Factorization Methods Applied to Characterize The

Total Page:16

File Type:pdf, Size:1020Kb

Factorization Methods Applied to Characterize The ORIGINAL PAPER International Journal of Occupational Medicine and Environmental Health 2016;29(1):15 – 39 http://dx.doi.org/10.13075/ijomeh.1896.00509 FACTORIZATION METHODS APPLIED TO CHARACTERIZE THE SOURCES OF VOLATILE ORGANIC COMPOUNDS IN MONTREAL, QUEBEC EUGENIUSZ PORADA1 and TERMEH KOUSHA2 1 University of Québec at Outaouais, Gatineau, Canada Department of Computer Science 2 Ottawa University, Ottawa, Canada Department of Mathematics and Statistics Abstract Objectives: The study objective was to assemble emission characteristics of the sources of the ambient volatile organic com- pounds (VOCs) and to elaborate methods of organizing them into the sources’ chemical profiles. Material and Methods: The UNMIX – sensor modeling method from the U.S. Environment Protection Agency (EPA) – was used to process the VOC concentration data acquired over the years 2000–2009 for 175 VOC species in 4 air quality monitoring stations in Montreal, Quebec. Results: The method enabled to assess VOC emissions from the typically distributed sources exist- ing in urban environment and VOC occurrences characterizing the local, or point-like, sources. The distributed sources were inextricably associated with hydrocarbons from exhaust, heavier hydrocarbons from contaminated urban soil, fugi- tive evaporations of gasoline and liquefied petroleum gases (LPG), leakage from the industrial and commercial use of solvents, and the inert, ozone depleting gases permeating urban atmosphere. The sources’ profiles were charted involv- ing 60–120 VOC species per source. Spatial distribution of the sources was examined. Conclusions: The UNMIX applica- tion and the source profiling methods, by building robust chemical profiles of VOC sources, provided information that can be used to assign the measured VOC emissions to physical sources. This, in turn, provides means of assessing the impact of environmental policies, on one hand, and of industrial activities on the other hand on VOC air pollution. Key words: Volatile organic compound, UNMIX, Receptor modeling, Source profile, Pulp industry, Principal components INTRODUCTION due to the extent of exposure in the densely populated Man-made volatile organic compounds (VOCs) con- areas [1,4–10]. Atmospheric photochemistry converts tribute significantly to the urban air pollution. Widely the more reactive VOCs by oxygenation and through occurring VOCs, such as e.g., benzene, ethylbenzene, reactions with oxides of nitrogen to secondary VOCs, xylenes, 1,1,1-trichloroethane, trichloroethylene, tetra- free radicals, ozone, and subsequently to smog organic chloroethylene, carbontetrachloride, chloroform, are to- aerosols [6,11,12]. xic and/or carcinogenic substances [1–3]. In large cities, Correlating VOC emissions from anthropogenic sourc- harmful effects of increasing ambient concentrations of es with public health indices allows to assess the im- pollutants are even more dangerous to the public health pact of VOC pollution on human health. The research Received: November 14, 2014. Accepted: January 24, 2015. Corresponding author: E. Porada, 1081 Alenmede Cr., Ottawa ON, K2B 8H2, Canada (e-mail: [email protected]). Nofer Institute of Occupational Medicine, Łódź, Poland 15 ORIGINAL PAPER E. PORADA AND T. KOUSHA provides guidelines for planning emission control strat- MATERIAL AND METHODS egies. Achieving reduction in VOC concentrations in VOC measurements and data the ambient air comparable to the reduction of the “clas- As part of the National Air Pollution Surveillance (NAPS) sic” pollutants (from 1970 to 2008 particulate mat- federal program in Canada [31], air quality monitor- ter concentration in the ambient air has decreased by ing stations were installed across the country, several of over 50% [13,14]) seems feasible. them in Montreal, Quebec. The sensors operate basing Source apportionment of numerous VOC species have on gas chromatography/flame ionization detector sys- already been examined [15–24]. The research presents tem (GC/FID) for quantification of light hydrocarbons in the methods of modeling the ambient VOC multi-re- the C2 fraction, while a combined gas chromatography/ ceptors operating in the air quality monitoring stations. mass selective detector (GC/MSD) system operating in The chief methods applied are the Principal Compo- selected ion monitoring (SIM) mode is used for quantifi- nent methods – mainly the Positive Matrix Factoriza- cation of heavier hydrocarbons, in the C3 to C12 fractions. tion (PMF). Also Chemical Mass Balance (CMB) system The data used for this report consists of daily aver- provides methods of modeling the receptors [25,26]. ages of VOC species concentrations in the ambient air. The methods consist in constructing sources’ chemical Measurements of 175 species were taken each 6th day fingerprints – employing a menu of VOCs – in a form of in 4 monitoring stations located in the Great Montreal sources’ emission profiles, relying on the user-specified area (Figure 1). The concentrations are expressed in mi- inventory of the sources contributing to the measured crograms per cubic meter. totals. Stations 2 (No. 50104) and 3 (No. 50115) are located in The intricacies of organic air pollution and complex at- downtown areas, close to a large body of water, one of mospheric chemistry make it challenging to build a reli- them, i.e., station 2, is adjacent to a large multi-industrial able receptor model [26–29]. The VOC menu typically park. Station 1 (No. 50103) is located in the East Montreal lists the most prominent VOCs, with high signal/noise NAPS stations [No.] ratio (SNR), which allow a clear-cut profiling of the sour- 1: 50103 2: 50104 N ces. Thereby, some point sources, particularly the speciali- 3: 50115 1 4: 50129 zed industrial plants and the associated waste streams, 3.5 km which yield quite distinct chemical fingerprints of low-con- centration VOCs, may stay unresolved. 2 4 This research addresses the issue by developing robust 3 pulp and paper source discrimination routines, which also search for industry the low-emission sources that stay out in the usual hy- industrial park stations drocarbon background in the urban air. This is achieved by applying principal component (PC) methods imple- Montreal-East (station 1) – petrochemical industry district; light grey mented by the U.S. Environmental Protection Agen- (stations 2, 3) – densely populated urban area; dark grey – green terrains, suburbs, and semi-rural districts in the inner ring (station 4); cy (EPA): EPA UNMIX [30], which has the advantage white – body of water surrounding inner-ring Downtown Montreal. over the other PC methods of telling the user which Fig. 1. Demarcation of districts and localization of the National modeling attempt cannot be successful, thus, narrowing Air Pollution Surveillance (NAPS) monitoring stations the output to the reliable receptor models. in Montreal, Quebec 16 IJOMEH 2016;29(1) SOURCES OF VOCs IN MONTREAL ORIGINAL PAPER zone, formerly a borough of Montreal, a concentration of not apply the “positive matrix” constraint; the emission the petrochemical and chemical industries in the Great profiles allow for negative values. Persistent negative val- Montreal area. Station 4 (No. 50129) is located on the pe- ues may signal VOC depletion in the atmosphere. ripheries of Montreal, in a more countryside-like region, Finally, UNMIX possesses an important feature, which but crossed by highways. In the neighborhood there is enables to make robust informed guesses regard- also a pharmaceutical industry. ing VOC sources: it fails to give results when the par ti- This report concerns VOC measurements taken over cular profiling cannot be made reliable. The success of the years 2000–2009, during the period when effects profiling depends, in an essential way, on the collec- of implementation of several international and federal tion of VOC species fed into the routine. By combining clean-air programs [14,32,33] were already clearly visible. all the results from the successful run – thus, combining The number of all the measured VOC species in each only partial reliable profiles defined in different limit- station was 175, but many measurements bore errors. In ed VOC ranges – more reliable exhaustive chemical de- this research, only the species that have 95% or more cor- scriptions of VOC sources can be produced. rect daily averages in the study period were considered. Therefore, the number of VOCs adequately measured The method of combining partial emission profiles and processed varies between 103 and 130, depending on into the sources’ extended profiles the monitor. Modeling the 175-VOC multi-receptor with UNMIX re- quired applying the routine several hundred times in order U.S. EPA VOC data processing routines to produce sufficiently exhaustive library of the reliable The United States EPA makes 2 data processing ap- (according to UNMIX), but only partial (approximate- plications based on the Principal Component method, ly 30 VOCs could be fed at a time into the routine), emis- i.e., EPA PMF and EPA UNMIX available. The methods sion profiles. Thus, 500 to 700 (depending on the moni- perform linear modeling of many variables (VOC mea- tor) profiles were created to ensure that each of the 100 surements) with a few expressly constructed predictors or to 130 correctly measured VOCs participated in a success- factors – which are alleged apportionments of the mea- ful profiling. A successful model featured 5 to 8 sources, sured emissions among putative sources. The applications depending on the VOC menu
Recommended publications
  • Isobutylene Polymer Having Unsaturated Group and Preparation
    Europaisches Patentamt European Patent Office Office europeen des brevets (11) EP 0 452 875 B2 (12) NEW EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) |nt CI.6: C08F 10/10, C08F 2/42 of the opposition decision: 18.08.1999 Bulletin 1999/33 (45) Mention of the grant of the patent: 09.08.1995 Bulletin 1995/32 (21) Application number: 91106042.4 (22) Date of filing: 16.04.1991 (54) Isobutylene polymer having unsaturated group and preparation thereof Isobutylenpolymer mit ungesattigter Gruppe und seine Herstellung Polymere de I'isobutylene ayant un groupe insature et sa preparation (84) Designated Contracting States: (74) Representative: BE CH DE ES FR GB IT LI NL SE Hansen, Bernd, Dr. Dipl.-Chem. et al Hoffmann Eitle, (30) Priority: 16.04.1990 JP 10102990 Patent- und Rechtsanwalte, 29.11.1990 JP 33636490 Postfach 81 04 20 81904 Miinchen (DE) (43) Date of publication of application: 23.10.1991 Bulletin 1991/43 (56) References cited: EP-A- 0 265 053 EP-B- 0 322 241 (73) Proprietor: Kanegafuchi Chemical Industry Co., CA-A- 467 049 GB-A- 1 059 580 Ltd. US-A- 4 31 6 973 US-A- 4 327 201 Kita-ku Osaka-shi Osaka-fu (JP) US- A- 4 524 1 88 US-A- 4 758 63 1 US-A- 4 929 683 (72) Inventors: • Noda, Koji Remarks: Kobe-shi, Hyogo-ken (JP) The file contains technical information submitted • Fujisawa, Hiroshi after the application was filed and not included in this Kobe-shi, Hyogo-ken (JP) specification • Yonezawa, Kazuya Kobe-shi, Hyogo-ken (JP) CM DO 10 Is- 00 CM IO ^- o a.
    [Show full text]
  • Model Vulcanization Systems for Butyl Rubber and Halobutyl Rubber Manual
    Exxon™ butyl and halobutyl rubber Model vulcanization systems for butyl rubber and halobutyl rubber manual Country name(s) 2 - Model vulcanization systems for butyl rubber and halobutyl rubber manual Model vulcanization systems for butyl rubber and halobutyl rubber manual - 3 Abstract The vulcanization of isobutylene-co-isoprene rubber (IIR), brominated isobutylene-co-isoprene rubber (BIIR), chlorinated isobutylene-co-isoprene rubber (CIIR), and brominated isobutylene-co-para-methylstyrene elastomer (BIMSM) differs from that of general-purpose rubbers (GPR). Butyl rubber has approximately 2% unsaturation in the backbone. Halobutyl rubber (BIIR and CIIR) incorporates the butyl backbone with either bromine or chlorine, which significantly increases the chemical reactivity of the isoprenyl units located in the butyl backbone. Similarly, in BIMSM the bromine atom is bonded to the para-methylstyrene (PMS) group, thus affording the completely saturated polymer backbone a site of chemical reactivity. Utilization of the unique attributes of butyl rubber and halobutyl rubbers with their minimal backbone unsaturation and of BIMSM elastomers with no backbone unsaturation is found in many areas of industry. These properties are excellent vapor impermeation, resistance to heat degradation, and improved chemical resistance as compared to general-purpose rubbers. However, this low amount of reactivity requires special consideration to vulcanize these isobutylene-based polymers. The type of vulcanization system selected is a function of the composite structure in which it is used, and the cured product performance requirements. Therefore, vulcanization systems vary and may include an accelerator package along with resins, zinc oxide, zinc oxide and sulfur, and quinoid systems. This review will discuss the types and selection of appropriate vulcanization systems for isobutylene-based elastomers.
    [Show full text]
  • FID Vs PID: the Great Debate
    5/5/2017 FID vs PID: The Great Debate 2017 Geotechnical, GeoEnvironmental, and Geophysical Technology Transfer April 11, 2017 Raleigh, NC Why is it Important? As consultants, we are expected to produce data that is Reliable Repeatable Representative Defensible We can only meet these criteria if we understand the instruments we use and their limitations 1 5/5/2017 PID=Photo Ionization Detector Non-destructive to the sample Responds to functional groups Can operate in non-oxygen atmosphere Does not respond to methane Affected by high humidity FID=Flame Ionization Detector Destructive to the sample Responds to carbon chain length Must have oxygen to operate Responds to methane Not affected by high humidity 2 5/5/2017 Combination FID/PID TVA 1000B Main Concepts Ionization Energy Minimum amount of energy required to remove an electron from an atom or molecule in a gaseous state Response Factors The response factor is a calculated number provided by the instrument manufacturer for each compound, which is used to calculate the actual concentration of said compound in relation to the calibration gas. 3 5/5/2017 Ionization Energy Basis for FID/PID operations and measurement Measurements are in electron volts (eV) Ionization in a PID Energy source for ionization with PID is an ultraviolet light Three UV lamp energies are used: 9.5 eV, 10.6 eV, and 11.7 eV The higher the lamp energy, the greater the number of chemicals that can be detected. Detection range of 0.1 to 10,000 ppm 4 5/5/2017 Ionization in a FID Energy source for ionization
    [Show full text]
  • 4. Production, Import/Export, Use, and Disposal
    METHYL tert-BUTYL ETHER 163 4. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL During the 1970s EPA moved to phase out leaded gasolines and to reduce the levels of air pollution from pre- or post-combustion vehicular emissions. This conversion to unleaded fuels tended to reduce the octane ratings. Additives such as benzene or toluene could increase octane levels, but these aromatic volatile organic compounds could lead to serious air pollution problems due to their known toxic properties. Various highly oxygenated blending agents, including several ethers and alcohols, can boost the octane of unleaded gasoline and, since they are less toxic, can mitigate many of the air pollution concerns. MTBE is one such product used in Reformulated Gasoline (RFG). Some states started requiring the seasonal use of RFGs in the 197Os, and this became a requirement for many parts of the country under provisions of the 1990 Clean Air Act. This requirement led to a rapid expansion in the production and use of MTBE starting in the late 1980s. 4.1 PRODUCTION Typical production processes use feedstocks like isobutylene, often in combination with methanol, in adiabatic fixed reactors. The isobutylene and methanol react in the presence of ion-exchange resin catalysts at medium pressures and temperatures. Highly volatile by-products are removed through distillation, and methanol is reclaimed using water washing or molecular sieves. In a variant of this basic technology called reaction distillation, the catalysis and distillation steps take place simultaneously (Shanely 1990). There are numerous variants in these manufacturing processes, the details of which are protected under patents or license agreements (Lorenzetti 1994; Rhodes 1991).
    [Show full text]
  • Minimizing Isobutylene Emissions from Large Scale Tert-Butoxycarbonyl Deprotections
    Organic Process Research & Development 2005, 9, 39−44 Minimizing Isobutylene Emissions from Large Scale tert-Butoxycarbonyl Deprotections Eric L. Dias,* Kevin W. Hettenbach, and David J. am Ende Process Safety and Reaction Engineering Laboratory, Pfizer Global Research and DeVelopment, Eastern Point Road, Groton, Connecticut 06340 Abstract: with scavengers1,7,8 such as thiophenol1,7 to form an unre- Isobutylene off-gas amounts liberated during the methane- active byproduct, 3a; however, in an industrial setting, this sulfonic acid-catalyzed deprotection of N-BOC-pyrrolidine in can be prohibitive in terms of cost, worker exposure, and THF, methanol, ethanol, 2-propanol, toluene, and dichlo- added purification. romethane were measured using on-line gas-phase mass spec- In the absence of a powerful scavenger, 1 can be trapped troscopy. While one full equivalent of isobutylene was released in other manners. When trifluoroacetic acid is used, reaction as an off-gas when THF was used as the reaction solvent, with the conjugate base can form the tert-butyl trifluoroac- emissions were reduced by 65-95% in other solvents. In alcohol etate ester, 3b;6,7,8a,9 however this typically will not occur solvents, the corresponding alkyl tert-butyl ethers are formed with methanesulfonic or other nonnucleophilic strong acids. as byproducts of the reaction as expected. In dichloromethane It has also been noted that water and alcohols will encourage and toluene, oligomers of isobutylene can be formed under the formation of tert-butyl alcohol2a,11b or the corresponding alkyl reaction conditions. These results provided the basis for tert-butyl ethers, 3c,10,11 which may provide a practical developing an effective acid/toluene scrubber for isobutylene approach to reducing isobutylene emissions but will be that was successfully employed on the pilot plant scale.
    [Show full text]
  • Transformation of Phenanthrene by Mycobacterium Sp. ELW1 and the Formation of Toxic Metabolites
    AN ABSTRACT OF THE THESIS OF Jill E. Schrlau for the degree of Master of Science in Environmental Engineering presented on September 20, 2016. Title: Transformation of Phenanthrene by Mycobacterium sp. ELW1 and the Formation of Toxic Metabolites. Abstract approved: _____________________________________________________________________ Lewis Semprini Staci Simonich The ability of Mycobacterium sp. ELW1, a novel microbe capable of alkene oxidation, to co-metabolize phenanthrene (PHE) was studied. ELW1 was able to completely co-metabolize PHE, at different concentrations below its water solubility limit, in an aqueous environment. The alkene monooxygenases in ELW1, used to initiate oxidation of PHE, were effectively inhibited by 1-octyne despite some PHE transformation observed. PHE metabolites consisted of only hydroxyphenanthrenes (OHPHEs) with trans-9,10-dihydroxy-9,10-dihydrophenanthrene (trans-9,10-PHE), the primary product, comprising more than 90% of the total metabolites formed in both PHE-exposed cells and 1-octyne controls. Mass balance was estimated by summing the zero-order formation rates of OHPHE metabolites and comparing these to the zero-order transformation rates PHE in PHE-exposed cells. The transformation rates of PHE and were in good agreement with the formation rates of the metabolites. PHE transformation followed first-order rates that, when normalized by biomass, were in the range of those estimated by the ratio of the Michaelis-Menten kinetic variables of maximum transformation rate (kmax) to the half-saturation constant (KS). Estimated values for kmax to KS obtained through both non-linear and linearization methods resulted in kmax/KS estimates that were a factor of ~3 lower compared to experimental values.
    [Show full text]
  • Correction Factors, Ionization Energies, and Calibration Characteristics for BW Rigrat Monitors
    Technical Note TN-106D 202005/TM Correction Factors, Ionization Energies, And Calibration Characteristics For BW RigRat Monitors Correction Factors & Ionization Energies* Photoionization Detector sensors (PIDs) can be used for the detection of a wide variety of gases that exhibit different responses. In general, any compound with ionization energy (IE) lower than that of the lamp photons can be measured.* The best way to calibrate a PID to different compounds is to use a standard of the gas of interest. However, correction factors have been determined that enable the user to quantify a large number of chemicals using only a single calibration gas, typically isobutylene. In our PIDs, correction factors can be used in one of three ways: 1. Calibrate the monitor with isobutylene in the usual fashion to read in isobutylene equivalents. Manually multiply the reading by the correction factor (CF) to obtain the concentration of the gas being measured. 2. Calibrate the unit with isobutylene in the usual fashion to read in isobutylene equivalents. Call up the correction factor from the instrument memory or download it from a personal computer and then call it up. The monitor will then read directly in units of the gas of interest. 3. Calibrate the unit with isobutylene, but input an equivalent, “corrected” span gas concentration when prompted for this value. The unit will then read directly in units of the gas of interest. * The term “ionization energy” is more scientifically correct and replaces the old term “ionization potential.” High-boiling (“heavy”) compounds may not vaporize enough to give a response even when their ionization energies are below the lamp photon energy.
    [Show full text]
  • Olefins from Biomass Intermediates: a Review
    catalysts Review Review OlefinsOlefins fromfrom BiomassBiomass Intermediates:Intermediates: AA ReviewReview 1 1,2, VasilikiVasiliki Zacharopoulou Zacharopoulou1 andand AngelikiAngeliki A.A. LemonidouLemonidou 1,2,** 1 Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 1 Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece; [email protected] 54124 Thessaloniki, Greece; [email protected] 2 Chemical Process Engineering Research Institute (CERTH/CPERI), P.O. Box 60361 Thermi, 2 Chemical Process Engineering Research Institute (CERTH/CPERI), P.O. Box 60361 Thermi, Thessaloniki 57001, Greece 57001 Thessaloniki, Greece * Correspondence: [email protected]; Tel.: +30‐2310‐996‐273 * Correspondence: [email protected]; Tel.: +30-2310-996-273 Received: 16 November 2017; Accepted: 19 December 2017; Published: Received: 16 November 2017; Accepted: 19 December 2017; Published: 23 December 2017 Abstract:Abstract: Over the last decade, increasing demand for olefinsolefins and theirtheir valuablevaluable productsproducts hashas promptedprompted researchresearch onon novelnovel processesprocesses andand technologiestechnologies forfor theirtheir selectiveselective production.production. As olefinsolefins are predominatelypredominately dependent on fossil resources, their production is limited by thethe finitefinite reservesreserves and the associated economic and environmental concerns.concerns. The need for alternative routes for
    [Show full text]
  • SAFETY DATA SHEET Flammable Gas Mixture: 1,2-Butadiene / 1,3-Butadiene / 2-Butene / Isobutylene
    SAFETY DATA SHEET Flammable Gas Mixture: 1,2-Butadiene / 1,3-Butadiene / 2-Butene / Isobutylene Section 1. Identification GHS product identifier : Flammable Gas Mixture: 1,2-Butadiene / 1,3-Butadiene / 2-Butene / Isobutylene Other means of : Not available. identification Product use : Synthetic/Analytical chemistry. SDS # : 020092 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE GASES - Category 1 substance or mixture GASES UNDER PRESSURE - Compressed gas ACUTE TOXICITY (inhalation) - Category 4 GERM CELL MUTAGENICITY - Category 1B CARCINOGENICITY - Category 1 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : Extremely flammable gas. Contains gas under pressure; may explode if heated. May form explosive mixtures in Air. May displace oxygen and cause rapid suffocation. Harmful if inhaled. May cause genetic defects. May cause cancer. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Approach suspected leak area with caution. Prevention : Obtain special instructions before use.
    [Show full text]
  • Sids Initial Assessment Profile
    SIAM 19, 19-22 October 2004 NL/ICCA SIDS INITIAL ASSESSMENT PROFILE 106-98-9 1-Butene CAS No. 107-01-7 2-Butene 590-18-1 cis-2-Butene and 624-64-6 trans-2-Butene 115-11-7 Isobutylene (2-Methylpropene) Chemical Name 25167-67-3 Butene, mixed isomers 106 -98-9 CH2=CH-CH2-CH3 107-01-7 CH3-CH=CH-CH3 (contains cis- and trans- forms) CAS Numbers 590-18-1 CH3-CH=CH-CH3 (cis- form) with 624-64-6 CH3-CH=CH-CH3 (trans- form) Structural Formula 115-11-7 CH2=C(-CH3)2 25167-67-3 Contains all butene structures above SUMMARY CONCLUSIONS OF THE SIAR Category/Analogue Rationale (if appropriate) The Butenes Category includes six CAS numbers that are similar from a process and toxicology perspective. Each substance within this category is a C4 olefin or contains a mixture of selected C4 olefins that are produced from a reaction and/or separation activity in an olefins chemical plant. Four CAS numbers describe different C4 isomers, each is a hydrocarbon with the same chemical formula and one double bond between two carbon atoms. Two CAS numbers describe mixtures of C4 olefins that contain either two or all four different isomers. The six substances share relatively similar physico-chemical properties, which suggests that their environmental fate will be similar. The chemicals are expected to have similar kinetic properties because of similar physical-chemical properties. No specific target organ was identified and no or minimal changes in body weight were found at the highest dose only for all the butenes.
    [Show full text]
  • US2801271.Pdf
    N- 2,801,271 United States Patent Office Patented July 30, 1957 2 separate an overhead fraction consisting predominantly of para-Xylene and a bottoms fraction comprising ter tiary-butyl-meta-xylene, tertiary-butyl-ethylbenzene, and 2,801,271 tertiary-butyl-ortho-xylene. The bottoms fraction is then XYLENE SEPARATION PROCESS contacted with a catalytic cracking catalyst at a tem perature above about 600 F. and it is found that the ter Maurice J. Schlatter, El Cerrito, Calify assignor to Cali tiary-butyl group is quite selectively cracked from the fornia Research Corporation, San Francisco, Calif., a tertiary-butyl xylenes and tertiary-butyl-ethylbenzene to corporation of Delaware - produce predominantly isobutene and the xylenes. The Application March 17, 1951, Serial No. 216,244 0 isobutene is separated from the reaction product of the cracking step and returned to the alkylation step together 9 Claims. (CI. 260-674) with further quantities of the crude xylene feed. The contact of the bottoms fraction of the alkylation reaction product with the cracking catalyst is desirably This invention relates to an integrated process for re 15 accomplished simply by feeding this bottoms fraction to covering individual xylene isomers from crude Xylenes gether with a usual cracking charge stock to a catalytic and producing a blended high octane gasoline containing cracking Zone. For example, this fraction may be fed the undesired xylene isomers. to a catalytic cracking Zone together with a straight run Crude xylene fractions are produced in commercial gas oil boiling in the range about 400 to 850 F. In the quantities by hydroforming naphthenic petroleum distill 20 cracking Zone both the alkylation bottoms fraction and lates and by fractionating the liquid product produced the gas oil are contacted with a cracking catalyst, for ex during the coking of coal.
    [Show full text]
  • Aviation Fuels Technical Review
    Aviation Fuels Technical Review | Chevron Products Aviation Fuels Company Technical Review Chevron Products Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Chevron Products Company is a division of a wholly owned subsidiary of Chevron Corporation. http://www.chevron.com/productsservices/aviation/ © 2007 Chevron U.S.A. Inc. All rights reserved. Chevron and the Caltex, Chevron and Texaco hallmarks are federally registered trademarks of Chevron Intellectual Property LLC. Recycled/RecyclableRecycled/recyclable paper paper IDC 1114-099612 MS-9891 (11/14) Table of Contents Notes General Introduction ............................................................i 8 • Aviation Gasoline Performance ............................ 45 Performance Properties 1 • Aviation Turbine Fuel Introduction ........................... 1 Cleanliness Types of Fuel Safety Properties Fuel Consumption 9 • Aviation Gasoline 2 • Aviation Turbine Fuel Performance .........................3 Specifications and Test Methods .......................... 54 Performance Properties Specifications Cleanliness Future Fuels Safety Properties Test Methods Emissions 10 • Aviation Gasoline Composition ............................. 63 3 • Aviation Turbine Fuel Composition Specifications and Test Method ...............................14 Property/Composition Relationships Specifications Additives Test Methods 11 • Aviation Gasoline Refining ..................................... 66 4 • Aviation Turbine Fuel Composition ........................24 Alkylation Base Fuel Avgas Blending
    [Show full text]