Eco-efficient self-compacting with reduced Portland content and high volume of and metakaolin

Marcos A. S. Anjos 1a , Aires Camões 2b e Carlos Jesus 2c

1Department of Building Technology, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus-Natal, Tirol, P – 59056-000 Natal, RN, Brazil 2C-TAC, Department of Civil Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal [email protected] ; [email protected]; [email protected] keywords: Eco-efficient concrete, high-volume fly ash and metakaolin.

Abstract. Theecoefficient,selfcompactingconcrete(SCC)production,containinglowlevels of cement in its formulation, shall contribute for the constructions' sustainability due to the decreaseinPortlandcementuse,totheuseofindustrialresidue,forbeyondtheminimizationof theenergyneededforitsplacementandcompaction.Inthiscontext,thepresentpaperintends toassesstheviabilityofSCCproductionwithlowcementlevelsbydeterminingthefreshand hardened properties of concrete containing high levels of fly ash (FA) and also metakaolin (MK). Hence, 6 different concrete formulations were produced and tested: two reference made with 300 and 500 kg/m 3 of cement; the others were produced in order to evaluatetheeffectsofhighreplacementlevelsofcement.CementreplacementbyFAof60% andby50%ofFAplus20%ofMKweretestedandtheadditionofhydratedlimeinthesetwo typesofconcretewerealsostudied.Toevaluatetheselfcompactingabilityslumpflowtest, T500 ,Jring,VfunnelandLbox wereperformed.Inthehardenedstatethecompressivestrength at3,7,14,21,28and90daysofagewasdetermined.Theresultsshowedthatitispossibleto produce low cement content SCC by replacing high levels of cement by mineral additions, meetingtherheologicalrequirementsforselfcompacting,withmoderateresistancesfrom25to 30MPaafter28days.

Introduction The selfcompacting concrete must meet well defined characteristics, like cohesion, passing and filling ability, without the use of vibration even in densely reinforced structures. Thus the manufacture of high fluidity and stability concrete is mandatory, being necessary to make compatible the amounts of superplasticizer and fine particles (cement and mineral additions) in ordertomeetthedemandsforthiskindofconcrete[1]. Theidealdesignforaselfcompactingconcrete(SCC)isacommitmentbetweentwoconflicting objectives.Ononehand,SCChastobeasfluidaspossibletoensurethatitwillfillthe underitsownweight,butontheotherhand,ithastobeastablemixtoavoidsegregationofsolids during its flow [23]. The first is ensured by the use of superplasticizer and/or viscosity modification chemical admixtures, while the last is obtained by the selection of an appropriate amount of powder adding, in other words, cement and replacement materials, usually mineral additions,andbyanadequatebalancebetweensolidsandliquidsinthemix[4].Severalmethodsof dosageforselfcompactingconcreteareproposedtocomplywiththosecharacteristics.Themost commonmethodsareOkamuraandOuchi[1]andEFNARC[5],recently,othermethodshavebeen suggested[67]. The selfcompacting capacity is ruled simultaneously by the deformability and segregation resistance.Deformabilitydepends,essentially,onaminimallyneededshearyieldstresstosurpass sothattheconcreteflowsandonmoderateviscosity, which avoids contact between aggregates, avoidingblocking,characterizedbyplasticviscosity.Resistancetosegregationthatrepresentsthe mix' stability depends on the moderate plastic viscosity. Such features describe the rheological

behavior of fresh concrete that correspond, in a first approach, to Bingham's plastic model [8]. However,rheometersthatdirectlymeasureshearyieldstressandplasticviscosityareofhardaccess andusuallyimpracticableforconcretetestinginthefield,soindirectmeasuresarecommonlyused fortheseproperties. Theconcreteproductionplaysanimportantroleinconstructions'sustainabilitysinceover10billion tonsofconcreteareproducedeveryyear,beingthecementindustryresponsiblebytheemissionof around7%ofthecarbondioxidetotalemissionstotheatmosphere[9]. Thestudyofecoefficientorsustainableconcretehasraisedgrowinginterestamongthemainrecent publicationsaboutconcrete,sothatP.C.Aïtcinwonderswhetheritwillbepossibletoeliminate Portlandcementfromconcreteproductionandanswers:"becausenot";withthecaveatthatthiswill nothappenanytimesoon,butitispossible[10]. Thus, the ecoefficient selfcompacting concrete production that use low levels of cement in its formulation,areimportantalliesforconstructions'sustainabilityduetothereductionoftheuseof Portland cement, the use of industrial and agroindustrial residue, noise reduction, besides the minimizationofenergyuseforplacementandcompaction.

Materials and methods Materials TheconcretemixtureswereproducedwithPortlandcementCEMI42.5R(C),flyash(FA)classB accordingtotheEN4501[11]andFaccordingtoASTMC618[12],metakaolin(Mk),hydrated lime(HL),sandandgravelwithmaximumdimensionsof4mmand16mmrespectively,waterand apolycarboxylatebasedsuperplasticizer.Table1andFigure1presentthechemicalcompositionof thereferredpowdermaterials. Table1:Chemicalcompositionofcement(C),flyash(FA),metakaolin(MK)andhydratedlime(HL) Material SiO 2 Al 2O3 Fe 2O3 CaO MgO SO 3 Na 2O K2O Ca(OH) 2 LOI C(%) 19.92 4.36 3.51 62.92 1.83 2.86 3.12 FA(%) 48.61 23.79 7.91 3.06 2.07 0.40 0.78 3.78 2.64 MK(%) 47.00 37.10 1.30 0.10 0.15 0.20 2.00 12.75 HL(%) 0.33 0.45 0.08 0.84 97.75 LOI–lossonignition

300 S 70 S a) = Na (Al,Mg) .Si O (OH) !8H O b) 0.3 2 4 10 2 2 S = SiO Ι = K (Al,Fe,Mg) (Si,Al) O (OH) 2 0.5 3 4 10 2 60 250 S = SiO 2 50 200

40 150

S 30 100

intensity (cps) intensity Ι intensity (cps)) intensity 20 50

10 0 MK FA 0 5 10 15 20 25 30 35 40 45 50 55 2 theta (°) 5 10 15 20 25 30 35 40 45 50 55 2 theta (°) 700 P = Ca(OH) c) P 2 C = CaCO 600 3

500 P

400

300 P P 200 P intensity (cps) intensity 100 C P C C C 0 Lime

-100 5 10 15 20 25 30 35 40 45 50 55 2 theta (°)

Fig1.DRX:a)flyashb)metakaolinc)hydratedlime Figure2showsthemorphologyofFAwhereonecanverify the solid silica sphere particles in differentsizes,aswellasthepresenceofplerospheres,whicharetypicalofFAproducedthrough coal combustion [13]. The mostly spherical grains and with diameters lower than the cement particlesusedtendtomakeiteasierfortheselfcompactingconcretetomove[14],aswellasthe SCCwaterretainingcapacitywiththismaterial,reflectedinitslowerbleeding.

Fig.2.SEMofflyash Sixconcretecompositionswereproduced,asshowninTable2.Thedefinitionofsuchconcrete typescamefromconcretewithhighlevelsofflyashpreviouslystudiedbyCamões[3]whichwent through some adequacies in their compositions in order to meet the selfcompacting concrete criteria. Table2:Concretecompositions B500 B300 FA FAHL FAMK FAMKHL C(kg/m³) 500 300 200 200 150 150 MK(kg/m³) 100 100 FA(kg/m³) 300 300 250 250 HL(kg/m³) 25 25 Sand(kg/m 3) 870 1053 870 870 870 870 Gravel(kg/m 3) 880 867 880 880 880 880 Water(kg/m 3) 200 180 170 170 170 170 superplasticizer(kg/m³) 13.0 7.8 9.0 9.6 9.6 12.3 Fines(C+FA+Mk+L) 500 300 500 525 500 525 Mortarcontent(M%) 60.9% 60.9% 60.9% 61.3% 60.9% 61.3% Thedrymortarcontentofthemix(M%),eq.1,wastheonlyadjustedparameterinordertotryto reach selfcompactability. For Camões' work [3] this level was approximately 53% and in self compactingconcrete(SCC)suchlevelmustvaryfrom60%to65%.Inthisworkthemortarcontent wasbeenupdatedandtheoneusedwas61%forconcreteadequacy.

() % = (1) () Where:

L= fine particles (cement and mineral admixtures); S= sand; G= gravel, referring to the single concreteinmass. Theplaincementconcretewith300kg/m 3ofbinder(B300)wasproducedjustforcomparisonof the mechanical properties of this common concrete with the other types of concrete with high mineraladditioncontent.Thereforethereisnopretensionthatsuchformulationwillsuit theself compactingcriteria.

Methods Fresh concrete Thedifferentconcretetypeswereproducedinverticalaxisconcretemixers.Afterbeingmixedthe different concretes were tested for selfcompacting ability. In order to classify concrete as self compactingthefluidity,viscosity,passingabilityandresistancetosegregationrequirementsmust be met. In the present paper were performed slump flow (flow and T500), Jring, Vfunnel and threebarLboxtests,figure3,followingtheguidelinesofEFNARC[5].

Fig.3.Testsinfreshconcrete Hardened concrete Aftermoldingthespecimenswerekeptinsidethemoldsfortwodays,afterwardtheyweretaken outofthemoldsandplacedincurebywaterimmersionatatemperatureofapproximately20± 2°C.Threespecimensofeachcompositionafter3,7,14,28and90daysofcurewereusedfor compressivestrengthdetermination.

Results and discussions EFNARC parameters Table 3 shows the dosage parameters of selfcompacting concrete with reduced cement content (SCCRCC) and concretes used as references (B500 and B300), calculated from concrete types describedinTable1,comparingwiththeparametersspecifiedinEFNARC[5]. Table3:concretedosageparameters

Sand(%inweight Water/finesratio Fine(kg/m³) Paste(l/m³) Water(l/m³) Gravel(kg/m³) oftotalaggregates) (l/m³)

B500 500 360.26 200 880 49.7 1.25 B300 500 276.15 180 867 54.8 1.87 FA 500 358.07 170 880 49.7 0.90 FAHL 525 369.23 170 880 49.7 0.85 FAMK 500 359.84 170 880 49.7 0.90 FAMKHL 525 371.00 170 880 49.7 0.85 EFNARC 380-600 300-380 150-200 750-1000 48-55 0.85-1,1

ThedefinitionofSCCRCCconcretecamefromtheadequacyofasortofconcretemixturesalready studiedinpreviousresearches[3],intendingtoreachonlythemortarlevel(60to65%),andthe fineslevel(>500kg/m 3).Afterthecalculationstofindifthenewconcretes,itwasverifiedthatwith the adjustments in mortar level for 61% the concrete found met all of the dosage parameters specifiedbyEFNARCandhighlightedinTable2. AccordingtoCuenca et al [15]therearenofixeddeadlinesoranexactmethodtodeterminethe selfcompactingconcretecomposition,althoughthereareseveraldosagecriteriathatmightserveas abasissuchasEFNARC. Therefore, the mortar and fines level parameters might be enough to define selfcompacting concretewhenassociatedtoanyotherdosagemethod,sincetheobjectiveofdosagemethodsisto ensure that the concrete meets the workability, resistance and durability criteria. As for SCC the workabilitycriteriabecomestheselfcompactingproperties,whicharefunctionofthewater/fines materialratioandsuperplasticizeradmixturethatmustpromoteadequatefluidityandviscosity.

Fresh concrete properties Thefluidity,fillingcapacity,viscosityandpassing abilityproperties of selfcompacting concrete withreducedcementcontent(SCCRCC)weredeterminedbytheslumpflow,T500,Vfunneland LboxandareshowninTable4.Table5showstheconcretetypesratingsaccordingtoEFNARC specifications[5]. Table4:Freshconcreteproperties Slumpflow Jring Vtest Lbox Slumpflow MixId T500(s) Slumpflow(mm) T500(s) Time(s) H2/H1 (mm) B500 1.67 625 obstructed 4.6 0.75 B300 4.20 500 obstructed * * FA 1.85 700 2.23 700 4.8 0.86 FAHL 2.11 700 2.77 700 12.0 1.00 FAMK 3.15 670 3.43 615 13.9 0.92 FAMKHL 2.63 700 3.89 695 12.8 0.89 *NotPerformed Table4:FreshconcretepropertiesclassificationaccordingtoEFNARC. B500 B300 FA FAHL FAMK FAMKHL Fluidityclass SF1 * SF2 SF2 SF2 SF2 Viscosityclass VS1/VF1 * VS1/VF1 VS2/VF2 VS2/VF2 VS2/VF2 Passingability PA1 * PA2 PA2 PA2 PA2

Fluidity and viscosity

TheparametersthatdefineconcretefluidityandviscositycanbecalculatedbyΓ candRc,eq.2and eq. 3. These parameters should be representative of the concrete deformability and viscosity, respectively[1],werecalculatedforthestudiedSCCRCCandareshowninFigure4. ∗ Γ = (2) R = (3)

Where: Sfl 1and Sfl 2=slumpflowmeasures(mm)andt=Vfunneldrainingtime.

14 2,5

Γ C Rc 12 2,0

10

1,5 8 Γ C R 6 c 1,0

4

0,5 2

0 0,0 FA FA-HL FA-MK FA-MK-HL Mix Id

Fig.4.Deformability(Γ c)andviscosity(R c)parameters TheFAHL,FAMKandFAMKHLconcretetypesareratedaccordingtoEFNARCasVS2/VF2 forviscosity,howeveronecouldseeinFigure4thatthetypesFAHLandFAMKHLshowequal viscosity according to the R c parameter, while the FA and FAMK types showed different viscosities,whichdemonstratesthattheR cparameterismoresensitivetoviscositychanges. Viscosity is aparameter influencedby the dosage of superplasticizer admixture andby the fines contentinthemix,whichshowstheimportanceofdeterminingsynergybetweencement+mineral addition+superplasticizerandthewater/finesmaterialratio. The definition of adequate superplasticizer level for each concrete mix depend on the cement admixturecompatibility.InmanyworksaboutSCCthislevelisdeterminedexperimentally,having reportedvaluesfrom0,6to4%aboutthecementmass[2,4,16]. As for fluidity parameter (Γc), which denotes the deformability of fluid state concrete, it is noticeablethatFAMKmixwaslessdeformable.Inotherwords,FAMKshowhighercohesion,a factvalidatedbyvisualevaluation.Alltheconcretetypesshowedthesamefluidityclassification (SF2),accordingtoEFNARC,eventhoughFAMKwasmorecohesive,whichindicatesthattheΓ c parameterproposedbyOkamuraandOuchi[1]ismoreprecisefordeterminingdeformabilityand thereforeadvisableforconcreteevaluationwithsimilarclassificationsaccordingtoEFNARC. NoneoftheSCCRCChasshownsegregationbeforeoraftertheworkabilitytestsorduringthemix stop.OnlytheFAconcreteshowedslightexudationonthebordersoftheconcreteaftertheslump flow test. It is known that concrete types with high volumes of fly ash usually presents high cohesion[17].However,onemusttakeintoaccountthattheuseofexcessivesuperplasticizermay causebleeding. ViscositycanbeindirectlydeterminedbyVfunnelandT500.Resultsobtainedpermitstoclassify theproducedmixturesasVS1orVS2determinedbyT500andVF1orVF2byVfunnel.Thetime valueobtaineddoesnotmeasureSCCviscosity,butitisrelatedtothispropertyanddescribesthe flowrate,aswellastheR cparameter. One could verify that the concrete types FAHL, FAMK and FAMKHL are classified as VS2/VF2, once they present T500 > 2 sec and Vfunnel between 9 and 25 sec, while FA is classifiedasVS1/VF1.AccordingtoEFNARC,selfcompactingconcreteVS1/VF1hasgoodfilling capacity, even in densely reinforced structures. However this concrete is more susceptible to exudationandsegregation,whichwasverifiedinFAconcrete. TheFAand FAHLconcretetypes areinthesamefluidityclassmeasuredinslumpflow(SF2). However, they show different viscosity, VF1 and VF2 respectively, that can be justified by the

inclusionofhydratedlime(HL).TheincorporationofHLincreasesthefinescontentofthemixand thereforemakesthemixmoreviscous,andthusmorestable,avoidingtheexudationcommented previouslyinconcreteFA. TheFAMKandFAMKHLconcretetypesareunderthesamefluidityclass(VS2)andviscosity (VS2/VF2). This fluidity class shows higher resistance to segregation, however there might be negativeeffectsinthesuperficialfinishandgreatsensibilityrelatedtotheapplicationtype.

Passing ability ThepassingabilitywasdeterminedbythreebarLboxandJringtests,describingthecapacityof thefreshmixtoflowthroughconfinedspacesandtightopeningssuchasheavilyreinforcedareas, withoutsegregationoruniformitylossandwithoutcausingblockage. AlloftheSCCRCCtypesofconcretewereclassifiedinLboxtestsasPA2,accordingtoEFNARC [5],whichindicatesthattheblockageratioissuperiorto0,8,asindicatedinFigure5. ThespreadingresultintheJringtestsalsoindicatespassingability,accordingtoNBR158233 [18] and ASTM C1621 [19], when compared to the slumpflow results. When the spreading differencebetweenthesetwotestsislowerthan25mmitindicateslackofblockage(PJ1),asin concretetypesFAHL,FAMKandFAMKHL.Whenthedifferenceisbetween25and50mmit indicatesminimumvisibleblockage(PJ2),asinconcreteFAthatobtainedsuchclassificationdueto alightobservedbleeding. 1,2 50

1,1 45 1,0 40 0,9 PA 2 35 0,8 30 0,7 J-ring 0,6 25

L-box 0,5 20

0,4 15 PJ1 0,3 10 0,2 L-box J-ring 5 0,1 0,0 0 B500 B300 FA FA-HL FA-MK FA-MK-HL Compositions Fig.5.Passingabilityclassification Segregationandlowpassingability,actingindependentlyorincombination,maycauseconcrete blockage.SuchfactswerenotverifiedintheanalyzedSCC's,exceptforaslightbleedingdetected onconcreteFAthatledtoalowerblockageratio(0.85)whencomparedtotheotherSCC'sunder analysis.ProblemsrelatedtosegregationorpassingabilitywerealsoverifiedforconcreteB300 which showed high fluidity (VS1) but revealed tendency to segregation after testing and lower blockageratio,whichcharacterizesselfcompactingincapacity. Therefore, the influence of a parameter over another was verified, thus reflecting over the self compacting capacity which is ruled simultaneously by the deformability and resistance to segregationparameters,whichcanbecategorizedbyviscosity.

Properties hardened concrete Compressive strength

Thecompressivestrengthvariationwithcuringageat20±2ºCisshowninFigure6.Observingthe evolutionofcompressivestrengthovertime,onecouldseethatthetypesFA,FAMK,FAHLand FAMKHL showed compression strength at 28 days of 27.8, 32.6, 40.9 and 40.0 MPa, respectively. This determined compressive strength values may confirm the real applicability of such studied concrete types, namely in constructions where demanded concrete compressive strengthsareofclassC25toC40,evenwithalowcementconsumption,varyingfrom200to150 kgm 3. 70 B500 B300 FA FA-HL B500 FA-MK 60 FA-MK-HL FA-HL

50 FA-MK-HL

40 FA-MK FA

B300 30 Compressive(MPa) Strenght 20

10

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 Days Fig.6.Evolutionofcompressivestrengthwithage OnecouldnoticetheimportanceofSCCforconstructionsustainabilitysinceitispossibletoreach compressivestrengthabove30MPaat28daysusingconcretewithasignificantlyreduction,from 60to70%,ofcementconsumptionwhencomparedtoSCCreferenceconcreteB500(500kg/m 3). Evensuperiorcompressivestrengththanconventionalconcretewithcementconsumptionof300 kg/m 3(B300)canbeachievedevenwithcementcontentreductionsfrom33.3%to50.0%when comparedtoB300cementconsumption.Addingthatto the benefits of selfcompacting concrete suchashigherproductivity,lowernoiselevelinconstructions,reductionofproblemsassociatedto vibration,besidestheexpecteddurabilitygainbytheuseofmineraladditions. WiththefreshandhardenedstateresultsdeterminedwecouldcharacterizeSCCRCC'sanalyzedin thepresentstudyashighperformanceconcrete,sinceaccordingtoMehta[17]highperformance concretemaybeclassifiedasthosethathasbeentailoredtomeetspecificengineeringneeds,such ashighworkability,veryhighearlycompressivestrength,hightoughness,andhighdurabilityto exposureconditions. ThecompressivestrengthofFAHLandFAMKHLconcretesovercomeB300'satlowages,from 9to12days,respectively.ThisaspectmayindicatehighreactivityofFAandMKwithlime,which isdirectlyrelatedtotheamorphicityofFAandMKdisplayedinFigure1.FAHLconcreteshows compressivestrengthof58MPaat91daysclosetothereferenceconcrete'sresistance,B500,which wasof63MPa.Thus,itindicatesthepossibilitytoproduceenhancedorevenhighcompressive strengthconcretewithlowcementlevelswhenmoreadvancedagesaretakenintoconsideration. One could verify that all the types of concrete containing hydrates lime presented higher compressivestrengththantheonesproducedwithoutit,confirmingthegreatinfluenceofadding limetoSCCRCC's.Thiseffectismorenoticeablystartingfrom14dayswhenmostofthecement limehydrationhasalreadybeenformedandprobablyconsumedbythemineraladdition[20].

Thecompressivestrengthgainfrom28to90dayswasconsiderablylowerinconcretesmadewith metakaolin,FAMKandFAMKHL.Whilethoseshowed astrengthgainaround15%,FAand FAHL concretes displayed increases of 26 and 30% respectively. Such facts are related to the lowercementandhigherwater/cementratiousedinconcretemadewithmetakaolin,andtothelow leveloffreelimeavailableforthereactionswithmineraladditionsused,asdeterminedbyAnjoset al[20]incementpasteswithhighlevelsofFA,MKandhydratedlime.

Conclusion The mortar and fines content dosage criteria are enough to adequate previous concretes to accomplishSCCcriteria. TheparametersΓ candRcsuggestedbyOkamuraandOuchi[1]weremoreeffectiveindetermining thefluidityandviscosityparametersthantheEFNARCclassifications[5],sincecompositionsthat showeddifferentviscosityorfluiditybytheparameters Γ c and Rc, obtained the same EFNARC classification. ThepassingabilityisbetterassessedbytheJringtestthanbyLboxtest,sincethelastdidnot detectthelowabilityofFAconcrete,sinceithasclassifiedit atthesamerateasotherconcrete types.HoweverusingJringtestresultssuchconcrete was clustered in a different class than the others. TheSCCRCC'sshowedcompressivestrengthat28daysthatvariedbetween25and40MPaandat 91 days between 35 and 58 MPa, showing the possibility to produce enhanced or even high compressivestrengthconcretewithreducedcementlevelswhenmoreadvancedagesaretakeninto account. Based on the obtained results one can observe that it is possible to develop selfcompacting concrete with low cement content showing adequate properties, thus contributing for the sustainability of the construction industry, by minimizing released energy and compaction, and mostlyduetothedrasticreductionofcementconsumptionforlevelsfromaround150to200kg/m 3.

References [1]H.Okamura,M.Ouchi,Selfcompactingconcrete,J.Adv.Concr.Technol.v.1,n.1(2003)p. 515. [2] N.Bouzoubaa,M.Lachemi,SelfcompactingconcreteincorporatinghighvolumesofclassF flyash:preliminaryresults.Cem.Concr.Res.v.31,n.3(2001)p.413420. [3] A. Camões, Durability of highvolume fly ash concrete, International RILEM workshop on performancebasedevaluationandindicatorsforconcretedurability,Madrid(2006)p.311318. [4] R.Deeb,A.GhanbariandB.Karihaloo,DevelopmentofselfCompactinghighandultrahigh performanceconcreteswithandwithoutsteelfibres.Cem.Concr.Compos.,v.34,n.2,(2012) p.185190. [5] EFNARC,Guidelinesforselfcompactingconcrete,February(2002). [6] M. Safiuddin, J. West, K. Soudki, Flowing ability of the mortars formulated from self compactingconcretesincorporatingricehuskash.Constr.Build.Mater.,v.25,n.2,(2011),p.973 978. [7]M.Nepomuceno,L.A.Pereiradeoliveira,S.Lopes,Methodologyforthemixdesignofself compacting concrete using different mineral additions in binary blends of powders. Constr. Build.Mater.,v.64,(2014)p.8294. [8] P.Gomes,A.Barros,Métodosdedosagemdeconcretoautoadensável,Pini,SãoPaulo,2009. [9]C.Meyer,Thegreeningoftheconcreteindustry,Cem.Concr.Compos.(2009)p.601605.

[10]P.C.Aïtcin,Bindersfordurableandsustainableconcrete,Taylor&Francis,NewYork,2008. [11]EN 4501, Fly ash for concrete – Part 1: Definition, specifications and conformity criteria, EuropeanCommitteeforStandardization(2012). [12]ASTMC61812a,Standardspecificationforcoalflyashandraworcalcinednatural foruseinconcrete,AnnualbookofASTMstandards,vol.04.02,Americansocietyfortesting andmaterials,(2012). [13]R.Gieré,L.E.CarletonandG.R.Lumpkin,Microandnanochemistryofflyashfromacoal firedpowerplant,Am.Mineral.v.88(2003)p.18531865. [14]M.Gesoğlu,E.Güneyisi,M.E.Kocabağ,V.BayramandK.Mermerda,Freshandhardened characteristics of self compacting concretes made with combined use of marble powder, limestonefiller,andflyash,Constr.Build.Mater.v.37(2012),p.160170. [15]J.Cuenca,J.Rodríguez,M.MartínMorales,Z.SánchezRoldánandM.Zamorano,Effectsof oliveresiduebiomassflyashasfillerinselfcompactingconcrete,Constr.Build.Mater .,v.40 (2013),p.702709. [16]B.Felekoğlu,S.TürkelandB.Baradan,Effectofwater/cementratioonthefreshandhardened propertiesofselfcompactingconcrete.Build.Environ.v.42,n.4(2007),p.17951802. [17]P.K.Mehta,Highperformance, Highvolumefly ash concretefor sustainabledevelopment, Proceedingsoftheinternationalworkshoponsustainabledevelopmentandconcretetechnology (2004),p.314. [18]NBR158233:2010,ConcretoAutoadensável,Parte3:determinaçãodahabilidadepassante– métododoanelJ.AssociaçãoBrasileiradeNormasTécnicas–ABNT,RiodeJaneiro(2010). [19] ASTM C1621/C1621M09b, Standard test method for passing ability of selfconsolidation concrete by Jring. Annual book of ASTM standards, vol. 04.02, Philadelphia (USA): AmericanSocietyforTestingandMaterials(2011). [20] M.A. Anjos, A. Camões A, C.M. Jesus, F. Duarte, Avaliação da hidratação de pastas cimentíciascomelevadosteoresdeadiçõesminerais,Revistaengenhariacivil,Universidadedo Minho,n.44(2012),p.4158 .