Apolipoprotein L6, a Novel Proapoptotic Bcl-2 Homology 3–Only Protein, Induces Mitochondria-Mediated Apoptosis in Cancer Cells

Total Page:16

File Type:pdf, Size:1020Kb

Apolipoprotein L6, a Novel Proapoptotic Bcl-2 Homology 3–Only Protein, Induces Mitochondria-Mediated Apoptosis in Cancer Cells Apolipoprotein L6, a Novel Proapoptotic Bcl-2 Homology 3–Only Protein, Induces Mitochondria-Mediated Apoptosis in Cancer Cells Zhihe Liu,1 Huimei Lu,1 Zeyu Jiang,2 Andrzej Pastuszyn,1 and Chien-an A. Hu1 1Department of Biochemistry and Molecular Biology and 2Division of Biocomputing, University of New Mexico School of Medicine, Albuquerque, New Mexico Abstract Introduction Cancer cells frequently possess defects in the genetic Apoptosis is a complex and highly regulated cell death and biochemical pathways of apoptosis. Members of the process that can be distinguished by cellular and biochemical Bcl-2 family play pivotal roles in regulating apoptosis hallmarks, including release of apoptogenic factors, activation and possess at least one of four Bcl-2 homology (BH) of caspases, chromatin condensation, and membrane blebbing. domains, designated BH1 to BH4. The BH3 domain is This cell death pathway is used by multicellular organisms to the only one conserved in proapoptotic BH3-only eliminate unwanted or injured cells and is critically important proteins and plays an important role in protein-protein for maintaining homeostasis during development and through- interactions in apoptosis by regulating homodimerization out adulthood in animals (1-4). Dysregulation of apoptosis is and heterodimerization of the Bcl-2 family members. evident in many human diseases, including cancer (5) and To date, 10 BH3-only proapoptotic proteins have been neurodegenerative disorders (6). identified and characterized in the human genome. Importantly, in mammals, there are at least three distinct but The completion of the Human Genome Project and the interactive and interconnected apoptotic pathways: mitochon- availability of various public databases and sequence dria-mediated, death receptor–initiated, and endoplasmic retic- analysis algorithms allowed us to use the bioinformatic ulum stress-mediated pathways (1, 2, 7). Activation of caspases, database-mining approach to identify one novel a group of cysteine-activated aspartate-specific proteases, is a BH3-only protein, apolipoprotein L6 (ApoL6). The common characteristic of all three apoptotic pathways (8, 9). In full-length cDNA of ApoL6 was identified, cloned, and general, activation of caspase-9 is associated with mitochondria- functionally expressed in p53-null colorectal cancer mediated apoptosis, whereas activation of caspase-8 frequently cells (DLD-1). We found that overexpression of wild-type mediates death receptor–regulated apoptosis. A connection ApoL6 induced mitochondria-mediated apoptosis in between death receptor–initiated and mitochondria-mediated DLD-1 cells characterized by release of cytochrome c pathways is made by caspase-8-cleaved and caspase-8-activated and Smac/DIABLO from mitochondria and activation of Bid, a proapoptotic member of the Bcl-2 family (1, 8, 9). The caspase-9, whereas ApoL6 BH3 domain deletion allele Bcl-2 family members play pivotal roles in regulating and did not. In addition, overexpression of ApoL6 also interconnecting all three apoptotic pathways in which they induced activation of caspase-8. Furthermore, we can either promote cell survival (antiapoptotic; e.g., Bcl-2, and showed that adenovirus harboring the full-length cDNA Bcl-xL) or induce cell death (proapoptotic; e.g., Bax, Bad, Bid, of ApoL6 induced marked apoptosis in a variety of Noxa, and PUMA). It is well recognized that cancer cells often cancer cell types, and ApoL6 recruited and interacted show altered ratios of antiapoptotic members to proapoptotic with lipid/fatty acid components during the induction members of the Bcl-2 family. Disruption of homeostasis of the of apoptosis. To our knowledge, this is the first Bcl-2 family members promotes survival and confers resistance example that intracellular overproduction of an to therapy in cancer (5, 10, 11). Each member of the Bcl-2 apolipoprotein induces marked apoptosis. (Mol Cancer protein family contains at least one to four conserved protein Res 2005;3(1):21–31) sequences, Bcl-2 homology (BH) domains designated BH1 to BH4 (10-12). Proapoptotic ‘‘BH3-only’’ proteins contain only the BH3 homology sequence attesting to the functional significance of this domain. It has been shown that the BH3- Received 9/20/04; revised 12/6/04; accepted 12/8/04. only proteins play important roles in protein-protein interac- Grant support: Howard Hughes Medical Institute research aids to University of tions, regulation of dimerization, and protein-permeable pore New Mexico Cancer Research and Treatment Center, American Cancer Society formation of the Bcl-2 family members in apoptosis (10-12). ACS-IRG-192 grant 412488-00095, and University of New Mexico Research Allocation Committee grant C-2222-RAC (C-A.A. Hu). BH3-only proteins function either as sensors or as second The costs of publication of this article were defrayed in part by the payment of messengers of discrete apoptotic stimuli and can interact with page charges. This article must therefore be hereby marked advertisement in the multidomain Bcl-2 family proteins to either antagonize or accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Requests for reprints: Chien-an A. Hu, Department of Biochemistry activate their function in apoptosis (10, 11, 13). They have been and Molecular Biology, MSC08 4670, 1 University of New Mexico, shown to induce apoptosis by binding to antiapoptotic Bcl-2 Albuquerque, NM 87131-0001. Phone: 505-272-8816; Fax: 505-272-6587. E-mail: [email protected] family members to inhibit their activity (10, 14) and other Copyright D 2005 American Association for Cancer Research. proapoptotic family members to enhance their activity (15, 16). Mol Cancer Res 2005;3(1). January 2005 21 Downloaded from mcr.aacrjournals.org on September 27, 2021. © 2005 American Association for Cancer Research. 22 Liu et al. It is generally accepted that BH3-only proteins require the Moreover, we show that ApoL6 induces a BH3-dependent multidomain proapoptotic Bcl-2 family members to induce cell apoptosis and interacts with lipid/fatty acid components during death (7, 16, 17). Two lines of evidence indicate that BH3 the induction of apoptosis, suggesting its role in connecting domain–mediated protein-protein interactions are determinants lipid second messengers and cell death. of proapoptotic activity of BH3-only proteins. First, deletion alleles of the BH3 domain of some of the BH3-only proteins (e.g., PUMA and Bad) failed to induce apoptosis (18, 19). Results Second, peptides derived from BH3 domains of the BH3-only Employing a database search of open reading frame based proteins can induce apoptosis by binding to the hydrophobic on 9-residue consensus sequence constructed from 17 known pocket of the antiapoptotic proteins or by ‘‘sensitizing’’ cells to human Bcl-2 protein sequences (Fig. 1), we identified a apoptotic stimuli (14, 19). In addition, BH3-only proteins have BH3 domain embedded with the ApoL6 gene (Genbank been shown to interact with intrinsic mitochondrial membrane accession no. NM_030641). ApoL proteins belong to a newly proteins, such as the voltage-dependent anion channel or the identified, high-density lipoprotein family composed of six adenine nucleotide exchanger, to induce mitochondrial dys- members (L1-L6) that share significant sequence identity function and cytochrome c release (13, 20, 21). Importantly, within the predicted amphipathic a-helix. Evidence suggested several genes encoding BH3-only proteins (e.g., Bid, Noxa, and that these proteins play a central role in cholesterol transport PUMA) are p53 downstream targets in p53-induced apoptosis (24-29). Previous studies showed that genes encoding ApoL are and are expressed in overlapping as well as unique and specific localized to human chromosome 22q12-13 (24-26). A compar- tissues and cells (3, 10-12, 22). Gene knockout studies in mice ison of gene expression at the RNA level with ApoA-I, the have shown unique, specific roles for various Bcl-2 family major structural component of high-density lipoprotein, sug- genes in regulating cell proliferation and death in specific gests that the ApoL proteins play general and fundamental roles tissues/cells or under particular developmental, physiologic, or in lipid biochemistry (26, 27). Previous studies also showed that pathologic circumstances (16, 17, 23). Finally, the various ApoL6 is a widely expressed lipid binding protein (refs. 24-29; members of the Bcl-2 family are localized in different also in GeneCards database). We found that full-length ApoL6 subcellular compartments, thereby indicating their nonredun- cDNA could be successfully amplified from a variety of human dant roles in physiologic and pathologic states (10-12, 22, 23). cell lines, including DLD-1 (colorectal), HEK 293 (human Therefore, it is important to identify all members of the Bcl-2 embryonic kidney), and DU-145 (prostate) cells (data not family, particularly the BH3-only proteins, and to delineate the shown). Previous studies have predicted that extracellular cellular and biochemical contexts in which they contribute to ApoL6 is a protein component of high-density lipoprotein, the regulation of apoptosis. Currently, 10 BH3-only proapop- whereas intracellular ApoL6 may affect the movement of lipids totic proteins have been identified (7, 10-12, 14). Through or allow the binding of lipids to organelles (27, 30, 31). Human a database-mining approach, we identified and characterized ApoL6 encodes a 343–amino acid protein and has a calculated apolipoprotein L6 (ApoL6) as a novel BH3-only protein.
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Gene Expression Polarization
    Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression This information is current as of September 27, 2021. Fernando O. Martinez, Siamon Gordon, Massimo Locati and Alberto Mantovani J Immunol 2006; 177:7303-7311; ; doi: 10.4049/jimmunol.177.10.7303 http://www.jimmunol.org/content/177/10/7303 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/11/03/177.10.7303.DC1 Material http://www.jimmunol.org/ References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/10/7303.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 Fernando O.
    [Show full text]
  • The Expression of the Human Apolipoprotein Genes and Their Regulation by Ppars
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UEF Electronic Publications The expression of the human apolipoprotein genes and their regulation by PPARs Juuso Uski M.Sc. Thesis Biochemistry Department of Biosciences University of Kuopio June 2008 Abstract The expression of the human apolipoprotein genes and their regulation by PPARs. UNIVERSITY OF KUOPIO, the Faculty of Natural and Environmental Sciences, Curriculum of Biochemistry USKI Juuso Oskari Thesis for Master of Science degree Supervisors Prof. Carsten Carlberg, Ph.D. Merja Heinäniemi, Ph.D. June 2008 Keywords: nuclear receptors; peroxisome proliferator-activated receptor; PPAR response element; apolipoprotein; lipid metabolism; high density lipoprotein; low density lipoprotein. Lipids are any fat-soluble, naturally-occurring molecules and one of their main biological functions is energy storage. Lipoproteins carry hydrophobic lipids in the water and salt-based blood environment for processing and energy supply in liver and other organs. In this study, the genomic area around the apolipoprotein genes was scanned in silico for PPAR response elements (PPREs) using the in vitro data-based computer program. Several new putative REs were found in surroundings of multiple lipoprotein genes. The responsiveness of those apolipoprotein genes to the PPAR ligands GW501516, rosiglitazone and GW7647 in the HepG2, HEK293 and THP-1 cell lines were tested with real-time PCR. The APOA1, APOA2, APOB, APOD, APOE, APOF, APOL1, APOL3, APOL5 and APOL6 genes were found to be regulated by PPARs in direct or secondary manners. Those results provide new insights in the understanding of lipid metabolism and so many lifestyle diseases like atherosclerosis, type 2 diabetes, heart disease and stroke.
    [Show full text]
  • CD56+ T-Cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients
    CD56+ T-cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients Institute of Infection and Global Health Department of Clinical Infection, Microbiology and Immunology Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Mazen Mohammed Almehmadi December 2014 - 1 - Abstract Human T cells expressing CD56 are capable of tumour cell lysis following activation with interleukin-2 but their role in viral immunity has been less well studied. The work described in this thesis aimed to investigate CD56+ T-cells in relation to cytomegalovirus infection in healthy subjects and kidney transplant patients (KTPs). Proportions of CD56+ T cells were found to be highly significantly increased in healthy cytomegalovirus-seropositive (CMV+) compared to cytomegalovirus-seronegative (CMV-) subjects (8.38% ± 0.33 versus 3.29%± 0.33; P < 0.0001). In donor CMV-/recipient CMV- (D-/R-)- KTPs levels of CD56+ T cells were 1.9% ±0.35 versus 5.42% ±1.01 in D+/R- patients and 5.11% ±0.69 in R+ patients (P 0.0247 and < 0.0001 respectively). CD56+ T cells in both healthy CMV+ subjects and KTPs expressed markers of effector memory- RA T-cells (TEMRA) while in healthy CMV- subjects and D-/R- KTPs the phenotype was predominantly that of naïve T-cells. Other surface markers, CD8, CD4, CD58, CD57, CD94 and NKG2C were expressed by a significantly higher proportion of CD56+ T-cells in healthy CMV+ than CMV- subjects. Functional studies showed levels of pro-inflammatory cytokines IFN-γ and TNF-α, as well as granzyme B and CD107a were significantly higher in CD56+ T-cells from CMV+ than CMV- subjects following stimulation with CMV antigens.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Genetics of Bipolar Disorder
    Molecular Psychiatry (2008) 13, 742–771 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp FEATURE REVIEW The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions A Serretti and L Mandelli Institute of Psychiatry, University of Bologna, Bologna, Italy Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF.
    [Show full text]
  • Insights Into the Molecular Mechanisms of Apoptosis Induced
    I nsights into the molecular mechanisms of apoptosis induced by glucose deprivation Raffaella Iurlaro ADVERTIMENT . La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ( www.tdx.cat ) i a través del Dipòsit Digital de la UB ( diposit.ub.edu ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposici ó des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB . No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA . La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR ( www.tdx.cat ) y a través del Repositorio Digital de la UB ( diposit.ub.edu ) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB .
    [Show full text]
  • Epigenetic Aging Is Accelerated in Alcohol Use Disorder and Regulated by Genetic Variation in APOL2
    www.nature.com/npp ARTICLE OPEN Epigenetic aging is accelerated in alcohol use disorder and regulated by genetic variation in APOL2 Audrey Luo1, Jeesun Jung1, Martha Longley1, Daniel B. Rosoff1, Katrin Charlet1,2, Christine Muench 1, Jisoo Lee1, Colin A. Hodgkinson3, David Goldman3, Steve Horvath4,5, Zachary A. Kaminsky6 and Falk W. Lohoff1 To investigate the potential role of alcohol use disorder (AUD) in aging processes, we employed Levine’s epigenetic clock (DNAm PhenoAge) to estimate DNA methylation age in 331 individuals with AUD and 201 healthy controls (HC). We evaluated the effects of heavy, chronic alcohol consumption on epigenetic age acceleration (EAA) using clinical biomarkers, including liver function test enzymes (LFTs) and clinical measures. To characterize potential underlying genetic variation contributing to EAA in AUD, we performed genome-wide association studies (GWAS) on EAA, including pathway analyses. We followed up on relevant top findings with in silico expression quantitative trait loci (eQTL) analyses for biological function using the BRAINEAC database. There was a 2.22-year age acceleration in AUD compared to controls after adjusting for gender and blood cell composition (p = 1.85 × 10−5). This association remained significant after adjusting for race, body mass index, and smoking status (1.38 years, p = 0.02). Secondary analyses showed more pronounced EAA in individuals with more severe AUD-associated phenotypes, including elevated gamma- glutamyl transferase (GGT) and alanine aminotransferase (ALT), and higher number of heavy drinking days (all ps < 0.05). The genome-wide meta-analysis of EAA in AUD revealed a significant single nucleotide polymorphism (SNP), rs916264 (p = 5.43 × 10−8), in apolipoprotein L2 (APOL2) at the genome-wide level.
    [Show full text]
  • Enhancer Rnas: Transcriptional Regulators and Workmates of Namirnas in Myogenesis
    Odame et al. Cell Mol Biol Lett (2021) 26:4 https://doi.org/10.1186/s11658-021-00248-x Cellular & Molecular Biology Letters REVIEW Open Access Enhancer RNAs: transcriptional regulators and workmates of NamiRNAs in myogenesis Emmanuel Odame , Yuan Chen, Shuailong Zheng, Dinghui Dai, Bismark Kyei, Siyuan Zhan, Jiaxue Cao, Jiazhong Guo, Tao Zhong, Linjie Wang, Li Li* and Hongping Zhang* *Correspondence: [email protected]; zhp@sicau. Abstract edu.cn miRNAs are well known to be gene repressors. A newly identifed class of miRNAs Farm Animal Genetic Resources Exploration termed nuclear activating miRNAs (NamiRNAs), transcribed from miRNA loci that and Innovation Key exhibit enhancer features, promote gene expression via binding to the promoter and Laboratory of Sichuan enhancer marker regions of the target genes. Meanwhile, activated enhancers pro- Province, College of Animal Science and Technology, duce endogenous non-coding RNAs (named enhancer RNAs, eRNAs) to activate gene Sichuan Agricultural expression. During chromatin looping, transcribed eRNAs interact with NamiRNAs University, Chengdu 611130, through enhancer-promoter interaction to perform similar functions. Here, we review China the functional diferences and similarities between eRNAs and NamiRNAs in myogen- esis and disease. We also propose models demonstrating their mutual mechanism and function. We conclude that eRNAs are active molecules, transcriptional regulators, and partners of NamiRNAs, rather than mere RNAs produced during enhancer activation. Keywords: Enhancer RNA, NamiRNAs, MicroRNA, Myogenesis, Transcriptional regulator Introduction Te identifcation of lin-4 miRNA in Caenorhabditis elegans in 1993 [1] triggered research to discover and understand small microRNAs’ (miRNAs) mechanisms. Recently, some miRNAs are reported to activate target genes during transcription via base pairing to the 3ʹ or 5ʹ untranslated regions (3ʹ or 5ʹ UTRs), the promoter [2], and the enhancer regions [3].
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]
  • Towards Personalized Medicine in Psychiatry: Focus on Suicide
    TOWARDS PERSONALIZED MEDICINE IN PSYCHIATRY: FOCUS ON SUICIDE Daniel F. Levey Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Program of Medical Neuroscience, Indiana University April 2017 ii Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Andrew J. Saykin, Psy. D. - Chair ___________________________ Alan F. Breier, M.D. Doctoral Committee Gerry S. Oxford, Ph.D. December 13, 2016 Anantha Shekhar, M.D., Ph.D. Alexander B. Niculescu III, M.D., Ph.D. iii Dedication This work is dedicated to all those who suffer, whether their pain is physical or psychological. iv Acknowledgements The work I have done over the last several years would not have been possible without the contributions of many people. I first need to thank my terrific mentor and PI, Dr. Alexander Niculescu. He has continuously given me advice and opportunities over the years even as he has suffered through my many mistakes, and I greatly appreciate his patience. The incredible passion he brings to his work every single day has been inspirational. It has been an at times painful but often exhilarating 5 years. I need to thank Helen Le-Niculescu for being a wonderful colleague and mentor. I learned a lot about organization and presentation working alongside her, and her tireless work ethic was an excellent example for a new graduate student. I had the pleasure of working with a number of great people over the years. Mikias Ayalew showed me the ropes of the lab and began my understanding of the power of algorithms.
    [Show full text]
  • Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis
    Getting “Under the Skin”: Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis by Kristen Monét Brown A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Epidemiological Science) in the University of Michigan 2017 Doctoral Committee: Professor Ana V. Diez-Roux, Co-Chair, Drexel University Professor Sharon R. Kardia, Co-Chair Professor Bhramar Mukherjee Assistant Professor Belinda Needham Assistant Professor Jennifer A. Smith © Kristen Monét Brown, 2017 [email protected] ORCID iD: 0000-0002-9955-0568 Dedication I dedicate this dissertation to my grandmother, Gertrude Delores Hampton. Nanny, no one wanted to see me become “Dr. Brown” more than you. I know that you are standing over the bannister of heaven smiling and beaming with pride. I love you more than my words could ever fully express. ii Acknowledgements First, I give honor to God, who is the head of my life. Truly, without Him, none of this would be possible. Countless times throughout this doctoral journey I have relied my favorite scripture, “And we know that all things work together for good, to them that love God, to them who are called according to His purpose (Romans 8:28).” Secondly, I acknowledge my parents, James and Marilyn Brown. From an early age, you two instilled in me the value of education and have been my biggest cheerleaders throughout my entire life. I thank you for your unconditional love, encouragement, sacrifices, and support. I would not be here today without you. I truly thank God that out of the all of the people in the world that He could have chosen to be my parents, that He chose the two of you.
    [Show full text]