Process Engineering of Functional Metakaolin Based Geopolymers

Total Page:16

File Type:pdf, Size:1020Kb

Process Engineering of Functional Metakaolin Based Geopolymers Process engineering of functional metakaolin based geopolymers by Matteo Pernechele M.Sc., Università degli Studi di Padova, 2012 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy in The Faculty of Graduate and Postdoctoral Studies (Materials Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2018 © Matteo Pernechele, 2018 Abstract Geopolymers (GPs) are a class of inorganic materials which can be used as construction and refractory cements and as functional materials for environmental applications. GPs are low CO2 emissions binders with high durability that can replace traditional cementitious materials. However the effects and interactions of processing parameters on the different stages of GP setting (“geopolymerization”) are still under scrutiny and the molecular mechanisms and rate limiting steps controlling the setting kinetics are unknown. The crystallization in GPs, which ultimately controls their performance in advanced applications such as water purification and toxic waste encapsulation, is a poorly investigated topic. This dissertation provides new experimental evidences on the role of chemical composition and curing process on metakaolin-based GPs. Steady state and dynamic rheological studies, contact angle tests, microstructural (SEM), structural (XRD and FTIR) and mechanical analyses lead to better understanding of the fundamental transformations occurring during geopolymerization. GPs were seeded with different oxides and zeolites to determine the rate limiting step, increase the reaction rate and control the crystallization. This work contributes to clarification the complex effects of soluble silica on the geopolymerization process. It is shown that soluble and colloidal silicates (such as Na4SiO4 and Na2SiO3) can act as seeding agents, changing the geopolymerization rate limiting step at temperatures T≥35°C. However, they also slow down the reaction rate, possibly by forming passivation layers on the metakaolin particles, thus producing a more chemically stable and mechanically stronger amorphous gel. Silicates also decrease the water requirement in GPs and thus the porosity. Under certain conditions silicates can increase the percentage of crystalline Faujasite in GPs, but the crystallization process requires higher curing temperatures and times (T>40°C and t>4 days, depending on the amount of silicates). The alkali metals have also a structure- directing role in crystallization of GPs in the form of zeolite, favoring Faujasite structure. Water has a templating effect in GPs, favoring the structure of zeolite LTA-type over hydrosodalite. This work also illustrates the compromises that need to be made when selecting appropriate processing parameters to tailor the rheology, structure and properties of geopolymers for specific applications. ii Lay summary This work studies reactions between inorganic clay-based materials with different alkaline solutions and additives to produce environmentally friendly cementitious materials, called “Geopolymers”. Such materials have both conventional and advanced applications, and in some areas may replace Ordinary Portland Cement. The characteristics of the resulting geopolymers were studied, in terms of their viscosity, chemical bonding, crystallinity and compressive strength. It was found that the chemistry of precursor solutions and the processing temperature have a profound effect on the reaction and on the nature of the final geopolymer materials. The use of processing additives brought light on the reaction mechanisms, thus enabling a deeper understanding of the resulting material. Guidelines were developed to tune the properties of the geopolymeric cement to specific applications. iii Preface This dissertation is original, unpublished, and independent work by the author. None of the text is taken directly from previously published articles. -M. Pernechele iv Table of contents Abstract ..................................................................................................................................... ii Lay summary ........................................................................................................................... iii Preface ..................................................................................................................................... iv Table of contents....................................................................................................................... v List of tables ............................................................................................................................ xi List of figures ......................................................................................................................... xiii List of abbreviations and symbols ........................................................................................ xxii Acknowledgements............................................................................................................... xxv Dedication ............................................................................................................................ xxvi 1. Introduction........................................................................................................................... 1 1.1. Role of geopolymers in sustainable development ......................................................... 1 1.2. Inorganic binders ........................................................................................................... 2 1.3. Motivation ...................................................................................................................... 7 2. Literature review ................................................................................................................... 8 2.1. Introduction to geopolymers .......................................................................................... 8 2.1.1. Geopolymers and their terminology ........................................................................ 8 2.1.2. Types of aluminosilicate geopolymers .................................................................. 12 2.1.3. Geopolymers properties and applications ............................................................. 15 2.2. Metakaolin - based geopolymers (MK-based GP) ....................................................... 20 2.2.1. Historical perspective ............................................................................................ 20 2.2.2. The solid precursors to GP: metakaolin ................................................................ 23 2.2.3. The alkaline solutions ............................................................................................ 24 2.2.4. Geopolymerization reactions ................................................................................. 28 v 2.2.4.1. Conceptual models for geopolymerization reactions ..................................... 29 2.2.4.2. Dissolution and precipitation reactions in cementitious systems ................... 32 2.2.4.2.1. Thermodynamic and kinetic of complex reactions ................................. 32 2.2.4.2.2. Heterogeneous reactions ......................................................................... 34 2.2.4.3. Metakaolin dissolution.................................................................................... 36 2.2.4.4. Aluminosilicates condensation in solutions ................................................... 40 2.2.4.5. Kinetic models of geopolymerization ............................................................. 43 2.2.4.6. Additives and Seeding .................................................................................... 46 2.2.5. GP technology development: composition and properties optimization.............. 48 2.3. Zeolites ......................................................................................................................... 51 2.3.1. Synthesis, structure and applications..................................................................... 51 2.3.2. Induction time and kinetics of crystallization of zeolites ...................................... 55 2.3.3. Synthesis of zeolites from metakaolin................................................................... 57 2.4. Advanced GP applications and geopolymer crystallinity ............................................ 59 3. Objectives ........................................................................................................................... 63 4. Approach and methodology ................................................................................................ 64 4.1. Materials, synthesis and preparation methods ............................................................. 64 4.1.1. Raw material and metakaolin characterization ..................................................... 64 4.1.2. Geopolymer synthesis ........................................................................................... 67 4.2. Analysis methods ......................................................................................................... 67 4.2.1. Rheological characterization ................................................................................. 67 4.2.1.1. Viscosity ......................................................................................................... 68 4.2.1.2. Steady-state measurements ............................................................................
Recommended publications
  • Project Manual
    PROJECT MANUAL OWNER or TENANT O’Reilly Automotive Stores, Inc., A Missouri Corporation (formerly known as O’Reilly Automotive, Inc.) Corporate Offices 233 South Patterson Springfield, MO 65802 417-862-2674 Phone New O’Reilly Auto Parts Store 1101 N. Illinois Street Harrisburg, Arkansas Date: April 26, 2021 ARCHITECT pb2 architecture + engineering 2809 Ajax Avenue, Suite 100 Rogers, Arkansas 72758 Project Number: 2021.0102 DOCUMENT 00 01 05 CERTIFICATION PAGE HARRISBURG, AR TO THE BEST OF MY PROFESSIONAL KNOWLEDGE AND BELIEF, THESE CONTRACT DOCUMENTS HAVE BEEN PREPARED IN ACCORDANCE WITH LOCAL AND STATE CODE REQUIREMENTS. ARCHITECT Scott Joseph Broadbent 2809 Ajax Avenue, Suite 100 Rogers, AR 72758 Architect of Record Date CERTIFICATION PAGE (Revised 09/01/17) 00 01 05-1 MECHANICAL ENGINEER Josh Dale McCall 2809 Ajax Avenue, Suite 100 Rogers, AR 72758 Mechanical Engineer of Record Date CERTIFICATION PAGE (Revised 09/01/17) 00 01 05-1 ELECTRICAL ENGINEER Keith Allen Williams 2809 Ajax Avenue, Suite 100 Rogers, AR 72758 Electrical Engineer of Record Date CERTIFICATION PAGE (Revised 09/01/17) 00 01 05-1 DOCUMENT 00 01 10 TABLE OF CONTENTS HARRISBURG, AR INTRODUCTORY INFORMATION 00 01 01 Project Title Page 00 01 05 Certification Page (Revised 09/01/17) 00 01 10 Table of Contents (Revised 02/21/20) 00 01 15 List of Drawings (Revised 07/10/18) BIDDING REQUIREMENTS, CONTRACT FORMS, AND CONDITIONS OF THE CONTRACT 00 21 00 Instructions to Bidders (Revised 06/26/13) 00 31 00 Information Available to Bidders (Revised 04/25/19) 00 40 00 Bid Form
    [Show full text]
  • Classic Gray a Stylish Terrace at a New Italian Auditorium Secrets of Self-Levelers
    2010/11 Decorative Concrete Buyer’s Guide Vol. 10 No. 4 • May/June 2010 • $6.95 ® Classic Gray A stylish terrace at a new Italian auditorium Secrets of Self-Levelers MARCH 15–18, 2011 NASHVILLE www.ConcreteDecorShow.com A Professional Trade Publications Magazine Have You Topp e d Yo u r s e l f Lately? Concrete Decor magazine is seeking submissions for the 2010 Concrete Countertop Design Competition. Submit your favorite projects today! Countertop submissions may be submitted in two categories: Residential and Commercial/Public. Each entry will be evaluated by a panel of experts on the following criteria: - Aesthetic appeal - Functionality - Creativity and originality - Design challenges that were overcome - How well the countertop complements its surroundings Each entry must include a brief explanation of the project, describing the ways in which it meets these criteria. Entries must also include print-quality photos of the finished project. Winners will receive prize packages worth more than $1,000 supplied by our industry- leading sponsors. Note: Only projects completed on or after January 1, 2009, are eligible. Deadline: All entries must be submitted by July 14, 2010. To enter: Access the nomination form at www.concretedecor.net/Forms/ Concrete_Countertop_Contest.cfm Questions? Contact: [email protected] (877) 935-8906 x204 SPONSORED BY Publisher’s Letter Dear Readers, I was talking with one of our advertisers this past week, and we agreed that business is steadily improving. Refl ecting on our days as contractors, May/June 2010 • Volume 10 we also were of the opinion that any contractor who Issue No. 4 • $6.95 wants to be busy will fi nd the work.
    [Show full text]
  • General Product Catalogue
    Solutions In Concrete Construction GENERAL PRODUCT CATALOGUE Other Available Catalogues • Concrete Forming Systems • Bridge Deck Forming and Hanging Systems • Precast Concrete Products • Concrete Anchoring Systems • Rock Anchoring and Bolt Systems www.nca.ca Call Us Toll Free: 1-888-777-9272 LOCATIONS Alberta Western Division Calgary Edmonton Red Deer 14760 - 116th Avenue NW 3834 54th Avenue S. E. 14760 - 116th Avenue NW #5, 7803 - 50 Avenue With over 45 years of experience, National Concrete Accessories (NCA), is Canada’s Edmonton, AB T5M3G1 Calgary, AB T2C2K9 Edmonton, AB T5M3G1 Red Deer, AB T4P1M8 leading manufacturer and distributor of concrete accessories. With 14 branches across Tel: (780) 451-1212 Tel: (403) 279-7089 Tel: (780) 451-1212 Tel: (403) 342-0210 Canada, including manufacturing plants in Toronto and Edmonton, we are your one-stop Fax: (780) 455-0827 Fax: (403) 279-4397 Fax: (780) 455-0827 Fax: (403) 341-3245 shop for concrete form hardware, accessories and construction products. Specializing in product variety, quality and superior service, we distribute a complete line of construction British Columbia and restoration products, including tools & equipment, decorative concrete, and building envelope products. NCA works in partnership with premium brands such as, Acrow- Burnaby Kamloops Kelowna Prince George Richmond, DOW, Sika, Makita, W.R. Meadows, Bosch, Mapei, Titebond, UCAN, 7885 Venture Street 855 Laval Crescent 1948 Dayton Street #101- 2050 Robertson Road Husqvarna, Xypex, Butterfield Color, Marshalltown and Chapin to provide you with the Burnaby, BC V5A1V1 Kamloops, BC V2C5P2 Kelowna, BC V1Y7W6 Prince George, BC V2N1X6 Tel: (604) 435-6700 Tel: (250) 374-6295 Tel: (250) 717-1616 Tel: (250) 614-1212 best cost-effective solutions to meet your concrete job requirements.
    [Show full text]
  • Makes It Easy
    PROUDLY SUPPORTED BY PROUD MEDIA PARTNER CONCRETE INSTITUTE of AUSTRALIA CONSTRUCTION ENGINEERING AUSTRALIA APRIL 2017 V3.02 ACRS MAKES IT EASY CONSTRUCTION Expert, Independent, CIVIL WORKS Third-Party Steel Certification CIVIL ENGINEERING to Australian and PRINT POST APPROVED - 100001889 New Zealand Standards Keynote Speakers Professor Tim Ibell Professor Karen Scrivener Ms Louise Adams Professor Doug Hooton Mr Peter McBean Professor Des Bull Invited Speakers Mr Mike Schneider Dr Stuart Matthews Conference Registration Now Open Concrete 2017 includes • Quality Technical Program Early Bird Registration pricing • Cement and Durability Workshops will close 26 June 2017 • Huge Trade Exhibition • Gala “Awards for Excellence in Concrete” Dinner • Social and Networking Events 28th Biennial Conference hosted by Conference Partner www.concrete2017.com.au APRIL 2017 contents Volume 3 Number 2 Published by: 2 Editorial Editorial and Publishing Consultants Pty Ltd ABN 85 007 693 138 PO Box 510, Broadford 4 Industry News Victoria 3658 Australia Phone: 1300 EPCGROUP (1300 372 476) Int’l: +61 3 5784 3438 Fax: +61 3 5784 2210 10 Cover Feature: ACRS www.epcgroup.com Publisher and Managing Editor Project Brief: State Library Victoria Anthony T Schmidt 14 8 Phone: 1300 EPCGROUP (1300 372 476) Mobile: 0414 788 900 Email: [email protected] 16 Performance Flooring Deputy Editor Rex Pannell Mobile: 0433 300 106 20 Acoustic Design Email: [email protected] National Advertising Sales Manager 22 Special Report: IFS Servitisation Yuri Mamistvalov Phone: 1300 EPCGROUP
    [Show full text]
  • Sika Annual Report 2011 1 → Content
    Online Annual Report 2011 → www.annualreport.sika.com 2011 � Sika Annual Report For Jean Nouvel, a 32000 m² façade clad with 6500 perfectly jointed glass panels. � For Daniel Libeskind, a 1400 m² roof that Freedom of Design Acceleration The precision-designed Sikasil® silicone joints are essential to Sika superplasticizers and shrinkage-reducing admixtures were the glass façade's filigree aesthetic, rigorous color scheme and instrumental in delivering a handsome fair-faced concrete finish environmental control performance. and to keep the tight construction schedule. reads as a fifth façade, sloping at 37° from 90 to 180 meters in height. Turning architects’ visions into reality, drawing on in-depth experience and know-how to translate ideas into buildings and works of art – that is one side to Sika's definition of customer focus. The other is to offer variety, deliver quality and build trust. In all aspects of technology, materials and practical application. Its mission is to create fresh scope for ideas, formal designs and connecting assemblies which, in many cases, are still waiting to be discovered. Sika Annual Report 2011 1 → Content Content Robust Growth Customer Focus 3 Letter to Shareholders 66 Freedom of Design 72 i-Cure Technology Investing in Sika 75 Acceleration 7 Stock price development 9 Risk Management Financial Report 80 Consolidated Financial Statements Strategy & Focus 85 Appendix to the Consolidated 13 Group Strategy Financial Statements 14 The Sika Brand 133 Five-Year Reviews 15 Customers & Markets 140 Sika AG Financial
    [Show full text]
  • Concrete Polishing System 3
    EXIT a. Remove existing floor coatings and level floor by grinding with 80-grit metal-bonded diamonds. Depending on the existing flooring conditions. Substitutions: This is a closed specification, no substitutions allowed for system or materials provided by these Multiple passes may be required. vendors. Vendor contact names could possibly change, if so, ask for new contact for Family Dollar account. 2. Apply concrete densifier to deeply saturate floor. CONCRETE POLISHING SYSTEM 3. Floor Closure Polishing: 2.02 EQUIPMENT TO BE USED FOR INSTALLATION a. Remove 80-grit metal-bonded diamond scratches by grinding 100-grit resin-bonded diamonds. Multiple passes may be required. PART 1 GENERAL b. Remove 100-grit resin-bonded diamond scratches by grinding 400-grit resin-bonded diamonds. Multiple passes may be required. A. Floor Grinder: c. Achieve light-reflective finish when viewed from a distance of 30 feet by grinding with 800-grit resin-bonded diamonds. Multiple passes may be 1.01 SUMMARY 1. Model: Concrete Polishing Solutions "G-320". (or equivalent) required. 2. Type: Multi-orbital, planetary-action, opposing-rotational, diamond-headed floor grinder. 4. Perimeter Polishing: A. Work in this section applies to polishing concrete floor surfaces to a desired finish with the incorporation of concrete densifier(s). 3. Weight: 850 pounds. a. Maintain a 6" unfinished perimeter around Sales Floor. When completed with polishing, paint ´ strip semi-glass Low V.O.C. Black by Benjamin 4. Grinding Pressure: 675 pounds. Moore. B. Related Work: 5. Grinding Width: 32 inches. b. 0DLQWDLQDXQILQLVKHGSHULPHWHUDURXQG6DOHV6XSSRUW$UHD)ORRU:KHQFRPSOHWHGZLWKSROLVKLQJSDLQW´VWULSVHPLJODVV/RZ92& 1. Section Cast in Place Concrete 6.
    [Show full text]
  • How to Make Concrete More Sustainable Harald Justnes1
    Journal of Advanced Concrete Technology Vol. 13, 147-154, March 2015 / Copyright © 2015 Japan Concrete Institute 147 Scientific paper How to Make Concrete More Sustainable Harald Justnes1 A selected paper of ICCS13, Tokyo 2013. Received 12 November 2013, accepted 16 February 2015 doi:10.3151/jact.13.147 Abstract Production of cement is ranking 3rd in causes of man-made carbon dioxide emissions world-wide. Thus, in order to make concrete more sustainable one may work along one or more of the following routes; 1) Replacing cement in con- crete with larger amounts of supplementary cementing materials (SCMs) than usual, 2) Replacing cement in concrete with combinations of SCMs leading to synergic reactions enhancing strength, 3) Producing leaner concrete with less cement per cubic meter utilizing plasticizers and 4) Making concrete with local aggregate susceptible to alkali silica reaction (ASR) by using cement replacements, thus avoiding long transport of non-reactive aggregate. 1 Introduction SCMs, also uncommon ones like calcined marl 2. Replacing cement in concrete with combinations of The cement industry world-wide is calculated to bring SCMs leading to synergic reactions enhancing about 5-8% of the total global anthropogenic carbon strength dioxide (CO2) emissions. The general estimate is about 3. Producing leaner concrete with less cement per cubic 1 tonne of CO2 emission per tonne clinker produced, if meter utilizing plasticizers. fossil fuel is used and no measures are taken to reduce it. 4. Making concrete with local aggregate susceptible to The 3rd rank is not because cement is such a bad mate- alkali silica reaction (ASR) by using cement re- rial with respect to CO2 emissions, but owing to the fact placements, thus avoiding long transport of non- that it is so widely used to construct the infrastructure reactive aggregate and buildings of modern society as we know it.
    [Show full text]
  • Silica Fume and Metakaolin As Supplementary Cementing Materials- a Review
    ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 6, Issue 10, October 2017 Silica Fume and Metakaolin as Supplementary Cementing Materials- A Review Syed Abuthahir 1, Nirmalkumar2 P.G. Student, Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, India1 Professor, Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, India2 ABSTRACT:The replacement of cement by various mineral admixtures as supplementary cementing materials for concrete has gained a global attention in recent years. This replacement becomes efficient not only by increasing the strength and durability of the concrete but also reduces the usage of the ordinary cement thereby curtailing the environmental hazardous due to cement manufacturing industries. This paper reviews the work carried out on the use of silica fume (SF) and Metakaolin (MK) as supplementary cementing materials as a partial replacement for cement. The literature demonstrates that both SF and MK are effective and causes significant improvement in various properties of the concrete in both fresh and harden state. KEYWORDS: Metakaolin, Silica Fume, Compressive Strength, Durability Properties. I.INTRODUCTION Major of the construction company relies on the concrete. Cement is major constituent of concrete. The annual global production of ordinary portland cement is about 3 Gt. Cement becomes a dominant binder due to its versatility, durability, and its demand increases dramatically. Even though it is a vital material, it production directly affects the environment by releasing 0.87t of carbon dioxide for every tonne of cement produced.
    [Show full text]
  • Determining the Slag Fraction, Water/Binder Ratio and Degree of Hydration in 2 Hardened Cement Pastes 3 4 * 5 M.H.N
    Cement & Concrete Research (2014) 56, 171-181 1 Determining the slag fraction, water/binder ratio and degree of hydration in 2 hardened cement pastes 3 4 * 5 M.H.N. Yio , J.C. Phelan, H.S. Wong and N.R. Buenfeld 6 7 8 Concrete Durability Group, Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, 9 UK 10 11 12 Abstract 13 14 15 A method for determining the original mix composition of hardened slag-blended cement-based materials based on 16 analysis of backscattered electron images combined with loss on ignition measurements is presented. The method does 17 not require comparison to reference standards or prior knowledge of the composition of the binders used. Therefore, it 18 is well-suited for application to real structures. The method is also able to calculate the degrees of reaction of slag and 19 cement. Results obtained from an experimental study involving sixty samples with a wide range of water/binder (w/b) 20 ratios (0.30 to 0.50), slag/binder ratios (0 to 0.6) and curing ages (3 days to 1 year) show that the method is very 21 promising. The mean absolute errors for the estimated slag, water and cement contents (kg/m3), w/b and s/b ratios were 22 9.1%, 1.5%, 2.5%, 4.7% and 8.7%, respectively. 91% of the estimated w/b ratios were within 0.036 of the actual values. 23 24 25 Keywords: Backscattered electron imaging; Image analysis; Slag; Water-binder ratio; Degree of hydration 26 27 28 29 30 31 32 * Corresponding author.
    [Show full text]
  • Item 421 Hydraulic Cement Concrete
    421 Item 421 Hydraulic Cement Concrete 1. DESCRIPTION Furnish hydraulic cement concrete for concrete pavements, concrete structures, and other concrete construction. 2. MATERIALS Use materials from prequalified sources listed on the Department website. Provide coarse and fine aggregates from sources listed in the Department’s Concrete Rated Source Quality Catalog (CRSQC). Use materials from non-listed sources only when tested and approved by the Engineer before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources. Do not combine approved material with unapproved material. 2.1. Cement. Furnish cement conforming to DMS-4600, “Hydraulic Cement.” 2.2. Supplementary Cementing Materials (SCM). Fly Ash. Furnish fly ash, ultra-fine fly ash (UFFA), and modified Class F fly ash (MFFA) conforming to DMS-4610, “Fly Ash.” Slag Cement. Furnish Slag Cement conforming to DMS-4620, “Slag Cement.” Silica Fume. Furnish silica fume conforming to DMS-4630, “Silica Fume.” Metakaolin. Furnish metakaolin conforming to DMS-4635, “Metakaolin.” 2.3. Cementitious Material. Cementitious materials are the cement and supplementary cementing materials used in concrete. 2.4. Chemical Admixtures. Furnish admixtures conforming to DMS-4640, “Chemical Admixtures for Concrete.” 2.5. Water. Furnish mixing and curing water that is free from oils, acids, organic matter, or other deleterious substances. Water from municipal supplies approved by the Texas Department of Health will not require testing. Provide test reports showing compliance with Table 1 before use when using water from other sources. Water that is a blend of concrete wash water and other acceptable water sources, certified by the concrete producer as complying with the requirements of both Table 1 and Table 2, may be used as mix water.
    [Show full text]
  • Feasibility Study of Functionalized Graphene for Compatibility With
    Feasibility study of functionalized graphene for compatibility with cement hydrates and reinforcement steel Master of Science Thesis in the Master’s Program Structural Engineering and Building Technology SOFIA SIDERI Department of Civil and Environmental Engineering Division of Building Technology Building Materials CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2014 Master’s Thesis 2014:93 MASTER’S THESIS 2014:93 Feasibility study of functionalized graphene for compatibility with cement hydrates and reinforcement steel Master of Science Thesis in the Master’s Program Structural Engineering and Building Technology SOFIA SIDERI Department of Civil and Environmental Engineering Division of Building Technology Building Materials CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2014 Feasibility study of functionalized graphene for compatibility with cement hydrates and reinforcement steel Master of Science Thesis in the Master’s Program SOFIA SIDERI © SOFIA SIDERI, 2014 Examensarbete / Institutionen för bygg- och miljöteknik, Chalmers tekniska högskola 2014:93 Department of Civil and Environmental Engineering Division of Building Technology Building Materials Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone: + 46 (0)31-772 1000 Cover: Graphene’s structure Department of Civil and Environmental Engineering Gothenburg, Sweden, 2014 Feasibility study of functionalized graphene for compatibility with cement hydrates and reinforcement steel SOFIA SIDERI Department of Civil and Environmental Engineering Division of Building Technology Building Materials Chalmers University of Technology Abstract Cement-based concrete is a widely used material for a great variety of constructions. Although, cement has great properties and high performance, its intrinsic brittleness is a weakness that requires further investigation for improvement. Graphene demonstrates a number of excellent properties, such as high flexibility, 1 TPa Young’s modulus, 130 GPa tensile strength, high electrical and thermal conductivity.
    [Show full text]
  • Formation of Polymer Micro-Agglomerations in Ultralow-Binder-Content Composite Based on Lunar Soil Simulant
    Available online at www.sciencedirect.com ScienceDirect Advances in Space Research 61 (2018) 830–836 www.elsevier.com/locate/asr Formation of polymer micro-agglomerations in ultralow-binder-content composite based on lunar soil simulant Tzehan Chen a, Brian J. Chow b, Ying Zhong a, Meng Wang b, Rui Kou b, Yu Qiao a,b,⇑ a Program of Materials Science and Engineering, University of California – San Diego, La Jolla, CA 92093, USA b Department of Structural Engineering, University of California – San Diego, La Jolla, CA 92093-0085, USA Received 9 August 2017; received in revised form 25 October 2017; accepted 27 October 2017 Available online 6 November 2017 Abstract We report results from an experiment on high-pressure compaction of lunar soil simulant (LSS) mixed with 2–5 wt% polymer binder. The LSS grains can be strongly held together, forming an inorganic-organic monolith (IOM) with the flexural strength around 30–40 MPa. The compaction pressure, the number of loadings, the binder content, and the compaction duration are important factors. The LSS-based IOM remains strong from À200 °C to 130 °C, and is quite gas permeable. Ó 2017 COSPAR. Published by Elsevier Ltd. All rights reserved. Keywords: Binder content; Lunar regolith; Structural material; In-situ resource utilization 1. Introduction A major component of lunar soil is silica. While, once heated to above 1200 °C, silica grains can be fused In the next a few decades, building large-scale lunar together, the thermal processing consumes a large amount bases and/or research facilities on the Moon will probably of energy (Taylor and Meek, 2005).
    [Show full text]