BROWN MARBLED GROUPER (EPINEPHELUS FUSCOGUTTATUS) SPAWNING AGGREGATIONS AT A REMOTE REEF SITE, SEYCHELLES Jan Robinson, Riaz Aumeeruddy, Tove Lund Jörgensen, and Marcus C. Öhman ABSTRACT Aggregations of camouflage, Epinephelus polyphekadion (Bleeker, 1849), and brown marbled grouper, Epinephelus fuscoguttatus (Forsskål, 1775), were found to overlap spatially and temporally at a reef pass site located in the outer island group of the archipelagic Seychelles. Over three spawning seasons, we investigated the spatial and temporal dynamics of aggregations using a combination of underwater visual census (UVC) surveys and trends in reproductive parameters, notably gona- dosomatic index. Interannual variation in aggregation formation was evident for both species, but was more variable in camouflage grouper. Aggregations lasted be- tween 2–3 wks, with peak abundances attained a few days prior to the new moon, soon after which aggregations quickly dispersed. Spawning within aggregations was confirmed using direct (observations of hydrated oocytes) and indirect (gonadoso- matic indices, behavior, color changes) signs. Spawning seasons were estimated at between 2 and 3-mo long, occurring between November and February, with inter- annual variation in onset and termination. Tagged camouflage grouper exhibited site fidelity on scales of weeks to months, and one individual returned to the aggre- gation the following year. The aggregations are known to fishers and are commer- cially exploited. Fisher knowledge was found to be a reliable source of information for locating aggregations. Many reef fish species form aggregations at specific times and places for the pur- pose of reproduction (Domeier and Colin, 1997).
    [Show full text]