And Mass Concrete Provision

Total Page:16

File Type:pdf, Size:1020Kb

And Mass Concrete Provision GEORGIA DOT RESEARCH PROJECT 16-30 FINAL REPORT Phase – II Evaluation of Metakaolin for GDOT Concrete Specifications (ASTM C618 N Pozzolan) and Mass Concrete Provision OFFICE OF PERFORMANCE-BASED MANAGEMENT AND RESEARCH 600 W. PEACHTREE ST. NW ATLANTA, GA 30308 1. Report No.: 2. Government Accession No.: 3. Recipient's Catalog No.: FHWA-GA-19-1630 4. Title and Subtitle: 5. Report Date: Phase II – Evaluation of Metakaolin for GDOT Concrete November 2019 Specifications (ASTM C618 N Pozzolan) and Mass 6. Performing Organization Code: Concrete Provision 7. Author(s): 8. Performing Organization Report No.: Mi G. Chorzepa, Ph.D., P.E., Stephan A. Durham Ph.D., 16-30 P.E., and Hiwa Hamid 9. Performing Organization Name and Address: 10. Work Unit No.: University of Georgia College of Engineering 11. Contract or Grant No.: Driftmier Engineering Center, Athens, GA 30602 PI# Phone: (706) 357-0038 Email: [email protected] 12. Sponsoring Agency Name and Address: 13. Type of Report and Period Covered: Georgia Department of Transportation Final; August 2016-November 2019 Office of Performance-Based Management and Research 14. Sponsoring Agency Code: 600 W. Peachtree St. NW Atlanta, GA 30308 15. Supplementary Notes: Prepared in cooperation with the U.S. Department of Transportation, Federal Highway Administration. 16. Abstract: This report includes both experimental and analytical investigations of concrete mixtures containing supplementary cementitious materials to identify sustainable alternatives to Class F fly ash for use in Georgia’s mass concrete structures. The primary goal of this study is to identify concrete mixtures that reduce the potential for thermal cracking caused by the heat of hydration of cementitious materials in order to optimize long-term performance of massive concrete structures. Through this study, the research team has identified ternary replacement mixtures potentially suitable for mass concrete placements. Additionally, the team has developed temperature prediction models based on a coupled thermal-structural analysis to aid in maximum temperature and temperature differential predictions. Among the 45% cement replacement mixtures considered in this study, the ternary mixture with 30% slag and 15% metakaolin replacements achieves superior performance in terms of mechanical properties, durability, and thermal cracking potential from heat of hydration. The research team recommends that GDOT consider changes to the Special Provisions to Section 500 (see Appendix A) and further study the performance of two ternary mixtures containing a 70% cement replacement with 1) 40% slag + 30% fly ash and 2) 55% slag + 15% metakaolin in order to reduce the potential for thermal cracking, which undermines the durability of mass concrete structures in Georgia. 17. Keywords: 18. Distribution Statement: Metakoalin, Slag Cement, Fly Ash, Heat of Hydration, Mass Concrete, Bridge Seal, Temperature, Temperature Differential, Binary, Ternary Mixture 19. Security 20. Security Classification (of this 21. No. of Pages: 22. Price: Classification page): 347 (of this report): Unclassified Unclassified Form DOT 1700.7 (8-69) ii GDOT Research Project 16-30 Phase II – Evaluation of Metakaolin for GDOT Concrete Specifications (ASTM C 618 N Pozzolan) and Mass Concrete Provision Final Report By Mi G. Chorzepa, Ph.D., P.E. Associate Professor of Civil Engineering Stephan A. Durham, Ph.D., P.E. Professor of Civil Engineering Hiwa Hamid Ph.D. Candidate University of Georgia College of Engineering Contract with Georgia Department of Transportation In cooperation with U.S. Department of Transportation Federal Highway Administration November 2019 The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Georgia Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. iii TABLE OF CONTENTS Page TABLE OF CONTENTS ................................................................................................ iv LIST OF TABLES ............................................................................................................ x LIST OF FIGURES ........................................................................................................ xii EXECUTIVE SUMMARY .......................................................................................... xxii ACKNOWLEDGEMENTS ........................................................................................ xxiv 1. INTRODUCTION ........................................................................................................ 1 BACKGROUND .............................................................................................................. 1 Concrete Behavior and Elevated Temperature .................................................................... 1 Simple facts about thermal loading and concrete behavior ............................................. 1 Temperature increase or decrease .................................................................................... 3 Uniform temperature increase and gradient temperature ................................................. 3 Behavior of concrete members ........................................................................................ 5 Thermal stress and restraints............................................................................................ 6 Supplementary Cementitious Materials ............................................................................... 7 PROBLEM STATEMENT ............................................................................................... 11 RESEARCH OBJECTIVES .............................................................................................. 13 RESEARCH SIGNIFICANCE AND SCOPE ........................................................................ 13 RESEARCH METHODOLOGY ........................................................................................ 14 Task 1. Perform Extensive Literature Review ................................................................... 14 Task 2. Design, Batch, and Test Concrete Mixtures with Three Metakaolin Products ..... 14 Task 3. Design, Construct, and Quantify Temperature Rise in Mass Concrete ................ 14 Task 3.1 ‐ Design test procedures for mass concrete mixtures ...................................... 14 Task 3.2 – Construct cube molds and specimens .......................................................... 15 Task 3.3 – Internal temperature monitoring in test specimens ...................................... 16 Task 4. Evaluation of Maximum Temperature Limits ...................................................... 16 Task 4.1 – Thermal and structural modeling ................................................................. 16 Task 4.2 – Design and construct test specimens ............................................................ 16 Task 4.3 – Evaluation of temperature limits .................................................................. 17 Task 5. Data Analysis and Synthesis of Findings .............................................................. 18 IMPLEMENTATION ...................................................................................................... 18 iv ORGANIZATION OF THE REPORT ................................................................................. 18 2. COMPARISON OF BINARY AND TERNARY MIXTURES .............................. 21 PRELIMINARY INVESTIGATION INTO HEAT OF CEMENTITIOUS MATERIAL HYDRATION . ................................................................................................................................... 21 Experimental Design ......................................................................................................... 21 Results ............................................................................................................................... 23 Heat of hydration in binary mixtures including metakaolin .......................................... 23 Heat of hydration of ternary and other binary replacement mixtures ............................ 25 Heat of hydration of ternary mixtures with various percentages of slag and metakaolin .. ....................................................................................................................................... 27 Analysis of Results ............................................................................................................ 29 Effect of metakaolin binary mixture on heat of hydration ............................................. 29 Effect of binary mixtures containing fly ash and slag on heat of hydration .................. 30 Effect of ternary mixtures on heat of hydration ............................................................. 30 Estimating the Heat Generated from Pozzolanic Materials ............................................... 32 Estimated heat of hydration in binary mixtures including metakaolin .......................... 34 Estimated heat of hydration in ternary and alternate binary mixtures ........................... 34 MECHANICAL PROPERTIES AND DURABILITY RESULTS .............................................. 35 Fresh Properties ................................................................................................................. 38 Binary Metakaolin Hardened Properties ...........................................................................
Recommended publications
  • Guide to Concrete Repair Second Edition
    ON r in the West August 2015 Guide to Concrete Repair Second Edition Prepared by: Kurt F. von Fay, Civil Engineer Concrete, Geotechnical, and Structural Laboratory U.S. Department of the Interior Bureau of Reclamation Technical Service Center August 2015 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Acknowledgments Acknowledgment is due the original author of this guide, W. Glenn Smoak, for all his efforts to prepare the first edition. For this edition, many people were involved in conducting research and field work, which provided valuable information for this update, and their contributions and hard work are greatly appreciated. They include Kurt D. Mitchell, Richard Pepin, Gregg Day, Jim Bowen, Dr. Alexander Vaysburd, Dr. Benoit Bissonnette, Maxim Morency, Brandon Poos, Westin Joy, David (Warren) Starbuck, Dr. Matthew Klein, and John (Bret) Robertson. Dr. William F. Kepler obtained much of the funding to prepare this updated guide. Nancy Arthur worked extensively on reviewing and editing the guide specifications sections and was a great help making sure they said what I meant to say. Teri Manross deserves recognition for the numerous hours she put into reviewing, editing and formatting this Guide. The assistance of these and numerous others is gratefully acknowledged. Contents PART I: RECLAMATION'S METHODOLOGY FOR CONCRETE MAINTENANCE AND REPAIR Page A.
    [Show full text]
  • 207.1R-96 Mass Concrete
    ACI 207.1R-96 Mass Concrete Reported by ACI Committee 207 Gary R. Mass Woodrow L. Burgess* Chairman Chairman, Task Group Edward A. Abdun-Nur* Robert W. Cannon David Groner Walter H. Price*† Ernest K. Schrader* Fred A. Anderson* Roy W. Carlson Kenneth D. Hansen Milos Polivka Roger L. Sprouse Richard A. Bradshaw, Jr.* James L. Cope* Gordon M. Kidd Jerome M. Raphael* John H. Stout Edward G. W. Bush James R. Graham* W. Douglas McEwen Patricia J. Roberts Carl R. Wilder James E. Oliverson* *Members of the task group who prepared this report. †Deceased Members of Committee 207 who voted on the 1996 revisions: John M. Scanlon John R. Hess Chairman Chairman, Task Group Dan A. Bonikowsky James L. Cope Michael I. Hammons Meng K. Lee Ernest K. Schrader Robert W. Cannon Luis H. Diaz Kenneth D. Hansen Gary R. Mass Glenn S. Tarbox Ahmed F. Chraibi Timothy P. Dolen James K. Hinds Robert F. Oury Stephen B. Tatro Allen J. Hulshizer Synopsis cause excessive seepage and shortening of the service life of the structure, or may be esthetically objectionable. Many of the principles in mass con- crete practice can also be applied to general concrete work whereby certain Mass concrete is “any volume of concrete with dimensions large enough to economic and other benefits may be realized. require that measures be taken to cope with generation of heat from hydra- tion of the cement and attendant volume change to minimize cracking.” The design of mass concrete structures is generally based on durability, This report contains a history of the development of mass concrete practice economy, and thermal action, with strength often being a secondary con- and discussion of materials and concrete mix proportioning, properties, cern.
    [Show full text]
  • Thermal Cracking of Concrete
    CIP 42- Thermal Cracking of Concrete WHAT is Thermal Cracking? Thermal cracking occurs due to excessive temperature dif- ferences within a concrete structure or its surroundings. The temperature difference causes the cooler portion to con- tract more than the warmer portion, which restrains the con- traction. Thermal cracks appear when the restraint results in tensile stresses that exceed the in-place concrete tensile strength. Cracking due to temperature can occur in concrete members that are not considered mass concrete. WHY Does Thermal Cracking Occur? Hydration of cementitious materials generates heat for sev- eral days after placement in all concrete members. This heat Thermal cracks in a thick slab dissipates quickly in thin sections and causes no problems. Courtesy CTLGroup In thicker sections, the internal temperature rises and drops slowly, while the surface cools rapidly to ambient tempera- temperature changes. Another factor is a temperature differ- ture. Surface contraction due to cooling is restrained by the ential between a mass concrete member and adjoining ele- hotter interior concrete that doesn’t contract as rapidly as ments. As the mass member cools from its peak temperature, the surface. This restraint creates tensile stresses that can the contraction is restrained by the element it is attached to, crack the surface concrete as a result of this uncontrolled resulting in cracking. Examples are thick walls or dams re- temperature difference across the cross section. In most strained by the foundation. cases thermal cracking occurs at early ages. In rarer instances Other Structures thermal cracking can occur when concrete surfaces are ex- Temperature cracking can occur in structures that are not posed to extreme temperature rapidly.
    [Show full text]
  • Research on Crack Control of Mass Concrete Structure
    Insight - Civil Engineering(2018.1) Original Research Article Research on Crack Control of Mass Concrete Structure Honglong Su,Dongtang Duan,Zhibin Lu School of Environment and Municipal Engineering, Tianjin Jiaotong University, Tianjin, China ABSTRACT With the development of economy in our country, the scale of construction has become more and more complicated. This cause the problem of mass concrete cracks in industrial and civil buildings increasingly prominent and become a fairly common problem. The problem of mass cracks in mass concrete is very complex and involves all aspects related to the engineering structure. The control of temperature cracks in mass concrete foundation is related to geotechnical, structural, building materials, construction, environment and other multi-disciplinary. The hydrothermal heat released by the mass concrete in the hardening process which produces a large temperature change, and the resulting of temperature stress is the main factor leading to the occurrence of cracks in the concrete, thus aff ecting the integrity of the structure, water resistance and durability, and become structural hidden dangers. Therefore, the mass concrete in the construction must consider the crack control. The reason and control measures of the temperature cracks of mass concrete are analyzed and summarized. According to the specifi c situation, these measures are applied to the concrete large-scale basic engineering construction, and the material selection, mixing ratio, admixture, construction arrangement and pouring process, conservation and other aspects to take a strict control measures. At the same time the basic position of the internal and external temperature diff erence was monitored. The temperature control measures and monitoring results taken for the basic engineering provide a reference for the construction of similar projects and provide the basis for further theoretical research KEYWORDS: mass concrete; crack control; hydration heat; temperature stress 1.
    [Show full text]
  • How to Make Concrete More Sustainable Harald Justnes1
    Journal of Advanced Concrete Technology Vol. 13, 147-154, March 2015 / Copyright © 2015 Japan Concrete Institute 147 Scientific paper How to Make Concrete More Sustainable Harald Justnes1 A selected paper of ICCS13, Tokyo 2013. Received 12 November 2013, accepted 16 February 2015 doi:10.3151/jact.13.147 Abstract Production of cement is ranking 3rd in causes of man-made carbon dioxide emissions world-wide. Thus, in order to make concrete more sustainable one may work along one or more of the following routes; 1) Replacing cement in con- crete with larger amounts of supplementary cementing materials (SCMs) than usual, 2) Replacing cement in concrete with combinations of SCMs leading to synergic reactions enhancing strength, 3) Producing leaner concrete with less cement per cubic meter utilizing plasticizers and 4) Making concrete with local aggregate susceptible to alkali silica reaction (ASR) by using cement replacements, thus avoiding long transport of non-reactive aggregate. 1 Introduction SCMs, also uncommon ones like calcined marl 2. Replacing cement in concrete with combinations of The cement industry world-wide is calculated to bring SCMs leading to synergic reactions enhancing about 5-8% of the total global anthropogenic carbon strength dioxide (CO2) emissions. The general estimate is about 3. Producing leaner concrete with less cement per cubic 1 tonne of CO2 emission per tonne clinker produced, if meter utilizing plasticizers. fossil fuel is used and no measures are taken to reduce it. 4. Making concrete with local aggregate susceptible to The 3rd rank is not because cement is such a bad mate- alkali silica reaction (ASR) by using cement re- rial with respect to CO2 emissions, but owing to the fact placements, thus avoiding long transport of non- that it is so widely used to construct the infrastructure reactive aggregate and buildings of modern society as we know it.
    [Show full text]
  • Silica Fume and Metakaolin As Supplementary Cementing Materials- a Review
    ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 6, Issue 10, October 2017 Silica Fume and Metakaolin as Supplementary Cementing Materials- A Review Syed Abuthahir 1, Nirmalkumar2 P.G. Student, Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, India1 Professor, Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, India2 ABSTRACT:The replacement of cement by various mineral admixtures as supplementary cementing materials for concrete has gained a global attention in recent years. This replacement becomes efficient not only by increasing the strength and durability of the concrete but also reduces the usage of the ordinary cement thereby curtailing the environmental hazardous due to cement manufacturing industries. This paper reviews the work carried out on the use of silica fume (SF) and Metakaolin (MK) as supplementary cementing materials as a partial replacement for cement. The literature demonstrates that both SF and MK are effective and causes significant improvement in various properties of the concrete in both fresh and harden state. KEYWORDS: Metakaolin, Silica Fume, Compressive Strength, Durability Properties. I.INTRODUCTION Major of the construction company relies on the concrete. Cement is major constituent of concrete. The annual global production of ordinary portland cement is about 3 Gt. Cement becomes a dominant binder due to its versatility, durability, and its demand increases dramatically. Even though it is a vital material, it production directly affects the environment by releasing 0.87t of carbon dioxide for every tonne of cement produced.
    [Show full text]
  • Item 421 Hydraulic Cement Concrete
    421 Item 421 Hydraulic Cement Concrete 1. DESCRIPTION Furnish hydraulic cement concrete for concrete pavements, concrete structures, and other concrete construction. 2. MATERIALS Use materials from prequalified sources listed on the Department website. Provide coarse and fine aggregates from sources listed in the Department’s Concrete Rated Source Quality Catalog (CRSQC). Use materials from non-listed sources only when tested and approved by the Engineer before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources. Do not combine approved material with unapproved material. 2.1. Cement. Furnish cement conforming to DMS-4600, “Hydraulic Cement.” 2.2. Supplementary Cementing Materials (SCM). Fly Ash. Furnish fly ash, ultra-fine fly ash (UFFA), and modified Class F fly ash (MFFA) conforming to DMS-4610, “Fly Ash.” Slag Cement. Furnish Slag Cement conforming to DMS-4620, “Slag Cement.” Silica Fume. Furnish silica fume conforming to DMS-4630, “Silica Fume.” Metakaolin. Furnish metakaolin conforming to DMS-4635, “Metakaolin.” 2.3. Cementitious Material. Cementitious materials are the cement and supplementary cementing materials used in concrete. 2.4. Chemical Admixtures. Furnish admixtures conforming to DMS-4640, “Chemical Admixtures for Concrete.” 2.5. Water. Furnish mixing and curing water that is free from oils, acids, organic matter, or other deleterious substances. Water from municipal supplies approved by the Texas Department of Health will not require testing. Provide test reports showing compliance with Table 1 before use when using water from other sources. Water that is a blend of concrete wash water and other acceptable water sources, certified by the concrete producer as complying with the requirements of both Table 1 and Table 2, may be used as mix water.
    [Show full text]
  • Cooling and Insulating Systems for Mass Concrete --`````,,,,``,,,`,,```,`,,,,,`-`-`,,`,,`,`,,`
    daneshlink.com ACI 207.4R-05 (Reapproved 2012) Cooling and Insulating Systems for Mass Concrete --`````,,,,``,,,`,,```,`,,,,,`-`-`,,`,,`,`,,`--- Reported by ACI Committee 207 Copyright American Concrete Institute Provided by IHS under license with ACI Licensee=University of Texas Revised Sub Account/5620001114, User=wer, srdtgert No reproduction or networking permitted without license from IHS Not for Resale, 01/26/2015 01:17:36 MST Daneshlink.com daneshlink.com First printing October 2005 Cooling and Insulating Systems for Mass Concrete Copyright by the American Concrete Institute, Farmington Hills, MI. All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ACI. The technical committees responsible for ACI committee reports and standards strive to avoid ambiguities, omissions, and errors in these documents. In spite of these efforts, the users of ACI documents occa- sionally find information or requirements that may be subject to more than one interpretation or may be incomplete or incorrect. Users who have suggestions for the improvement of ACI documents are requested to contact ACI. ACI committee documents are intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. Individuals who use this publication in any way assume all risk and accept total responsibility for the application and use of this information. All information in this publication is provided “as is” without warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose or non-infringement.
    [Show full text]
  • Proportioning for Mass Concrete
    Proportioning for Mass Concrete Darrell F. Elliot,FACI Technical Service Manager Buzzi Unicem USA What is Mass Concrete? ACI defines Mass Concrete as “any volume of concrete with dimensions large enough to require that measures be taken to cope with generation of heat from hydration of the cement and attendant volume change to minimize cracking.” ACI does not specify an exact minimum thickness, depends on many factors Hoover Dam - 660 ft (200 m) wide base Traditional Mass Concrete Mixes Low strength requirements 56 or 90 days to achieve strength Very large coarse aggregate Very low cement contents Type IV or Type II(MH) High SCM replacements Mat Foundations, Houston Volume PSI ENRON Building 11,000 5,000 5 Houston Center 8,500 6,000 1000 Main 12,000 M D Anderson (2) 12,000 Mass Concrete For mass placements, ACI 207 and U. S. Army Corps of Engineers recommend: Cement or combination of cement with GGBFS and/or fly ash that achieves a maximum Heat of Hydration of 70 cal/gm at 7 days. Critical Temperature Limits o o Tmax < 165 F (75 C) ∆∆∆T < 35 oF (20 oC) Why these Limits? o o Tmax < 165 F (75 C) Potential to bypass ettringite phase, resulting in DEF ∆∆∆T < 35 oF (20 oC) Thermal Stress of different expansion & contraction Heating and Cooling Initial heat generated As outside cools, inside The quicker the peak, remains hot. the higher the peak As inside cools, it (less cooling time) contracts & pulls away from perimeter, cracks Time-Temperature Plot Cracking in Top of Pile Cap Heat Energy Calculating the change in temperature in a system may be accomplished by using the following formula: Change in Temperature = Heat gained or lost .
    [Show full text]
  • Mechanical Properties of Glass Powder and Metakaolin in Concrete
    ISSN 2321 3361 © 2020 IJESC Research Article Volume 10 Issue No.8 Mechanical Properties of Glass Powder and Metakaolin in Concrete Mukund Kumar1, Ajay Kumar Singh2 M.Tech Scholar1, Assistant Professor2 Department of Civil Engineering SSTC-SSGI, Bhilai, India Abstract: The production of Portland cement releases significant amount of greenhouse gas, One ton of cement clinker production releases approximately one ton of carbon dioxide. Today many researches are going to utilize mineral admixtures for the replacement of cement, fine aggregate and coarse aggregate using industrial waste like Metakaolin, Fly ash, GGBS, copper sag and glass. Glass has a unique property; it can be recycled many times without changing its chemical properties. Million tones of glass discarded every year from houses and industries and for dumping they need grounds. The addition of glass powder and metakaolin increases the durability properties of concrete. The use of metakaolin and glass powder will give us advantage to save natural resources and in addition to that it will be economical to use it in concrete. In this research work the metakaolin was used to replace the cement in 10%, 20% and 30% and glass powder was used to replace the fine aggregate in 10%, 20%, 30% and 40%. The compressive strength test was carried out on specimen for 7 days and 28 days, compressive strength, split tensile strength and durability test for 28 days. Keywords: Glass Powder, Metakaolin, Compressive Strength, Split Tensile Strength, Flexural Strength, Durability Test. I. INTRODUCTION used. Sand passing through IS 4.75mm Sieve was used for casting all the specimens. The curosity of the concrete researchers in using waste or recycled materials in concrete is increasing because of the Corse Aggregate: emphasis placed on sustainable construction.
    [Show full text]
  • Partial Replacement Coarse Aggregate by EPS
    IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 17, Issue 4 Ser. IV (Jul. – Aug. 2020), PP 42-52 www.iosrjournals.org Partial Replacement Coarse Aggregate by EPS Rajesh Verma1, Ms. Nikita Jain2 1(Student of Civil Engineering Department, MIST Indore/ RGPV Bhopal, India) 2(Assistant professor Civil Engineering Department, MIST Indore/RGPV Bhopal, India) Abstract: Now a day’s concrete plays a major role in construction industry. Availability of construction material is less day by day. So we can introduce a new kind of material in construction industry to reduce the cost as well as user friendly material. The main objective of the project, by using the available waste material to introduced in concrete industry. Fully replacement of concrete is not possible, so we can made an attempt to develop partial replacement of concrete material. In the last few decades there has been rapid increase in the waste materials and by-products. Some of the industrial by-products like GGBS, fly ash, copper slag, steel slag, Expanded polystyrene (EPS) have been successfully replaced for cement and concrete in the construction industry. It reduces the consumption of natural resources. Steel slag is one of the materials that is considered as a by-product (waste material) obtained during the matte smelting and refining of copper. It has the physical properties similar to the fine aggregate, so it can be used as a replacement for fine aggregate in concrete. Likewise replacement of coarse aggregate is done by some materials, which makes the concrete light weight.
    [Show full text]
  • Selecting Measures to Prevent Deleterious Alkali-Silica Reaction in Concrete
    Selecting Measures to Prevent Deleterious Alkali-Silica Reaction in Concrete Rationale for the AASHTO PP65 Prescriptive Approach October 2012 Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document. Quality Assurance Statement The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-HIF-13-002 4. Title and Subtitle 5. Report Date October 2012 Selecting Measures to Prevent Deleterious Alkali-Silica Reaction in Concrete: Rationale for the AASHTO PP65 Prescriptive Approach 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Thomas, M.D.A., Fournier, B., Folliard, K.J. 9. Performing Organization Name and Address 10. Work Unit No. The Transtec Group, Inc. 6111 Balcones Drive Austin, TX 78731 11. Contract or Grant No. DTFH61-06-D-00035 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Office of Pavement Technology Federal Highway Administration 1200 New Jersey Avenue, DE Washington, DC 20590 14.
    [Show full text]