Mathematical Events of the Twentieth Century Mathematical Events of the Twentieth Century

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Events of the Twentieth Century Mathematical Events of the Twentieth Century Mathematical Events of the Twentieth Century Mathematical Events of the Twentieth Century Edited by A. A. Bolibruch, Yu.S. Osipov, and Ya.G. Sinai 123 PHASIS † A. A. Bolibruch Ya . G . S i n a i University of Princeton Yu. S. Osipov Department of Mathematics Academy of Sciences Washington Road Leninsky Pr. 14 08544-1000 Princeton, USA 117901 Moscow, Russia e-mail: [email protected] e-mail: [email protected] Editorial Board: V.I. Arnold A. A. Bolibruch (Vice-Chair) A. M. Vershik Yu. I. Manin Yu. S. Osipov (Chair) Ya. G. Sinai (Vice-Chair) V. M . Ti k h o m i rov L. D. Faddeev V.B. Philippov (Secretary) Originally published in Russian as “Matematicheskie sobytiya XX veka” by PHASIS, Moscow, Russia 2003 (ISBN 5-7036-0074-X). Library of Congress Control Number: 2005931922 Mathematics Subject Classification (2000): 01A60 ISBN-10 3-540-23235-4 Springer Berlin Heidelberg New York ISBN-13 978-3-540-23235-3 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg and PHASIS Moscow 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro- tective laws and regulations and therefore free for general use. Set for publishing by PHASIS using a special LATEX macro package Cover design: Erich Kirchner, Heidelberg Printed on acid-free paper 46/3142/YL - 5 4 3 2 1 0 Preface Russian mathematics (later Soviet mathematics, and Russian mathematics once again) occupies a special place in twentieth-century mathematics. In addition to its well-known achievements, Russian mathematics established a unique style of research based on the existence of prominent mathematical schools. These schools were headed by recognized leaders, who became famous due to their talents and outstanding contributions to science. The present collection is intended primarily to gather in one book the tes- timonies of the participants in the development of mathematics over the past century. In their articles the authors have expressed their own points of view on the events that took place. The editors have not felt that they had a right to make any changes, other than stylistic ones, or to add any of their own commentary to the text. Naturally, the points of view of the authors should not be construed as those of the editors. The list of mathematicians invited to participate in the present edition was quite long. Unfortunately, some of the authors for various reasons did not accept our invitation, and regretfully a number of areas of research are not fully represented here. Nevertheless, the material that has been assembled is of great value not only in the scientific sense, but also in its historical context. We wish to express our gratitude to all the authors who contributed. We hope that this collection will induce other authors to write their memoirs of mathematical events of the twentieth century which they witnessed and par- ticipated in. This will open a possibility for a continuation of the present edition. We are very glad to thank Owen de Lange for his help in the preparation of the English edition of this book. The Editors P. S. A. A. Bolibruch played a very important role in preparing this book. His untimely death was a great shock and unrepairable loss for all people who were fortunate to work with him. Heidelberg, 2005 Moscow, 2005 Contents Preface..................................... V D. V.Anosov Dynamical Systems in the 1960s: The Hyperbolic Revolution . 1 V. I. A rn old From Hilbert’s Superposition Problem to Dynamical Systems . 19 A. A. Bolibruch Inverse Monodromy Problems of the Analytic Theory of Differential Equations.................................... 49 L. D. Faddeev What Modern Mathematical Physics Is Supposed to Be . 75 R. V.Gamkrelidze DiscoveryoftheMaximumPrinciple .................... 85 Yu.S. Il’yashenko The Qualitative Theory of Differential Equations in the Plane . 101 P.S. Krasnoshchekov Computerization...Let’sBeCareful.................... 133 V.A. Marchenko The Generalized Shift, Transformation Operators, and Inverse Problems . 145 V. P. Maslov Mathematics and the Trajectories of Typhoons . 163 Yu. V.Matiyasevich Hilbert’s Tenth Problem: Diophantine Equations in the Twentieth Century 185 V.D. Milman Observations on the Movement of People and Ideas in Twentieth-Century Mathematics.................................. 215 VIII Contents E. F.Mishchenko About Aleksandrov, Pontryagin and Their Scientific Schools . 243 Yu. V.Nesterenko Hilbert’sSeventhProblem .......................... 269 S. M. Nikol’skii The Great Kolmogorov . 283 A. N. Parshin Numbers as Functions: The Development of an Idea in the Moscow School of Algebraic Geometry . 297 A. A. Razborov ? The P=NP-Problem: A View from the 1990s . 331 L. P.Shil’nikov Homoclinic Trajectories: From Poincare´ to the Present . 347 A. N. Shiryaev From “Disorder” to Nonlinear Filtering and Martingale Theory . 371 Ya. G. Sinai How Mathematicians and Physicists Found Each Other in the Theory of Dynamical Systems and in Statistical Mechanics . 399 V.M. Tikhomirov Approximation Theory in the Twentieth Century . 409 A. M. Vershik The Life and Fate of Functional Analysis in the Twentieth Century . 437 A. G. Vitushkin HalfaCenturyAsOneDay ......................... 449 V.S. Vladimirov Nikolai Nikolaevich Bogolyubov — Mathematician by the Grace of God 475 V.I. Yudovich Global Solvability Versus Collapse in the Dynamics of an Incompressible Fluid ...................................... 501 NameIndex .................................. 529 D. V.Anosov Dynamical Systems in the 1960s: The Hyperbolic Revolution Translated by R. Cooke Probably everyone would agree that the theory of dynamical systems underwent a profound change during the 1960s, that its general features as then formed have been retained to the present time despite significant changes in content, and that this theory turned into a separate discipline at that time, having been up to that point a branch of the theory of ordinary differential equations. Here I intend to discuss certain events of this period, after which I shall say a few words about what came after. The theory of dynamical systems consists of three branches, corresponding to the general character of the objects and questions it considers: differential dynamics — the theory of smooth dynamical systems, the ergodic theory — the theory of metric dynamical systems (in the sense of measure theory), and topo- logical dynamics — the theory of topological (continuous but not differentiable) dynamical systems. 1 1 These explanations of the subject matter of each of these three parts, being rather general and brief, are not entirely accurate. Thus, in reality the first part also encompasses one-dimensional dynamics, including real dynamics, while the mappings considered in the last part are nonsmooth and even have discontinuities. Such failure of the subject matter of real one-dimensional dynamics to comply with the norms of the theory of smooth dynamical systems is compensated by their conceptual proximity. The picture is different for symplectic systems. They have not lost their 2 D. V.Anosov The rise of dynamical systems as a separate discipline was due mostly to two events in differential dynamics: the development of KAM theory (its seeds were planted earlier, but did not immediately receive wide development) and the “hyperbolic revolution.” The chronology of all this is framed by the penetration of ideas of probabilistic origin into ergodic theory: the entropic theory arose (and immediately began to develop vigorously) in the mid-1950s. The Ornstein 2 theory (which within the limits of its applicability sometimes establishes an even closer connection of dynamical systems with the most ordinary random processes such as coin tossing than does the entropic theory, while at other times it points up subtle differences between them) arose in the 1970s. It should be mentioned that two topics vary with particular vigor in the theory of dynamical systems. 3 In their “purest” form they occur in differential dynamics as quasi-periodicity, for which a certain regularity is characteristic, and as hyperbolicity, which is connected with those phenomena that are descrip- tively named “quasi-randomness,” “stochasticity,” or “chaos” (see the article of Yoccoz [1]). The use of spectral concepts and methods in ergodic theory, which began as early as the 1930s, can be regarded as a sort of implementation (in a suitable context) of the first topic. 4 The second topic found an adequate expres- sion in ergodic theory just in the 1950s and 1970s, when the entropic theory and the Ornstein theory arose. Kolmogorov, whose name provided the first letter in the acronym KAM, was the only one at that time who made an equally large contribution to the study of both regular and chaotic motions
Recommended publications
  • Nikolay Luzin, His Students, Adversaries, and Defenders (Notes
    Nikolay Luzin, his students, adversaries, and defenders (notes on the history of Moscow mathematics, 1914-1936) Yury Neretin This is historical-mathematical and historical notes on Moscow mathematics 1914-1936. Nikolay Luzin was a central figure of that time. Pavel Alexandroff, Nina Bari, Alexandr Khinchin, Andrey Kolmogorov, Mikhail Lavrentiev, Lazar Lyusternik, Dmitry Menshov, Petr Novikov, Lev Sсhnirelman, Mikhail Suslin, and Pavel Urysohn were his students. We discuss the time of the great intellectual influence of Luzin (1915-1924), the time of decay of his school (1922-1930), a moment of his administrative power (1934-1936), and his fall in July 1936. But the thing which served as a source of Luzin’s inner drama turned out to be a source of his subsequent fame... Lazar Lyusternik [351] Il est temps que je m’arr ete: voici que je dis, ce que j’ai d´eclar´e, et avec raison, ˆetre inutile `adire. Henri Lebesgue, Preface to Luzin’s book, Leˇcons sur les ensembles analytiques et leurs applications, [288] Прошло сто лет и что ж осталось От сильных, гордых сих мужей, Столь полных волею страстей? Их поколенье миновалось Alexandr Pushkin ’Poltava’ There is a common idea that a life of Nikolay Luzin can be a topic of a Shakespeare drama. I am agree with this sentence but I am extremely far from an intention to realize this idea. The present text is an impassive historical-mathematical and historical investigation of Moscow mathematics of that time. On the other hand, this is more a story of its initiation and turning moments than a history of achievements.
    [Show full text]
  • Naming Infinity: a True Story of Religious Mysticism And
    Naming Infinity Naming Infinity A True Story of Religious Mysticism and Mathematical Creativity Loren Graham and Jean-Michel Kantor The Belknap Press of Harvard University Press Cambridge, Massachusetts London, En gland 2009 Copyright © 2009 by the President and Fellows of Harvard College All rights reserved Printed in the United States of America Library of Congress Cataloging-in-Publication Data Graham, Loren R. Naming infinity : a true story of religious mysticism and mathematical creativity / Loren Graham and Jean-Michel Kantor. â p. cm. Includes bibliographical references and index. ISBN 978-0-674-03293-4 (alk. paper) 1. Mathematics—Russia (Federation)—Religious aspects. 2. Mysticism—Russia (Federation) 3. Mathematics—Russia (Federation)—Philosophy. 4. Mathematics—France—Religious aspects. 5. Mathematics—France—Philosophy. 6. Set theory. I. Kantor, Jean-Michel. II. Title. QA27.R8G73 2009 510.947′0904—dc22â 2008041334 CONTENTS Introduction 1 1. Storming a Monastery 7 2. A Crisis in Mathematics 19 3. The French Trio: Borel, Lebesgue, Baire 33 4. The Russian Trio: Egorov, Luzin, Florensky 66 5. Russian Mathematics and Mysticism 91 6. The Legendary Lusitania 101 7. Fates of the Russian Trio 125 8. Lusitania and After 162 9. The Human in Mathematics, Then and Now 188 Appendix: Luzin’s Personal Archives 205 Notes 212 Acknowledgments 228 Index 231 ILLUSTRATIONS Framed photos of Dmitri Egorov and Pavel Florensky. Photographed by Loren Graham in the basement of the Church of St. Tatiana the Martyr, 2004. 4 Monastery of St. Pantaleimon, Mt. Athos, Greece. 8 Larger and larger circles with segment approaching straight line, as suggested by Nicholas of Cusa. 25 Cantor ternary set.
    [Show full text]
  • Notices: Highlights
    ------------- ----- Tacoma Meeting (June 18-20)-Page 667 Notices of the American Mathematical Society June 1987, Issue 256 Volume 34, Number 4, Pages 601 - 728 Providence, Rhode Island USA ISSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of Notices was sent to the press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and supplementary announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meeting. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the headquarter's office of the Society. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for abstracts for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information. consult the meeting announcements and the list of organizers of special sessions.
    [Show full text]
  • Jfr Mathematics for the Planet Earth
    SOME MATHEMATICAL ASPECTS OF THE PLANET EARTH José Francisco Rodrigues (University of Lisbon) Article of the Special Invited Lecture, 6th European Congress of Mathematics 3 July 2012, KraKow. The Planet Earth System is composed of several sub-systems: the atmosphere, the liquid oceans and the icecaps and the biosphere. In all of them Mathematics, enhanced by the supercomputers, has currently a key role through the “universal method" for their study, which consists of mathematical modeling, analysis, simulation and control, as it was re-stated by Jacques-Louis Lions in [L]. Much before the advent of computers, the representation of the Earth, the navigation and the cartography have contributed in a decisive form to the mathematical sciences. Nowadays the International Geosphere-Biosphere Program, sponsored by the International Council of Scientific Unions, may contribute to stimulate several mathematical research topics. In this article, we present a brief historical introduction to some of the essential mathematics for understanding the Planet Earth, stressing the importance of Mathematical Geography and its role in the Scientific Revolution(s), the modeling efforts of Winds, Heating, Earthquakes, Climate and their influence on basic aspects of the theory of Partial Differential Equations. As a special topic to illustrate the wide scope of these (Geo)physical problems we describe briefly some examples from History and from current research and advances in Free Boundary Problems arising in the Planet Earth. Finally we conclude by referring the potential impact of the international initiative Mathematics of Planet Earth (www.mpe2013.org) in Raising Public Awareness of Mathematics, in Research and in the Communication of the Mathematical Sciences to the new generations.
    [Show full text]
  • Hilbert's 10Th Problem for Solutions in a Subring of Q
    Hilbert’s 10th Problem for solutions in a subring of Q Agnieszka Peszek, Apoloniusz Tyszka To cite this version: Agnieszka Peszek, Apoloniusz Tyszka. Hilbert’s 10th Problem for solutions in a subring of Q. Jubilee Congress for the 100th anniversary of the Polish Mathematical Society, Sep 2019, Kraków, Poland. hal-01591775v3 HAL Id: hal-01591775 https://hal.archives-ouvertes.fr/hal-01591775v3 Submitted on 11 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hilbert’s 10th Problem for solutions in a subring of Q Agnieszka Peszek, Apoloniusz Tyszka Abstract Yuri Matiyasevich’s theorem states that the set of all Diophantine equations which have a solution in non-negative integers is not recursive. Craig Smorynski’s´ theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. Let R be a subring of Q with or without 1. By H10(R), we denote the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can decide whether or not the equation has a solution in R.
    [Show full text]
  • Ÿþm I C R O S O F T W O R
    International conference Partial Differential Equations and Applications in Honour of Mark Vishik on the occasion of his 90th birthday IITP, Moscow, Russia June 4-7, 2012 Confirmed participants 1. Mikhail Agranovich, Moscow Institute of Electronics and Mathematics (abstract) 2. Anatoli Babin, University of California -- Irvine (abstract) 3. Claude Bardos, Université Pierre et Marie Curie (abstract) 4. Sergey Bezrodnykh, Dorodnitsyn Computing Center (abstract) 5. Natalia Chalkina, Moscow State University (abstract) 6. Vladimir Chepyzhov, Institute for Information Transmission Problems (abstract) 7. Alexander Demidov, Moscow State University (abstract) 8. Sergey Dobrokhotov, Ishlinski Institute for Problems in Mechanics (abstract) 9. Stamatis Dostoglou, University of Missouri (abstract) 10. Julii Dubinskii, Moscow Power Engineering Institute (TBA) 11. Alexander Dynin, Ohio State University (abstract) 12. Grigory Eskin, University of California -- Los Angeles (abstract) 13. Mark Freidlin, University of Maryland (abstract) 14. Leonid Friedlander, University of Arizona (abstract) 15. Andrei Fursikov, Moscow State University (abstract) 16. Vakha Gishlarkaev, Chechen State University 17. Evgeny Gorin, Moscow State Pedagogical University (abstract) 18. Andrey Goritsky, Moscow State University 19. Alexander Grigoryan, University of Bielefeld (abstract) 20. Nikolay Gusev, Moscow Institute for Physics and Technology (abstract) 21. Alain Haraux, Université Pierre et Marie Curie (abstract) 22. Yulij Ilyashenko, MSU, IUM, NRU HSE, Cornell (abstract) 23. Alexei Ilyin, Keldysh Institute of Applied Mathematics (abstract) 24. Valeriy Imaykin, Research Institute of Innovative Strategies for General Education Development (abstract) 25. Valentina Ipatova, Moscow Institute for Physics and Technology (abstract) 26. Shoshana Kamin, Tel Aviv University 27. Aleksey Kapustyan, Kyiv National Taras Shevchenko University (abstract) 28. Alexander Komech, Institute for Information Transmission Problems (abstract) 29. Andrey Komech, Institute for Information Transmission Problems (abstract) 30.
    [Show full text]
  • Cristian S. Calude Curriculum Vitæ: August 6, 2021
    Cristian S. Calude Curriculum Vitæ: August 6, 2021 Contents 1 Personal Data 2 2 Education 2 3 Work Experience1 2 3.1 Academic Positions...............................................2 3.2 Research Positions...............................................3 3.3 Visiting Positions................................................3 3.4 Expert......................................................4 3.5 Other Positions.................................................5 4 Research2 5 4.1 Papers in Refereed Journals..........................................5 4.2 Papers in Refereed Conference Proceedings................................. 14 4.3 Papers in Refereed Collective Books..................................... 18 4.4 Monographs................................................... 20 4.5 Popular Books................................................. 21 4.6 Edited Books.................................................. 21 4.7 Edited Special Issues of Journals....................................... 23 4.8 Research Reports............................................... 25 4.9 Refereed Abstracts............................................... 33 4.10 Miscellanea Papers and Reviews....................................... 35 4.11 Research Grants................................................ 40 4.12 Lectures at Conferences (Some Invited)................................... 42 4.13 Invited Seminar Presentations......................................... 49 4.14 Post-Doctoral Fellows............................................. 57 4.15 Research Seminars..............................................
    [Show full text]
  • Biography of N. N. Luzin
    BIOGRAPHY OF N. N. LUZIN http://theor.jinr.ru/~kuzemsky/Luzinbio.html BIOGRAPHY OF N. N. LUZIN (1883-1950) born December 09, 1883, Irkutsk, Russia. died January 28, 1950, Moscow, Russia. Biographic Data of N. N. Luzin: Nikolai Nikolaevich Luzin (also spelled Lusin; Russian: НиколайНиколаевич Лузин) was a Soviet/Russian mathematician known for his work in descriptive set theory and aspects of mathematical analysis with strong connections to point-set topology. He was the co-founder of "Luzitania" (together with professor Dimitrii Egorov), a close group of young Moscow mathematicians of the first half of the 1920s. This group consisted of the higly talented and enthusiastic members which form later the core of the famous Moscow school of mathematics. They adopted his set-theoretic orientation, and went on to apply it in other areas of mathematics. Luzin started studying mathematics in 1901 at Moscow University, where his advisor was professor Dimitrii Egorov (1869-1931). Professor Dimitrii Fedorovihch Egorov was a great scientist and talented teacher; in addition he was a person of very high moral principles. He was a Russian and Soviet mathematician known for significant contributions to the areas of differential geometry and mathematical analysis. Egorov was devoted and openly practicized member of Russian Orthodox Church and active parish worker. This activity was the reason of his conflicts with Soviet authorities after 1917 and finally led him to arrest and exile to Kazan (1930) where he died from heavy cancer. From 1910 to 1914 Luzin studied at Gottingen, where he was influenced by Edmund Landau. He then returned to Moscow and received his Ph.D.
    [Show full text]
  • Interview with George Csicsery
    Interview with George Csicsery George Csicsery is the producer and director of the film Julia Robinson and Hilbert’s Tenth Problem (see movie review, pages 573–575, this issue). The following is an interview with Csicsery, conducted on February 19, 2008, by Notices graphics editor Bill Casselman, University of British Columbia. Notices: How did you come to make this film? you consider that she had already written, or co- Csicsery: The idea for this film came in 1998. written, Julia Robinson’s autobiography, Julia: A Charlie Silver, a logician and a friend, sent me an Life in Mathematics. email in which he summarized the idea of the film My main conceptual contribution was to tell for me in a few enthusiastic paragraphs, beginning the mathematical story inside the biography of with “While waking up this morning, I had a flash Julia Robinson. And this proved to be the most of a math film … .” In the rest of his email he out- difficult part—making the two parts move forward lined much of what eventually went into the film. in tandem so that neither would subtract from Charlie had helped me a great deal while I was the other. making N is a Number: A Portrait of Paul Erd˝so , Notices: How did you get interested in making mathematics films in general? Csicsery: That’s a question I get often, since I’m not a mathematician and my understanding of mathematical ideas is rather primitive. Just as often, my official answer is that I’m a refugee from the social sciences looking for terra firma.
    [Show full text]
  • ABSTRACT DIOPHANTINE GENERATION, GALOIS THEORY, and HILBERT’S TENTH PROBLEM by Kendra Kennedy April, 2012
    ABSTRACT DIOPHANTINE GENERATION, GALOIS THEORY, AND HILBERT'S TENTH PROBLEM by Kendra Kennedy April, 2012 Chair: Dr. Alexandra Shlapentokh Major Department: Mathematics Hilbert's Tenth Problem was a question concerning existence of an algorithm to determine if there were integer solutions to arbitrary polynomial equations over Z. Building on the work by Martin Davis, Hilary Putnam, and Julia Robinson, in 1970 Yuri Matiyasevich showed that such an algorithm does not exist. One can ask a similar question about polynomial equations with coefficients and solutions in the rings of algebraic integers. In this thesis, we survey some recent developments concerning this extension of Hilbert's Tenth Problem. In particular we discuss how properties of Diophantine generation and Galois Theory combined with recent results of Bjorn Poonen, Barry Mazur, and Karl Rubin show that the Shafarevich-Tate conjecture implies that there is a negative answer to the extension of Hilbert's Tenth Problem to the rings of integers of number fields. DIOPHANTINE GENERATION, GALOIS THEORY, AND HILBERT'S TENTH PROBLEM A Thesis Presented to The Faculty of the Department of Mathematics East Carolina University In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Kendra Kennedy April, 2012 Copyright 2012, Kendra Kennedy DIOPHANTINE GENERATION, GALOIS THEORY, AND HILBERT'S TENTH PROBLEM by Kendra Kennedy APPROVED BY: DIRECTOR OF THESIS: Dr. Alexandra Shlapentokh COMMITTEE MEMBER: Dr. M.S. Ravi COMMITTEE MEMBER: Dr. Chris Jantzen COMMITTEE MEMBER: Dr. Richard Ericson CHAIR OF THE DEPARTMENT OF MATHEMATICS: Dr. Johannes Hattingh DEAN OF THE GRADUATE SCHOOL: Dr. Paul Gemperline ACKNOWLEDGEMENTS I would first like to express my deepest gratitude to my thesis advisor, Dr.
    [Show full text]
  • Hilbert's Tenth Problem In
    Hilbert’s Tenth Problem in Coq Dominique Larchey-Wendling Université de Lorraine, CNRS, LORIA, Vandœuvre-lès-Nancy, France [email protected] Yannick Forster Saarland University, Saarland Informatics Campus, Saarbrücken, Germany [email protected] Abstract We formalise the undecidability of solvability of Diophantine equations, i.e. polynomial equations over natural numbers, in Coq’s constructive type theory. To do so, we give the first full mechanisation of the Davis-Putnam-Robinson-Matiyasevich theorem, stating that every recursively enumerable problem – in our case by a Minsky machine – is Diophantine. We obtain an elegant and comprehensible proof by using a synthetic approach to computability and by introducing Conway’s FRACTRAN language as intermediate layer. 2012 ACM Subject Classification Theory of computation → Models of computation; Theory of computation → Type theory Keywords and phrases Hilbert’s tenth problem, Diophantine equations, undecidability, computability theory, reduction, Minsky machines, Fractran, Coq, type theory Supplement Material Coq formalisation of all results: https://uds-psl.github.io/H10 Coq library of undecidable problems: https://github.com/uds-psl/coq-library-undecidability Funding Dominique Larchey-Wendling: partially supported by the TICAMORE project (ANR grant 16-CE91-0002). Acknowledgements We would like to thank Gert Smolka, Dominik Kirst and Simon Spies for helpful discussion regarding the presentation. 1 Introduction Hilbert’s tenth problem (H10) was posed by David Hilbert in 1900 as part of his famous 23 problems [15] and asked for the “determination of the solvability of a Diophantine equation.” A Diophantine equation1 is a polynomial equation over natural numbers (or, equivalently, integers) with constant exponents, e.g.
    [Show full text]
  • Romanian Civilization Supplement 1 One Hundred Romanian Authors in Theoretical Computer Science
    ROMANIAN CIVILIZATION SUPPLEMENT 1 ONE HUNDRED ROMANIAN AUTHORS IN THEORETICAL COMPUTER SCIENCE ROMANIAN CIVILIZATION General Editor: Victor SPINEI SUPPLEMENT 1 THE ROMANIAN ACADEMY THE INFORMATION SCIENCE AND TECHNOLOGY SECTION ONE HUNDRED ROMANIAN AUTHORS IN THEORETICAL COMPUTER SCIENCE Edited by: SVETLANA COJOCARU GHEORGHE PĂUN DRAGOŞ VAIDA EDITURA ACADEMIEI ROMÂNE Bucureşti, 2018 III Copyright © Editura Academiei Române, 2018. All rights reserved. EDITURA ACADEMIEI ROMÂNE Calea 13 Septembrie nr. 13, sector 5 050711, Bucureşti, România Tel: 4021-318 81 46, 4021-318 81 06 Fax: 4021-318 24 44 E-mail: [email protected] Web: www.ear.ro Peer reviewer: Acad. Victor SPINEI Descrierea CIP a Bibliotecii Naţionale a României One hundred Romanian authors in theoretical computer science / ed. by: Svetlana Cojocaru, Gheorghe Păun, Dragoş Vaida. - Bucureşti : Editura Academiei Române, 2018 ISBN 978-973-27-2908-3 I. Cojocaru, Svetlana (ed.) II. Păun, Gheorghe informatică (ed.) III. Vaida, Dragoş (ed.) 004 Editorial assistant: Doina ARGEŞANU Computer operator: Doina STOIA Cover: Mariana ŞERBĂNESCU Funal proof: 12.04.2018. Format: 16/70 × 100 Proof in sheets: 19,75 D.L.C. for large libraries: 007 (498) D.L.C. for small libraries: 007 PREFACE This book may look like a Who’s Who in the Romanian Theoretical Computer Science (TCS), it is a considerable step towards such an ambitious goal, yet the title should warn us about several aspects. From the very beginning we started working on the book having in mind to collect exactly 100 short CVs. This was an artificial decision with respect to the number of Romanian computer scientists, but natural having in view the circumstances the volume was born: it belongs to a series initiated by the Romanian Academy on the occasion of celebrating one century since the Great Romania was formed, at the end of the First World War.
    [Show full text]