What Happened to the Quants in August 2007?∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE CASE of CLOS Efraim Benmelech Jennifer Dlugosz Victoria
NBER WORKING PAPER SERIES SECURITIZATION WITHOUT ADVERSE SELECTION: THE CASE OF CLOS Efraim Benmelech Jennifer Dlugosz Victoria Ivashina Working Paper 16766 http://www.nber.org/papers/w16766 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 February 2011 We thank Paul Gompers, Jeremy Stein, Greg Nini, Gary Gorton, Charlotte Ostergaard, James Vickery, Paul Willen, seminar participants at the Federal Reserve Bank of New York, the Federal Reserve Board, Harvard University, UNC, London School of Economics, Wharton, University of Florida, Berkeley, NERA, the World Bank, the Brattle Group, and participants at the American Finance Association annual meeting, the Yale Conference on Financial Crisis, and Financial Intermediation Society Annual Meeting for helpful comments. Jessica Dias and Kate Waldock provided excellent research assistance. We acknowledge research support from the Division of Research at Harvard Business School. We are especially grateful to Markit for assisting us with CDS data. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer- reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2011 by Efraim Benmelech, Jennifer Dlugosz, and Victoria Ivashina. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. Securitization without Adverse Selection: The Case of CLOs Efraim Benmelech, Jennifer Dlugosz, and Victoria Ivashina NBER Working Paper No. -
Statistical Arbitrage: Asset Clustering, Market-Exposure Minimization, and High-Frequency Explorations
Statistical Arbitrage: Asset clustering, market-exposure minimization, and high-frequency explorations. Aniket Inamdar([email protected]), Blake Jennings([email protected]), Bernardo Ramos([email protected]), Yiwen Chen([email protected]), Ben Etringer([email protected]) Stanford University MS&E 448, Spring 2016 Abstract In this paper we describe and implement two statistical arbitrage trading strategies. The first strategy models the mean-reverting residual of a cluster of assets whose weights are selected so as to minimize market exposure. The second strategy maintains a portfolio of pairs, each weighted proportional to a measure of mean-reversion speed. We present performance metrics for each strategy, discuss the difficulties of their application into high-frequency trading, and suggest a direction where future research could focus. 1 Introduction The technique of statistical arbitrage is the systematic exploitation of perceived mispricings of similar assets. A trading strategy built around statistical arbitrage involves three fundamental pillars: (1) a measure of similarity of assets, (2) a measure of pricing mismatch, and (3) a confidence metric for each mismatch. Traditional statistical arbitrage techniques, like \Pairs Trading", employ these three pillars, holding long-short positions in a pair of strongly \similar" assets. The covariance (or correlation) between two assets is a widely used metric of their \similarity". However, recent studies have used additional attributes such as co-integration tests to select asset pairs that are better suited for a statistical arbitrage trading strategy. We base our signal generation strategy on the seminal paper [3], whose theory is briefly described in Sec. 2. Next, Sec. 3.1 describes a strategy to select assets to perform statistical arbitrage on. -
Crises and Hedge Fund Risk∗
Crises and Hedge Fund Risk∗ Monica Billio†, Mila Getmansky‡, and Loriana Pelizzon§ This Draft: September 7, 2009 Abstract We study the effects of financial crises on hedge fund risk and show that liquidity, credit, equity market, and volatility are common risk factors during crises for various hedge fund strategies. We also apply a novel methodology to identify the presence of a common latent (idiosyncratic) risk factor exposure across all hedge fund strategies. If the latent risk factor is omitted in risk modeling, the resulting effect of financial crises on hedge fund risk is greatly underestimated. The common latent factor exposure across the whole hedge fund industry was present during the Long-Term Capital Management (LTCM) crisis of 1998 and the 2008 Global financial crisis. Other crises including the subprime mortgage crisis of 2007 affected the whole hedge fund industry only through classical systematic risk factors. Keywords: Hedge Funds; Risk Management; Liquidity; Financial Crises; JEL Classification: G12, G29, C51 ∗We thank Tobias Adrian, Vikas Agarwal, Lieven Baele, Nicolas Bollen, Ben Branch, Stephen Brown, Darwin Choi, Darrell Duffie, Bruno Gerard, David Hsieh, Luca Fanelli, William Fung, Patrick Gagliar- dini, Will Goetzmann, Robin Greenwood, Philipp Hartmann, Ravi Jagannathan, Nikunj Kapadia, Hossein Kazemi, Martin Lettau, Bing Liang, Andrew Lo, Narayan Naik, Colm O’Cinneide, Geert Rouwenhorst, Stephen Schaefer, Tom Schneeweis, Matthew Spiegel, Heather Tookes, Marno Verbeek, Pietro Veronesi, and seminar participants at the NBER -
What Do Fund Flows Reveal About Asset Pricing Models and Investor Sophistication?
What do fund flows reveal about asset pricing models and investor sophistication? Narasimhan Jegadeesh and Chandra Sekhar Mangipudi☆ Goizueta Business School Emory University January, 2019 ☆Narasimhan Jegadeesh is the Dean’s Distinguished Professor at the Goizueta Business School, Emory University, Atlanta, GA 30322, ph: 404-727-4821, email: [email protected]., Chandra Sekhar Mangipudi is a Doctoral student at Emory University, email: [email protected] . We would like to thank Jonathan Berk, Kent Daniel, Amit Goyal, Cliff Green, Jay Shanken, and the seminar participants at the 2018 SFS Cavalcade North America, Louisiana State University and Virginia Tech for helpful discussions, comments, and suggestions. What do fund flows reveal about asset pricing models and investor sophistication? Recent literature uses the relative strength of the relation between fund flows and alphas with respect to various multifactor models to draw inferences about the best asset pricing model and about investor sophistication. This paper analytically shows that such inferences are tenable only under certain assumptions and we test their empirical validity. Our results indicate that any inference about the true asset pricing model based on alpha-flow relations is empirically untenable. The literature uses a multifactor model that includes all factors as the benchmark to assess investor sophistication. We show that the appropriate benchmark excludes some factors when their betas are estimated from the data, but even with this benchmark the rejection of investor sophistication in the literature is empirically tenable. An extensive literature documents that net fund flows into mutual funds are driven by funds’ past performance. For example, Patel, Zeckhauser, and Hendricks (1994) document that equity mutual funds with bigger returns attract more cash inflows and they offer various behavioral explanations for this phenomenon. -
The Blow-Up Artist: Reporting & Essays: the New
Annals of Finance: The Blow-Up Artist: Reporting & Essays: The New ... http://www.newyorker.com/reporting/2007/10/15/071015fa_fact_cassid... ANNALS OF FINANCE THE BLOW-UP ARTIST Can Victor Niederhoffer survive another market crisis? by John Cassidy OCTOBER 15, 2007 n a wall Niederhoffer’s approach is eclectic. His funds, a friend says, appeal “to people like him: self-made people who have a maverick streak.” O opposite Victor Niederhoffer’s desk is a large painting of the Essex, a Nantucket whaling ship that sank in the South Pacific in 1820, after being attacked by a giant sperm whale, and that later served as the inspiration for “Moby-Dick.” The Essex’s captain, George Pollard, Jr., survived, and persuaded his financial backers to give him another ship, but he sailed it for little more than a year before it foundered on a coral reef. Pollard was ruined, and he ended his days as a night watchman. The painting, which Niederhoffer, a sixty-three-year-old hedge-fund manager, acquired after losing all his clients’ money—and a good deal of his own—in the Thai stock market crash of 1997, serves as an admonition against the incaution to which he, a notorious risktaker, is prone, and as a reminder of the precariousness of his success. Niederhoffer has been a professional investor for nearly three decades, during which he has made and lost several fortunes—typically by relying on methods that other traders consider reckless or unorthodox or both. In the nineteen-seventies, he wrote one of the first software programs to identify profitable trades. -
Skin Or Skim? Inside Investment and Hedge Fund Performance
Skin or Skim?Inside Investment and Hedge Fund Performance∗ Arpit Guptay Kunal Sachdevaz September 7, 2017 Abstract Using a comprehensive and survivor bias-free dataset of US hedge funds, we docu- ment the role that inside investment plays in managerial compensation and fund per- formance. We find that funds with greater investment by insiders outperform funds with less “skin in the game” on a factor-adjusted basis, exhibit greater return persis- tence, and feature lower fund flow-performance sensitivities. These results suggest that managers earn outsize rents by operating trading strategies further from their capac- ity constraints when managing their own money. Our findings have implications for optimal portfolio allocations of institutional investors and models of delegated asset management. JEL classification: G23,G32,J33,J54 Keywords: hedge funds, ownership, managerial skill, alpha, compensation ∗We are grateful to our discussant Quinn Curtis and for comments from Yakov Amihud, Charles Calomiris, Kent Daniel, Colleen Honigsberg, Sabrina Howell, Wei Jiang, Ralph Koijen, Anthony Lynch, Tarun Ramado- rai, Matthew Richardson, Paul Tetlock, Stijn Van Nieuwerburgh, Jeffrey Wurgler, and seminar participants at Columbia University (GSB), New York University (Stern), the NASDAQ DRP Research Day, the Thirteenth Annual Penn/NYU Conference on Law and Finance, Two Sigma, IRMC 2017, the CEPR ESSFM conference in Gerzensee, and the Junior Entrepreneurial Finance and Innovation Workshop. We thank HFR, CISDM, eVestment, BarclaysHedge, and Eurekahedge for data that contributed to this research. We gratefully acknowl- edge generous research support from the NYU Stern Center for Global Economy and Business and Columbia University. yNYU Stern School of Business, Email: [email protected] zColumbia Business School, Email: [email protected] 1 IIntroduction Delegated asset managers are commonly seen as being compensated through fees imposed on outside investors. -
Hedge Funds: Due Diligence, Red Flags and Legal Liabilities
Hedge Funds: Due Diligence, Red Flags and Legal Liabilities This Website is Sponsored by: Law Offices of LES GREENBERG 10732 Farragut Drive Culver City, California 90230-4105 Tele. & Fax. (310) 838-8105 [email protected] (http://www.LGEsquire.com) BUSINESS/INVESTMENT LITIGATION/ARBITRATION ==== The following excerpts of articles, arranged mostly in chronological order and derived from the Wall Street Journal, New York Times, Reuters, Los Angles Times, Barron's, MarketWatch, Bloomberg, InvestmentNews and other sources, deal with due diligence in hedge fund investing. They describe "red flags." They discuss the hazards of trying to recover funds from failed investments. The sponsor of this website provides additional commentary. "[T]he penalties for financial ignorance have never been so stiff." --- The Ascent of Money (2008) by Niall Ferguson "Boom times are always accompanied by fraud. As the Victorian journalist Walter Bagehot put it: 'All people are most credulous when they are most happy; and when money has been made . there is a happy opportunity for ingenious mendacity.' ... Bagehot observed, loose business practices will always prevail during boom times. During such periods, the gatekeepers of the financial system -- whether bankers, professional investors, accountants, rating agencies or regulators -- should be extra vigilant. They are often just the opposite." (WSJ, 4/17/09, "A Fortune Up in Smoke") Our lengthy website contains an Index of Articles. However, similar topics, e.g., "Bayou," "Madoff," "accountant," may be scattered throughout several articles. To locate all such references, use your Adobe Reader/Acrobat "Search" tool (binocular symbol). Index of Articles: 1. "Hedge Funds Can Be Headache for Broker, As CIBC Case Shows" 2. -
FT PARTNERS RESEARCH 2 Fintech Meets Alternative Investments
FT PARTNERS FINTECH INDUSTRY RESEARCH Alternative Investments FinTech Meets Alternative Investments Innovation in a Burgeoning Asset Class March 2020 DRAFT ©2020 FinTech Meets Alternative Investments Alternative Investments FT Partners | Focused Exclusively on FinTech FT Partners’ Advisory Capabilities FT Partners’ FinTech Industry Research Private Capital Debt & Raising Equity Sell-Side / In-Depth Industry Capital Buy-Side Markets M&A Research Reports Advisory Capital Strategic Structuring / Consortium Efficiency Proprietary FinTech Building Advisory FT Services FINTECH Infographics Partners RESEARCH & Board of INSIGHTS Anti-Raid Advisory Directors / Advisory / Monthly FinTech Special Shareholder Committee Rights Plans Market Analysis Advisory Sell-Side Valuations / LBO Fairness FinTech M&A / Financing Advisory Opinion for M&A Restructuring Transaction Profiles and Divestitures Named Silicon Valley’s #1 FinTech Banker Ranked #1 Most Influential Person in all of Numerous Awards for Transaction (2016) and ranked #2 Overall by The FinTech in Institutional Investors “FinTech Excellence including Information Finance 40” “Deal of the Decade” • Financial Technology Partners ("FT Partners") was founded in 2001 and is the only investment banking firm focused exclusively on FinTech • FT Partners regularly publishes research highlighting the most important transactions, trends and insights impacting the global Financial Technology landscape. Our unique insight into FinTech is a direct result of executing hundreds of transactions in the sector combined with over 18 years of exclusive focus on Financial Technology FT PARTNERS RESEARCH 2 FinTech Meets Alternative Investments I. Executive Summary 5 II. Industry Overview and The Rise of Alternative Investments 8 i. An Introduction to Alternative Investments 9 ii. Trends Within the Alternative Investment Industry 23 III. Executive Interviews 53 IV. -
Lbex-Docid 3285232 Lehman Brothers Holdings, Inc
FOIA CONFIDENTIAL TREATMENT REQUESTED BY LBEX-DOCID 3285232 LEHMAN BROTHERS HOLDINGS, INC. Agenda I FOIA CONFIDENTIAL TREATMENT REQUESTED BY LBEX-DOCID 3285232 LEHMAN BROTHERS HOLDINGS, INC. ,--------------------------------------------------------------------------------------------------------------~ Agenda Agenda • Key Themes • Risk Governance - Our Control Environment - Risk Philosophy - Committee Structures • Risk Management Overview - Risk Management Function - Risk Management Organization - External Constituents • Risk Analysis and Quantification - Risk Management Integrated Framework Risk Appetite Risk Equity Risk Appetite Usage Risk Limits • Risk Exposure • Areas of Increased Focus - Subprime Exposure - High Yield and Leveraged Loans - Hedge Funds • Conclusion • Appendix - Stress Scenarios 3 FOIA CONFIDENTIAL TREATMENT REQUESTED BY LBEX-DOCID 3285232 LEHMAN BROTHERS HOLDINGS, INC. Key Themes I FOIA CONFIDENTIAL TREATMENT REQUESTED BY LBEX-DOCID 3285232 LEHMAN BROTHERS HOLDINGS, INC. Key Themes Key Themes Risk Management is one of the core competencies of the Firm and is an intrinsic component of our control system. As a result of our focus on continuously enhancing our risk capabilities, in the current challenging environment, we feel confident that our risk position is solid. • Risk Management is at the very core of Lehman's business model - Conservative risk philosophy- supported by approximately 30% employee ownership - Effective risk governance -unwavering focus of the Executive Committee - Significant resources dedicated -
Stronger Together
MAKING STONY BROOK STRONGER, TOGETHER From state-of-the-art healthcare facilities for STONY BROOK CHILDREN’S HOSPITAL EMERGENCY DEPARTMENT EXPANSION GOAL MET Long Island’s children to Joining dozens of community friends, three Knapp foundations help complete $10 million investments in the greatest philanthropic goal minds in medicine and in Since it opened in 2010, Stony Brook Children’s Pediatric Emergency Department has seen a 50 percent increase in patient volume, creating our remarkable students an emergency of its own: an urgent need for more space, specialists and services to care for the 25,000 children seen each year. and programs, you make Now, thanks to two dozen area families, and a collective $4 million gift from the Knapp Swezey, Gardener and Island Outreach foundations, us stronger in every way. Stony Brook Children’s is one step closer to creating an expanded pediatric emergency facility to serve Suffolk County’s children and the families who love them. “The Pediatric Emergency Department has been a remarkably successful program in terms of the quality of care we’re providing and how it’s resonated with the community,” said Chair of Pediatrics Carolyn Milana, MD. “Now, thanks to the Knapp family foundations and our surrounding community of generous friends and grateful patients, we will be able to move ahead to ensure we can continue to meet the need now and into the future.” “Time and again, the Knapp families and their foundation boards have shown such incredible commitment to the people of Long Island by their personal and philanthropic engagement with Stony Brook,” said Deborah Lowen-Klein, interim vice president for Advancement. -
The Hedge Fund Industry in New York City Alternative Assets
The Facts The Hedge Fund Industry in New York City alternative assets. intelligent data. The Hedge Fund Industry in New York City New York City is home to over a third of all the assets in the hedge fund industry today. We provide a comprehensive overview of the hedge fund industry in New York City, including New York City-based investors’ plans for the next 12 months, the number of hedge fund launches each year, fund terms and conditions, the largest hedge fund managers and performance. Fig. 1: Top 10 Leading Cities by Hedge Fund Assets under Fig. 2: Breakdown of New York City-Based Hedge Fund Management ($bn) (As at 31 December 2014) Investors by Type Manager City Headquarters Assets under Management ($bn) Fund of Hedge Funds Manager New York City 1,024 Foundation 2% London 395 3%3% 6% Private Sector Pension Fund Boston 171 31% Westport 168 8% Family Office Greenwich 164 Endowment Plan San Francisco 87 Wealth Manager Chicago 75 15% Hong Kong 61 Insurance Company 21% Dallas 52 11% Asset Manager Stockholm 39 Other Source: Preqin Hedge Fund Analyst Source: Preqin Hedge Fund Investor Profi les Fig. 3: Breakdown of Strategies Sought by New York City- Fig. 4: Breakdown of Structures Sought by New York City- Based Hedge Fund Investors over the Next 12 Months Based Hedge Fund Investors over the Next 12 Months 60% 100% 97% 50% 90% 50% 80% 40% 70% 31% 30% 26% 60% 20% 19% 50% 13% 11% 40% 9% 9% 10% 7% 7% 30% Proportion of Fund Searches 0% 20% 17% Proportion of Fund Searches 10% 5% Macro 1% Equity Credit 0% Diversified Neutral Long/Short Long/Short Commingled Managed Alternative Listed Fund Arbitrage Event Driven Fixed Income Fixed Opportunistic Equity Market Multi-Strategy Account Mutual Fund Relative Value Source: Preqin Hedge Fund Investor Profi les Source: Preqin Hedge Fund Investor Profi les Fig. -
Natural Language Processing As a Predictive Feature in Financial Forecasting
Natural Language Processing as a Predictive Feature in Financial Forecasting By Jaebin (Jay) Chang Thesis Advisor: Mark Liberman Academic Advisor: Rajeev Alur EAS499 Senior Thesis School of Engineering and Applied Science University of Pennsylvania April 28th 2020 Table of Contents 1. Introduction 2. Understanding the Financial Market a. Efficient Market Hypothesis and Random Walk Hypothesis b. Fundamental Approach vs. Technical Approach 3. Algorithmic Approaches to Financial Forecasting a. Historical Price Based Approach b. Cross-Correlation Based Approach c. Natural Language Processing Based Approach i. Textual Components as Features ii. Sentiment Score as a Feature iii. Business Network Approach 4. Natural Language Processing based Financial Forecasting a. Pre-Processing Set-up i. Technical Analysis and Prediction Window ii. Feature Space Limitation iii. Textual Sources b. Feature Extractions i. Bag of Words ii. Other Textual Representations iii. Sentiment Score c. Processing Algorithms i. Naive Bayesian ii. Support Vector Machine and Regression iii. Decision Rules iv. Other Algorithms d. Performance Evaluation 5. Limitations of NLP based Financial Forecasting 6. Conclusion 2 1. Introduction With no doubt, the stock market serves an important function in the overall economy. It not only works as a source of funds for businesses but also can be a main vehicle of wealth creation for individual and institutional investors. Specially, stocks allow small investors to participate in gains of companies through partial ownership. It is attractive because it generates average returns beyond the inflation rate, also serving as a good means to store wealth. However, it is important to note that the stock market is not the economy itself but rather a good indicator of it.