Classification

Total Page:16

File Type:pdf, Size:1020Kb

Classification Definitions • BIODIVERSITY I Taxonomy : Science of biological classification. BIOL 1051 – Classification : • « Natural »: mutual similarities TAXONOMY • Phylogenetic : evolutive relationship. – Nomenclature : • attribution of names to taxonomic groups in Professor Marc C. Lavoie accordance with the published rules. marc.lavoie@cavehill.uwi.edu – Identification : • Practical aspect of taxonomy. Process by which it is determined that a particular isolate belongs to a known taxon. Main taxonomic ranks Main taxonomic ranks Empire Eukaryota Eukaryota Eukaryota Kingdom Alveolata Opistokonta Archaeplastida • EMPIRES : Phylum Ciliophora Basidiomycota Chlorophyta • ARCHEA Class Nassophorae Hymenomycetes Chlorophyceae Order Peniculada Agaricales Volvocales • BACTERIA Family Amanitaceae Chlamydomonadaceae • EUKARYA Genus Paramecium Amanita Chlamydomonas Species Paramecium Amanita virosa Chlamydomonas aurelia eugametos • GENUS • SPECIES Criteria for the classification Main organisms classification of organisms systems • • Morphological Two Kingdoms System • • Physiological Five Kingdoms System • Metabolic • Six Kingdoms System • Ecological • Eight Kingdoms System • Genetic* • Universal Phylogenetic Tree • Molecular* (The Tree of LIFE) 1 Two Kingdoms System Two Kingdoms System Animalia Plantae Five Kingdoms System Six Kingdoms System • CLASSIFICATION • Monera or CRITERIA Prokaryotae were • Mode of Nutrition divided into two • Metabolism kingdoms: • Mode of Reproduction • Eubacteria • Type of Motility • Archaea • Morphology Eight Kingdoms System RECENT CLASSIFICATION • Two Empires and eight Kingdoms. • Empire Bacteria : Eubacteria & Archaea . • Empire Eukaryota : Six eukaryotic Kingdoms. Two new Kingdoms: • Archezoa : Unicellular eukaryotes (Giardia) no Golgi, mitochondria, chloroplasts or peroxysomes. • Chromista : photosynthetic, chloroplasts in the lumen of RER. (Diatoms, Brown algae, Cryptomonads & Oomycetes). 2 Universal phylogenetic tree • Bacteria : – prokaryotes, – membrane lipids : di esters of diacyl -glycerol, – rRNA :16S. • Archaea : – procaryotes, – membrane lipids : tetra ethers of BACTERIA diglycerol or di ethers of isoprenoid-glycerol, – rRNA: 16S. • Eukaryota : – eukaryote, – membrane lipids : di esters of acyl-glycerol, – rRNA: 18S. ARCHEA EUKARYA 3 Classification based on the acquisition of organelles Patterson 1993 T u b u lin ae F lab ellin ea S tereom yxida Acantham oebidae AM OEBO ZOA Entam oebida M astigom oebida P elom yxa Eum ycetozoa In certae sed is Unikonts Spongom onadida Fungi OPISTOKONTA M esom ycetozoa Choanom onada M etazo a C ercozoa H aplosporidia R H IZ A R IA Foram inifera G ro m ia R a dio la ria G laucophyta ARCHAEPLASTIDA Rhodophyceae Bikonts C hloroplastida C ryptophyceae EUKARYO TA CHROMALVEOLATA H aptophyta S tram enopiles A lv e o la ta F o rn icata Malaw im onas P arab asalia EXC A VA TA P reaxo styla Jako b id a H eterolobosea Euglenozoa Ancyrom onas Adl et al 2005 Aposom onadidae C entrh elida In certae sed is C ollodictyonidae E b ria c ea Cavalier-Smith, 2004 Spironem idae K athablepharidae Stephanopogon 4 SIX CLUSTERS OF EUKARYOTES • 1. AMOEBOZOA • 2. OPISTOKONTA MICRO-ORGANISMS • 3. RHIZARIA PROKARYOTES EUKARYOTES VIRUSES • 4. ARCHAEPLASTIDA • 5. CHROMALVEOLATA BACTERIA ARCHAE A AMOEBOZOA OPISTOKONTA RHIZARIA ARCHAEPL ASTIDA CHROMALVEOLATA EXCAVATA • 6. EXCAVATA 5.
Recommended publications
  • Variation in Snow Algae Blooms in the Coast Range of British Columbia
    ORIGINAL RESEARCH published: 15 April 2020 doi: 10.3389/fmicb.2020.00569 Variation in Snow Algae Blooms in the Coast Range of British Columbia Casey B. Engstrom, Kurt M. Yakimovich and Lynne M. Quarmby* Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada Snow algae blooms cover vast areas of summer snowfields worldwide, reducing albedo and increasing snow melt. Despite their global prevalence, little is known about the algae species that comprise these blooms. We used 18S and rbcL metabarcoding and light microscopy to characterize algae species composition in 31 snow algae blooms in the Coast Range of British Columbia, Canada. This study is the first to thoroughly document regional variation between blooms. We found all blooms were dominated by the genera Sanguina, Chloromonas, and Chlainomonas. There was considerable variation between blooms, most notably species assemblages above treeline were distinct from forested sites. In contrast to previous studies, the snow algae genus Chlainomonas was abundant and widespread in snow algae blooms. We found few taxa using traditional 18S metabarcoding, but the high taxonomic resolution of rbcL revealed Edited by: substantial diversity, including OTUs that likely represent unnamed species of snow algae. David Anthony Pearce, These three cross-referenced datasets (rbcL, 18S, and microscopy) reveal that alpine Northumbria University, United Kingdom snow algae blooms are more diverse than previously thought, with different species of Reviewed by: algae dominating different elevations. Stefanie Lutz, Keywords: snow, algae, microbiome, amplicon, rbcL, 18S, alpine, metabarcoding Agroscope, Switzerland Hanzhi Lin, University of Maryland Center for Environmental Science (UMCES), 1. INTRODUCTION United States *Correspondence: Each summer, vast areas of snow surface are colored red by snow algae blooms in polar and Lynne M.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • A Taxonomic Reassessment of Chlamydomonas Meslinii (Volvocales, Chlorophyceae) with a Description of Paludistella Gen.Nov
    Phytotaxa 432 (1): 065–080 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.432.1.6 A taxonomic reassessment of Chlamydomonas meslinii (Volvocales, Chlorophyceae) with a description of Paludistella gen.nov. HANI SUSANTI1,6, MASAKI YOSHIDA2, TAKESHI NAKAYAMA2, TAKASHI NAKADA3,4 & MAKOTO M. WATANABE5 1Life Science Innovation, School of Integrative and Global Major, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. 2Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan. 3Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. 4Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-8520, Japan. 5Algae Biomass Energy System Development and Research Center, University of Tsukuba. 6Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Bogor KM 46 Cibinong West Java, Indonesia. Corresponding author: yoshida.masaki.gb@u.tsukuba.ac.jp Abstract Chlamydomonas (Volvocales, Chlorophyceae) is a large polyphyletic genus that includes numerous species that should be classified into independent genera. The present study aimed to examine the authentic strain of Chlamydomonas meslinii and related strains based on morphological and molecular data. All the strains possessed an asteroid chloroplast with a central pyrenoid and hemispherical papilla; however, they were different based on cell and stigmata shapes. Molecular phylogenetic analyses based on 18S rDNA, atpB, and psaB indicated that the strains represented a distinct subclade in the clade Chloromonadinia. The secondary structure of ITS-2 supported the separation of the strains into four species.
    [Show full text]
  • Mitochondria and Anaerobic Energy Metabolism in Eukaryotes
    William F. Martin, Aloysius G. M. Tielens, Marek Mentel Mitochondria and Anaerobic Energy Metabolism in Eukaryotes William F. Martin, Aloysius G. M. Tielens, Marek Mentel Mitochondria and Anaerobic Energy Metabolism in Eukaryotes Biochemistry and Evolution Authors William F. Martin Marek Mentel Institute of Molecular Evolution Department of Biochemistry Heinrich-Heine-Universität Düsseldorf Comenius University in Bratislava Düsseldorf Bratislava Germany Slovak Republic e-mail: bill@hhu.de e-mail: marek.mentel@uniba.sk Aloysius G. M. Tielens Department of Medical Microbiology and Infectious Diseases Erasmus MC University Medical Center Rotterdam Netherlands e-mail: a.tielens@erasmusmc.nl ISBN 978-3-11-066677-9 e-ISBN (PDF) 978-3-11-061241-7 e-ISBN (EPUB) 978-3-11-061272-1 Library of Congress Control Number: 2020939095 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.dnb.de. © 2021 Walter de Gruyter GmbH, Berlin/Boston d|u|p Düsseldorf University Press is an imprint of Walter de Gruyter GmbH Cover Image: Dlumen / iStock / Getty Images Plus Typesetting: Integra Software Services Pvt. Ltd. Printing and binding: CPI books GmbH, Leck dup.degruyter.com For our families Preface Views of eukaryote evolution continue to undergo significant change. The cell nu- cleus is the defining organelle of eukaryotes, the compartment that gave them their name. But in addition to the nucleus, mitochondria have become recognized as or- ganelles ancestral to eukaryotic cells. The family of mitochondria now includes, however, reduced forms of the organelle that do not respire oxygen: hydrogeno- somes and mitosomes.
    [Show full text]
  • Archezoa and the Origin of Eukaryotes Patrick J
    Problems and paradigms A kingdom’s progress: Archezoa and the origin of eukaryotes Patrick J. Keeling* Summary The taxon Archezoa was proposed to unite a group of very odd eukaryotes that lack many of the characteristics classically associated with nucleated cells, in particular the mitochondrion. The hypothesis was that these cells diverged from other eukaryotes before these characters ever evolved, and therefore they repre- sent ancient and primitive eukaryotic lineages. The kingdom comprised four groups: Metamonada, Microsporidia, Parabasalia, and Archamoebae. Until re- cently, molecular work supported their primitive status, as they consistently branched deeply in eukaryotic phylogenetic trees. However, evidence has now emerged that many Archezoa contain genes derived from the mitochondrial symbiont, revealing that they actually evolved after the mitochondrial symbiosis. In addition, some Archezoa have now been shown to have evolved more recently than previously believed, especially the Microsporidia for which considerable evidence now indicates a relationship with fungi. In summary, the mitochondrial symbiosis now appears to predate all Archezoa and perhaps all presently known eukaryotes. BioEssays 20:87–95, 1998. ௠ 1998 John Wiley & Sons, Inc. INTRODUCTION cyanobacteria and they also lack flagella and basal bodies Prior to the popularization of the endosymbiotic theory, it was (for discussion see Ref. 1). However, according to the widely believed that the evolutionary link between prokary- endosymbiotic theory, the reason photosynthesis is so simi- otes and eukaryotes was the presence of photosynthesis in lar in cyanobacteria and photosynthetic eukaryotes is that cyanobacteria and algae. The biochemistry of oxygenic the plastids of plant and algal cells are derived from a photosynthesis was considered too complicated and too cyanobacterial symbiont.
    [Show full text]
  • Origin and Diversification of Eukaryotes
    MI66CH20-Katz ARI 21 June 2012 17:22 V I E E W R S Review in Advance first posted online on July 9, 2012. (Changes may still occur before final publication E online and in print.) I N C N A D V A Origin and Diversification of Eukaryotes Laura A. Katz Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063; email: lkatz@smith.edu Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003 Annu. Rev. Microbiol. 2012. 66:411–27 Keywords The Annual Review of Microbiology is online at eukaryotic diversity, protists, tree of life, nucleus, cytoskeleton, micro.annualreviews.org mitochondria This article’s doi: by SMITH COLLEGE on 08/12/12. For personal use only. 10.1146/annurev-micro-090110-102808 Abstract Copyright c 2012 by Annual Reviews. The bulk of the diversity of eukaryotic life is microbial. Although the larger All rights reserved Annu. Rev. Microbiol. 2012.66. Downloaded from www.annualreviews.org eukaryotes—namely plants, animals, and fungi—dominate our visual land- 0066-4227/12/1013-0411$20.00 scapes, microbial lineages compose the greater part of both genetic diversity and biomass, and contain many evolutionary innovations. Our understand- ing of the origin and diversification of eukaryotes has improved substan- tially with analyses of molecular data from diverse lineages. These data have provided insight into the nature of the genome of the last eukaryotic com- mon ancestor (LECA). Yet, the origin of key eukaryotic features, namely the nucleus and cytoskeleton, remains poorly understood. In contrast, the past decades have seen considerable refinement in hypotheses on the major branching events in the evolution of eukaryotic diversity.
    [Show full text]
  • Presencia Del Alga Chlamydomomas Vesterbottnica (Chlamydomonadales: Chlamydomonadaceae) En Los Estanques De La Planta De Tratami
    Presencia del alga Chlamydomomas vesterbottnica (Chlamydomonadales: Chlamydomonadaceae) en los estanques de la planta de tratamiento de un relleno sanitario en Costa Rica Carola Scholz y Narcy Villalobos Escuela de Ciencias Biológicas. Universidad Nacional, Heredia, Costa Rica; carola.scholz@una.cr Recibido 26-XI-2012 Corregido 21-III-2013 Aceptado 26-IV-2013 ABSTRACT RESUMEN Ocurrence of the alga Chlamydomomas vesterbottnica (Chlamydo- Las algas que pertenecen al género Chlamydomonas tienen una dis- monadales: Chlamydomonadaceae) in the water treatment ponds tribución cosmopolita y muchas de ellas se reconocen por su capaci- of a landfill in Costa Rica. Algae belonging to the genus Chlamydomo- dad de adaptarse a condiciones ambientales extremas. Estas inclusive nas have a cosmopolitan distribution and many of them have the abil- se pueden encontrar en estanques que contienen aguas residuales ity to adapt to extreme environmental conditions. These may even be de orígenes domésticos e industriales, los cuales pueden tener altos found in ponds containing wastewater of domestic and industrial origin, niveles de nutrientes y concentraciones de contaminantes orgánicos e which may have high nutrient levels as well as concentrations of organic inorgánicos. En este trabajo se reporta por primera vez en Costa Rica, and inorganic contaminants. In this work we report for the first time in la presencia de una especie de las algas verdes, Chlamydomonas vester- Costa Rica the presence of a green algae species, Chlamydomonas vester- bottnica, encontrada en los estanques de la planta de tratamiento que bottnica, located in ponds of a treatment plant receiving leachate from recibe los lixiviados generados en el Relleno Sanitario de Los Mangos Los Mangos landfill in Alajuela.
    [Show full text]
  • 1 Knowledge and Knowers of the Past: a Study in the Philosophy Of
    Knowledge and knowers of the past: A study in the philosophy of evolutionary biology. Submitted by Thomas Bonnin to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Philosophy In May 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ………………………………………………………….. 1 ABSTRACT This dissertation proposes an exploration of a variety of themes in philosophy of science through the lens of a case study in evolutionary biology. It draws from a careful analysis and comparison of the hypotheses from Bill Martin and Tom Cavalier-Smith. These two scientists produced contrasted and competing accounts for one of the main events in the history of life, the origin of eukaryotic cells. This case study feeds four main philosophical themes around which this dissertation is articulated. (1) Theorizing: What kind of theory are hypotheses about unique events in the past? (2) Representation: How do hypotheses about the past represent their target? (3) Evidential claims: What kind of evidence is employed and how do they constrain these hypotheses? (4) Pluralism: What are the benefits and the risks associated with the coexistence of rival hypotheses? This work both seeks to rearticulate traditional debates in philosophy of science in the light of a lesser-known case of scientific practice and to enrich the catalogue of existing case studies in the philosophy of historical sciences.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Bell & Howell Information Company 300 Nortn Z eeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 EVOLUTIONARY CONSEQUENCES OF THE LOSS OF PHOTOSYNTHESIS IN THE NONPHOTOSYNTHETIC CHLOROPHYTE ALGA POLYTOMA. DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Dawne Vernon, B.S.
    [Show full text]
  • Inferring Ancestry
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1176 Inferring Ancestry Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life DING HE ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9031-7 UPPSALA urn:nbn:se:uu:diva-231670 2014 Dissertation presented at Uppsala University to be publicly examined in Fries salen, Evolutionsbiologiskt centrum, Norbyvägen 18, 752 36, Uppsala, Friday, 24 October 2014 at 10:30 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Andrew Roger (Dalhousie University). Abstract He, D. 2014. Inferring Ancestry. Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1176. 48 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9031-7. There are ~12 supergroups of complex-celled organisms (eukaryotes), but relationships among them (including the root) remain elusive. For Paper I, I developed a dataset of 37 eukaryotic proteins of bacterial origin (euBac), representing the conservative protein core of the proto- mitochondrion. This gives a relatively short distance between ingroup (eukaryotes) and outgroup (mitochondrial progenitor), which is important for accurate rooting. The resulting phylogeny reconstructs three eukaryote megagroups and places one, Discoba (Excavata), as sister group to the other two (neozoa). This rejects the reigning “Unikont-Bikont” root and highlights the evolutionary importance of Excavata. For Paper II, I developed a 150-gene dataset to test relationships in supergroup SAR (Stramenopila, Alveolata, Rhizaria). Analyses of all 150-genes give different trees with different methods, but also reveal artifactual signal due to extremely long rhizarian branches and illegitimate sequences due to horizontal gene transfer (HGT) or contamination.
    [Show full text]
  • Ecophysiology, Secondary Pigments and Ultrastructure of Chlainomonas Sp
    FEMS Microbiology Ecology Advance Access published February 15, 2016 Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared to Chlamydomonas nivalis forming red snow Running title: “Chlainomonas red snow” Research Article Keywords: astaxanthin, cryoflora, snow algae, spores, ultrastructure Thematic Issue “Polar and Alpine Microbiology” Remias Daniel1, Pichrtová Martina2, Pangratz Marion3, Lütz Cornelius4, Holzinger Andreas4* 1University of Applied Sciences Upper Austria, Wels, Austria; 2Charles University in Prague, Faculty of Science, Department of Botany, Prague, Czech Downloaded from Republic; 3University of Innsbruck, Institute of Pharmacy/Pharmacognosy, Austria; 4University of Innsbruck, Institute of Botany, Austria *Corresponding author: Andreas.Holzinger@uibk.ac.at, Institute of Botany, Sternwartestr. 15, A-6020 Innsbruck. Telephone: +4351250751028, Fax: +4351250751099 http://femsec.oxfordjournals.org/ Abstract Red snow is a well-known phenomenon caused by microalgae thriving in alpine and Polar Regions during the melting season. Ecology and biodiversity of these organisms, which are adapted to low temperatures, high irradiance or freeze-thaw-events is still poorly understood. We compare two different snow by guest on March 1, 2016 habitats containing two different green algal genera in the European Alps, either blooming in seasonal rock-based snowfields (Chlamydomonas nivalis) or dominating waterlogged snow bedded over ice (Chlainomonas sp.). Despite morphological similarities of the red spores found at the snow surface, we investigate the differences in intracellular organization by light- and transmission electron microscopy and secondary pigments by chromatographic analysis in combination with mass spectrometry. Spores of Chlainomonas sp. show clear differences to Chlamydomonas nivalis in cell wall arrangement and plastid organization. Active photosynthesis at ambient temperatures indicates a high physiologic activity, despite no cell divisions are present.
    [Show full text]
  • Program and Abstracts Book
    16th International Conference on the Cell and Molecular Biology of Chlamydomonas June 8-13, 2014 Asilomar Conference Center, Pacific Grove, CA, USA Program and Abstracts 16th International Conference on the Cell and Molecular Biology of Chlamydomonas June 8-13, 2014 Asilomar Conference Grounds Pacific Grove, California Program and Abstracts Organizers: Kris Niyogi, University of California, Berkeley Winfield Sale, Emory University Marilyn Kobayashi, University of California, Berkeley Advisory Committee: José Luis Crespo, CSIC - Universidad de Sevilla Susan Dutcher, Washington University School of Medicine Arthur Grossman, Carnegie Institution for Science Sabeeha Merchant, University of California, Los Angeles Jun Minagawa, National Institute for Basic Biology David Mitchell, SUNY Upstate Medical University Rachael Morgan-Kiss, Miami University Michael Schroda, University of Kaiserslautern Carolyn Silflow, University of Minnesota James Umen, Donald Danforth Plant Science Center Chia-Lin Wei, DOE Joint Genome Institute William Zerges, Concordia University 1 2 TABLE OF CONTENTS General Information ............................................................................................................................ 4 Exhibitors ............................................................................................................................................. 4 Schedule of Events ............................................................................................................................... 5 Plenary Session Listings
    [Show full text]