1 Knowledge and Knowers of the Past: a Study in the Philosophy Of

Total Page:16

File Type:pdf, Size:1020Kb

1 Knowledge and Knowers of the Past: a Study in the Philosophy Of Knowledge and knowers of the past: A study in the philosophy of evolutionary biology. Submitted by Thomas Bonnin to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Philosophy In May 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ………………………………………………………….. 1 ABSTRACT This dissertation proposes an exploration of a variety of themes in philosophy of science through the lens of a case study in evolutionary biology. It draws from a careful analysis and comparison of the hypotheses from Bill Martin and Tom Cavalier-Smith. These two scientists produced contrasted and competing accounts for one of the main events in the history of life, the origin of eukaryotic cells. This case study feeds four main philosophical themes around which this dissertation is articulated. (1) Theorizing: What kind of theory are hypotheses about unique events in the past? (2) Representation: How do hypotheses about the past represent their target? (3) Evidential claims: What kind of evidence is employed and how do they constrain these hypotheses? (4) Pluralism: What are the benefits and the risks associated with the coexistence of rival hypotheses? This work both seeks to rearticulate traditional debates in philosophy of science in the light of a lesser-known case of scientific practice and to enrich the catalogue of existing case studies in the philosophy of historical sciences. 2 Table of Contents Abstract ..................................................................................................................... 2 Acknowledgements .................................................................................................. 7 Chapter 1: Evolutionary biology between science and history. ........................... 9 Introduction ................................................................................................... 9 I. History away from Science? A rebuttal ................................................. 11 A. Historical sciences and human history .................................................. 11 B. Objection 1: “History is not a science” ................................................... 13 C. Objection 2: “Humans make a difference” ............................................ 17 II. Methodological possibilities .................................................................. 22 A. Metaphysical vs. practice-oriented philosophical projects ..................... 22 B. Naturalistic approaches in metaphysical and practice-oriented projects24 C. Integrated studies of scientific practice ................................................. 27 Conclusion .................................................................................................. 31 Chapter 2: Cavalier-Smith and Martin on the origin of eukaryotes .................... 34 Introduction ................................................................................................. 34 I. William Martin ...................................................................................... 35 A. In previous episodes ............................................................................. 35 B. The origin of eukaryotes ....................................................................... 36 II. Thomas Cavalier-Smith ....................................................................... 43 A. In previous episodes ............................................................................. 43 B. The neomuran revolution and the origin of eukaryotes ......................... 43 Concluding words ...................................................................................... 46 Chapter 3: Theories about unique events ............................................................ 47 Introduction ................................................................................................. 47 I. Narrative explanations and ephemeral mechanisms............................ 50 A. Narrative explanations .......................................................................... 50 B. Ephemeral mechanisms ....................................................................... 52 C. Convergences and tensions ................................................................. 55 D. Currie‟s simple and complex narratives ................................................ 60 II. Lineage explanations ............................................................................. 62 A. Introduction ........................................................................................... 62 3 B. Narrative explanations and ephemeral mechanisms as types of lineage explanations .............................................................................................. 66 III. Case study .............................................................................................. 71 A. Martin‟s hypothesis as a lineage explanation ........................................ 71 B. Cavalier-Smith‟s hypothesis .................................................................. 74 C. Analysis ................................................................................................ 76 Conclusion .................................................................................................. 77 Chapter 4: Hypotheses representing past events ............................................... 81 Introduction ................................................................................................. 81 I. Toon’s “make-believe” view ................................................................... 84 A. Props .................................................................................................... 84 B. Principles of generation ........................................................................ 85 C. Fictional truths ...................................................................................... 86 D. The benefits of exploration ................................................................... 86 II. Frigg and Nguyen’s DEKI account ........................................................ 87 A. Denotation ............................................................................................ 87 B. Exemplification ...................................................................................... 88 C. Keying-up ............................................................................................. 88 D. Imputation ............................................................................................. 89 E. Summary .............................................................................................. 89 III. Differences and reconciliation .............................................................. 89 B.. Lineage explanations as a case of D(E)K(I) ......................................... 92 Conclusion .................................................................................................. 95 Chapter 5: A survey into historical methodology ................................................ 98 Introduction ................................................................................................. 98 I. Quotes and insights ............................................................................ 99 II. Strengths and limits of the smoking gun view of the historical method ....................................................................................................... 104 A. Smoking guns - definition ................................................................. 104 B. Advantages ...................................................................................... 105 C. Limits ................................................................................................ 106 D. Summary .......................................................................................... 111 III. Omnivories, scaffolds and virtues ................................................... 113 A. Methodological omnivory and investigative scaffolds ....................... 113 4 B. Investigative scaffolds and productive speculation .......................... 119 C. Coherence and consilience .............................................................. 122 D. Summary .......................................................................................... 125 IV. The strength of evidence: Wylie on security ............................... 126 Conclusion ................................................................................................ 128 Chapter 6: A framework for evidential claims and the case of Archezoa........ 132 Introduction ............................................................................................... 132 I. Philosophical demands on evidential claims .................................. 133 II. Toulmin schemas .............................................................................. 135 A. Data, Claims and Warrants as the basis of Epistemic contexts ....... 136 B. Qualifiers .......................................................................................... 137 C. Backings and rebuttals ..................................................................... 138 D. Summary and philosophical
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion Anna Karnkowska,*,1,2 Sebastian C
    The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion Anna Karnkowska,*,1,2 Sebastian C. Treitli,1 Ondrej Brzon, 1 Lukas Novak,1 Vojtech Vacek,1 Petr Soukal,1 Lael D. Barlow,3 Emily K. Herman,3 Shweta V. Pipaliya,3 TomasPanek,4 David Zihala, 4 Romana Petrzelkova,4 Anzhelika Butenko,4 Laura Eme,5,6 Courtney W. Stairs,5,6 Andrew J. Roger,5 Marek Elias,4,7 Joel B. Dacks,3 and Vladimır Hampl*,1 1Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic 2Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland 3Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada 4Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Downloaded from https://academic.oup.com/mbe/article-abstract/36/10/2292/5525708 by guest on 13 January 2020 5Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada 6Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden 7Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic *Corresponding authors: E-mails: [email protected]; [email protected]. Associate editor: Fabia Ursula Battistuzzi Abstract The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organ- elles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • University of Copenhagen
    Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes Heiss, Aaron A.; Kolisko, Martin; Ekelund, Fleming; Brown, Matthew W.; Roger, Andrew J.; Simpson, Alastair G. B. Published in: Royal Society Open Science DOI: 10.1098/rsos.171707 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Heiss, A. A., Kolisko, M., Ekelund, F., Brown, M. W., Roger, A. J., & Simpson, A. G. B. (2018). Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. Royal Society Open Science, 5(4), 1-13. [171707]. https://doi.org/10.1098/rsos.171707 Download date: 09. Apr. 2020 Downloaded from http://rsos.royalsocietypublishing.org/ on September 28, 2018 Combined morphological and phylogenomic rsos.royalsocietypublishing.org re-examination of Research malawimonads, a critical Cite this article: Heiss AA, Kolisko M, Ekelund taxon for inferring the F,BrownMW,RogerAJ,SimpsonAGB.2018 Combined morphological and phylogenomic re-examination of malawimonads, a critical evolutionary history taxon for inferring the evolutionary history of eukaryotes. R. Soc. open sci. 5: 171707. of eukaryotes http://dx.doi.org/10.1098/rsos.171707 Aaron A. Heiss1,2,†, Martin Kolisko3,4,†, Fleming Ekelund5, Matthew W. Brown6,AndrewJ.Roger3 and Received: 23 October 2017 2 Accepted: 6 March 2018 Alastair G. B. Simpson 1Department of Invertebrate Zoology
    [Show full text]
  • Barthelonids Represent a Deep-Branching Metamonad Clade with Mitochondrion-Related Organelles Generating No
    bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 Barthelonids represent a deep-branching Metamonad clade with mitochondrion-related 4 organelles generating no ATP. 5 6 Euki Yazaki1*, Keitaro Kume2, Takashi Shiratori3, Yana Eglit 4,5,, Goro Tanifuji6, Ryo 7 Harada7, Alastair G.B. Simpson4,5, Ken-ichiro Ishida7,8, Tetsuo Hashimoto7,8 and Yuji 8 Inagaki7,9* 9 10 1Department of Biochemistry and Molecular Biology, Graduate School and Faculty of 11 Medicine, The University of Tokyo, Tokyo, Japan 12 2Faculty of Medicine, University of Tsukuba, Ibaraki, Japan 13 3Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, 14 Yokosuka, Japan 15 4Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada 16 5Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 17 Halifax, Nova Scotia, Canada 18 6Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan 19 7Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 20 Ibaraki, Japan 21 8Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan 22 9Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan 23 24 Running head: Phylogeny and putative MRO functions in a new metamonad clade. 25 26 *Correspondence addressed to Euki Yazaki, [email protected] and Yuji Inagaki, 27 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019.
    [Show full text]
  • Trichonympha Cf
    MOLECULAR PHYLOGENETICS OF TRICHONYMPHA CF. COLLARIS AND A PUTATIVE PYRSONYMPHID: THE RELEVANCE TO THE ORIGIN OF SEX by JOEL BRYAN DACKS B.Sc. The University of Alberta, 1995 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER'S OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April 1998 © Joel Bryan Dacks, 1998 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of ~2—oc)^Oa^ The University of British Columbia Vancouver, Canada Date {X^ZY Z- V. /^P DE-6 (2/88) Abstract Why sex evolved is one of the central questions in evolutionary genetics. To address this question I have undertaken a molecular phylogenetic study of two candidate lineages to determine the first sexual line. In my thesis the hypermastigotes are confirmed as closely related to the trichomonads in the phylum Parabasalia and found to be more deeply divergent than a putative pyrsonymphid. This means that the Parabasalia are the first sexual lineage. From this I go on to infer that the ancestral sexual cycle included facultative sex.
    [Show full text]
  • Mitochondria and Anaerobic Energy Metabolism in Eukaryotes
    William F. Martin, Aloysius G. M. Tielens, Marek Mentel Mitochondria and Anaerobic Energy Metabolism in Eukaryotes William F. Martin, Aloysius G. M. Tielens, Marek Mentel Mitochondria and Anaerobic Energy Metabolism in Eukaryotes Biochemistry and Evolution Authors William F. Martin Marek Mentel Institute of Molecular Evolution Department of Biochemistry Heinrich-Heine-Universität Düsseldorf Comenius University in Bratislava Düsseldorf Bratislava Germany Slovak Republic e-mail: [email protected] e-mail: [email protected] Aloysius G. M. Tielens Department of Medical Microbiology and Infectious Diseases Erasmus MC University Medical Center Rotterdam Netherlands e-mail: [email protected] ISBN 978-3-11-066677-9 e-ISBN (PDF) 978-3-11-061241-7 e-ISBN (EPUB) 978-3-11-061272-1 Library of Congress Control Number: 2020939095 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.dnb.de. © 2021 Walter de Gruyter GmbH, Berlin/Boston d|u|p Düsseldorf University Press is an imprint of Walter de Gruyter GmbH Cover Image: Dlumen / iStock / Getty Images Plus Typesetting: Integra Software Services Pvt. Ltd. Printing and binding: CPI books GmbH, Leck dup.degruyter.com For our families Preface Views of eukaryote evolution continue to undergo significant change. The cell nu- cleus is the defining organelle of eukaryotes, the compartment that gave them their name. But in addition to the nucleus, mitochondria have become recognized as or- ganelles ancestral to eukaryotic cells. The family of mitochondria now includes, however, reduced forms of the organelle that do not respire oxygen: hydrogeno- somes and mitosomes.
    [Show full text]
  • A Free-Living Protist That Lacks Canonical Eukaryotic DNA Replication and Segregation Systems
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435266; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems 2 Dayana E. Salas-Leiva1, Eelco C. Tromer2,3, Bruce A. Curtis1, Jon Jerlström-Hultqvist1, Martin 3 Kolisko4, Zhenzhen Yi5, Joan S. Salas-Leiva6, Lucie Gallot-Lavallée1, Geert J. P. L. Kops3, John M. 4 Archibald1, Alastair G. B. Simpson7 and Andrew J. Roger1* 5 1Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 6 Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 2 7 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 3Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) 9 and University Medical Centre Utrecht, Utrecht, The Netherlands 10 4Institute of Parasitology Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic 11 5Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, 12 South China Normal University, Guangzhou 510631, China 13 6CONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y 14 energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., México 15 7Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 16 Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 17 *corresponding author: [email protected] 18 D.E.S-L ORCID iD: 0000-0003-2356-3351 19 E.C.T.
    [Show full text]
  • New Finding of Giardia Intestinalis (Eukaryote, Metamonad) in Old World Archaeological Site Using Immunofluorescence and Enzyme-Linked Immunosorbent Assays
    New finding of Giardia intestinalis (Eukaryote, Metamonad) in Old World archaeological site using immunofluorescence and enzyme-linked immunosorbent assays. Matthieu Le Bailly, Marcelo L.C. Gonçalves, Stéphanie Harter-Lailheugue, Frédéric Prodéo, Adauto Araujo, Françoise Bouchet To cite this version: Matthieu Le Bailly, Marcelo L.C. Gonçalves, Stéphanie Harter-Lailheugue, Frédéric Prodéo, Adauto Araujo, et al.. New finding of Giardia intestinalis (Eukaryote, Metamonad) in Old World archae- ological site using immunofluorescence and enzyme-linked immunosorbent assays.. Memórias do Instituto Oswaldo Cruz, Instituto Oswaldo Cruz, Ministério da Saúde, 2008, 103 (3), pp.298-300. 10.1590/s0074-02762008005000018. hal-00451147 HAL Id: hal-00451147 https://hal.archives-ouvertes.fr/hal-00451147 Submitted on 7 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License 298 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 103(3): 298-300, May 2008 New finding of Giardia intestinalis
    [Show full text]
  • Archezoa and the Origin of Eukaryotes Patrick J
    Problems and paradigms A kingdom’s progress: Archezoa and the origin of eukaryotes Patrick J. Keeling* Summary The taxon Archezoa was proposed to unite a group of very odd eukaryotes that lack many of the characteristics classically associated with nucleated cells, in particular the mitochondrion. The hypothesis was that these cells diverged from other eukaryotes before these characters ever evolved, and therefore they repre- sent ancient and primitive eukaryotic lineages. The kingdom comprised four groups: Metamonada, Microsporidia, Parabasalia, and Archamoebae. Until re- cently, molecular work supported their primitive status, as they consistently branched deeply in eukaryotic phylogenetic trees. However, evidence has now emerged that many Archezoa contain genes derived from the mitochondrial symbiont, revealing that they actually evolved after the mitochondrial symbiosis. In addition, some Archezoa have now been shown to have evolved more recently than previously believed, especially the Microsporidia for which considerable evidence now indicates a relationship with fungi. In summary, the mitochondrial symbiosis now appears to predate all Archezoa and perhaps all presently known eukaryotes. BioEssays 20:87–95, 1998. ௠ 1998 John Wiley & Sons, Inc. INTRODUCTION cyanobacteria and they also lack flagella and basal bodies Prior to the popularization of the endosymbiotic theory, it was (for discussion see Ref. 1). However, according to the widely believed that the evolutionary link between prokary- endosymbiotic theory, the reason photosynthesis is so simi- otes and eukaryotes was the presence of photosynthesis in lar in cyanobacteria and photosynthetic eukaryotes is that cyanobacteria and algae. The biochemistry of oxygenic the plastids of plant and algal cells are derived from a photosynthesis was considered too complicated and too cyanobacterial symbiont.
    [Show full text]
  • Anaerobic Digestion Microbiology Biofilm Basics
    Anaerobic Digestion Basics and Microbiology Anaerobic Digestion ● The fermentation of organic matter in an oxygen free environment to produce an end product of Biogas ● Biogas is a biofuel composed of Methane and Carbon Dioxide with traces of Hydrogen sulfide and Ammonia Benefits of Anaerobic Digestion ● Energy Production ● Nutrient recovery ● Combat Global Warming ● Conserve Energy ● Conserve Land ● Reduce odors ● Pathogen Reduction ● Manage waste ● Save the Earth! Microbiology ● Anaerobic digestion is carried out by facultative and anaerobic organisms ● Anaerobic organisms are organisms that don't use oxygen for their oxidation metabolisms ● Aerobic organisms use oxygen for oxidation metabolisms ● Facultative microorganisms have both anaerobic and aerobic metabolic pathways Aerobic vs. Anaerobic Metabolism ● Metabolic pathways have very different energy yields ● Aerobic respiration produces 30 ATP compared to the 2 ATP yielded from anaerobic respiration per glucose molecule C6H12O6 + 6O2 → 6CO2 + 6H2O 2880kJ C6H12O6 →2C3H6O3 120kJ Alternative Electron Acceptors ● Electron acceptors are oxidizing agents i.e. they accept an electron from another compound to reduce itself and oxidize the other compound ● Oxidation describes the loss of an electron ● Reduction describes the gain of an electron ● Respiration uses electron acceptors to produce reduced compounds ● We aerobes use Oxygen as our electron acceptor Anoxic Electron Acceptors Oxidized Reduced - + NO3 NH4 , N2 Fe3+ Fe2+ 3+ 2+ Mn Mn 2- SO4 H2S Carbon CH4 Anaerobic Digester Microbiology ● An Anaerobic Digester contains a synergistic community of microorganisms to carry out the process of fermenting organic matter into methane ● The process is carried out by Methanogens, Bacteria, Fungi, and Protozoa ● Anaerobic Digestion is mediated through the processes of Hydrolysis, Acidogenesis, Acetogenesis, and Methanogenesis Hydrolysis ● The process of solubilizing complex organic matter ● Carried out by a number of bacteria, protozoa and fungi ● Carried out by exoenzymes i.e.
    [Show full text]