Schweifsternen Des Letzten Quartals Mehr Als Zufrieden

Total Page:16

File Type:pdf, Size:1020Kb

Schweifsternen Des Letzten Quartals Mehr Als Zufrieden Mitteilungsblatt der Heft 173 (34. Jahrgang) ISSN (Online) 2511-1043 Februar 2018 Komet C/2016 R2 (PanSTARRS) am 10. Januar 2018 um 20:26 UT mit einem 12“ f/3,6 ASA Astrograph, RGB 32/12/12 Minuten belichtet mit einer FLI PL16200 CCD-Kamera, Gerald Rhemann Liebe Kometenfreunde, wann gibt es wieder einen hellen Kometen? Fragt man hin und wieder im Internet. Ich dagegen vermisse nichts und bin mit den Schweifsternen des letzten Quartals mehr als zufrieden. Herausheben möchte ich die Schweifdynamik, welche der Komet C/2016 R2 (PanSTARRS) hervorbringt (siehe Titelfoto): Sie wurde von einigen von uns fotografiert, die raschen Veränderungen im Schweif erinnerte nicht nur mich an eine sich drehende Qualle. Michael Jäger und ich werden darüber im VdS-Journal berichten. Viel eindrucksvoller als die dort abgedruckten Fotos sind aber die kleinen Videofilme, die man in unserer Bildergalerie findet. Visuell war davon praktisch nichts zu sehen. Nur in Instrumenten der Halbmeterklasse war überhaupt etwas vom Schweif erkennbar, in meinem 12-Zöller sah ich nur die Koma. Für mich ist dies ein plastischer Nachweis, wie sehr sich die Kometenfotografie entwickelt hat. Einen klaren Himmel wünscht Euer Uwe Pilz. Liebe Leser des Schweifsterns, Die vorliegende Ausgabe des Schweifsterns deckt die Aktivitäten der Fachgruppe Kometen der VdS im Zeitraum vom 01.11.2017 bis zum 31.01.2018 ab. Berücksichtigt wurden alle bis zum Stichtag be- reitgestellten Fotos, Daten und Beiträge (siehe Impressum am Ende des Schweifsterns). Für die einzelnen Kometen lassen sich die Ephemeriden der Kometen auf der Internet-Seite http://www.minorplanetcenter.org/iau/MPEph/MPEph.html errechnen. Viele Grüße Euer Michael Hauss 2 Allgemeine Hinweise zum Schweifstern In jedem Schweifstern werden alle Kometen aufgeführt, die im relevanten Zeitraum, also diesmal vom 01.11.2017 bis zum 31.01.2018, von der VdS-Fachgruppe fotografiert bzw. beobachtet wurden. Zusätz- lich werden alle neu entdeckten Kometen und alle periodischen Kometen, die eine neue permanente Nummer verliehen bekommen haben, angegeben. Zu jedem Kometen werden neben dem Entdecker und der Klassifizierung die aktuellen Bahnelemente angegeben, wobei zu beachten ist, dass diese regelmäßig neu bestimmt und verbessert werden. Für die Kometen wird eine Liste der Fotos angegeben, die bis zum angegebenen Stichtag für den rele- vanten Zeitraum auf die Homepage der FG Kometen hochgeladen wurden. Die besten Fotos werden zudem – meist als geeigneter Ausschnitt – zur Illustration der Kometen verwendet. Helligkeitsschätzungen der Fachgruppe werden ebenfalls bei den einzelnen Kometen angegeben. Dabei gibt es drei Möglichkeiten: - Helligkeitsschätzungen im ICQ-Format wurden separat zur Veröffentlichung auf der Homepage der FG eingesendet und werden auch hier abgedruckt. - Helligkeiten als detaillierte Auswertungen der fotografischen Aufnahmen wurden im Standardfor- mat an die Redaktion gesendet (siehe Impressum). - Helligkeiten werden beim Hochladen der Fotos oder Beobachtungen zur Veröffentlichung auf der Homepage der Fachgruppe in der Beschreibung angegeben. Sofern Fachgruppen-Teilnehmer Auswertungen einzelner Kometen erstellt habe, werden diese bei den jeweiligen Kometen eingefügt. Eigene Berichte von Fachgruppen-Teilnehmern werden als separate Ab- schnitte berücksichtigt. Die Bildbeschreibungen und die Details bei den Helligkeitsbeobachtungen der Fachgruppe wurden weit- gehend so, wie von den Autoren bereitgestellt, übernommen. Es wurde versucht, grobe Rechtschreib- fehler weitgehend zu korrigieren. Jedoch möchte ich darauf hinweisen, dass die jeweiligen Autoren für die Korrektheit und für eine korrekte Rechtschreibung verantwortlich sind. Wenngleich der Schweifstern in deutscher Sprache verfasst ist, sind vor allem bei den Bildbeschreibungen und den Details bei den Helligkeitsbeobachtungen auch englischsprachige Begriffe vorhanden, die unverändert übernommen wurden. Bei der Nomenklatur der Kometen ist zu beachten, dass aus redaktioneller Vereinfachung auf die tiefge- stellten Ziffern weitgehend verzichtet wird. Anstatt der eigentlich korrekten Bezeichnung wie etwa C/2010 US10 (Catalina) wird hier – wie durchaus allgemein üblich – die Bezeichnung C/2010 US10 (Catalina) verwendet (auch die alternative Bezeichnung C/2010 US_10 (Catalina) wird hier nicht verwendet). Ein besonderer Dank gilt der großartigen Unterstützung seitens Andreas Kammerer für die Erstellung aller Kometenauswertungen und Werner Hasubick für die Bereitstellung seiner Beobachtungsdaten und Kurzberichte! 3 Teil 1: Kometen ohne permanente Nummer Komet P/2002 EJ57 (LINEAR) Das LINEAR-Team entdeckte auf Aufnahmen vom 10. und 12.03.2002 ein scheinbar asteroidales Ob- jekt der Helligkeit 19 mag mit der Bezeichnung 2002 EJ57 (siehe MPS 54870). Nachfolgende Beobach- tungen von J. Ticha und M. Tichy (Klet) und R. H. McNaught (Siding Spring) zeigten Anfang Mai 2002 kometare Aktivitäten. Der Komet gehört der Jupiter-Familie an. Siehe IAUC 7890. Bahnelemente: T [UT] ω [°] Ω [°] i [°] q [AE] e [AE] P [a] 2018 06 18,5285 167,0127 330,434 4,9766 2,627235 0,593553 16,43 Fotos und Beobachtungen der FG Kometen: Zeitpunkt Details zur Aufnahme 2017 December 18 19:03 UT 130x15 sec, Newton 12", F/2.8, Pentax K-3, Seredino, Mikhail Maslov, Novosibirsk, Russia Auf der Aufnahme von Mikhail Maslov zeigt sich der nur 18,8 mag helle Komet zwischen zahlreichen Sternen. Komet C/2010 U3 (Boattini) Am 31.10.2010 entdeckte Andrea Boattini mit dem 1,5m-Mt.Lemmon-Reflektor den 20 mag hellen Ko- meten. Der hyperbolische Komet befand sich zum Entdeckungszeitpunkt in der Rekord-Sonnendistanz von 18,5 AE. Siehe Schweifstern 138. Bahnelemente: T [UT] ω [°] Ω [°] i [°] q [AE] e [AE] P [a] 2019 02 26,3681 88,074 43,0741 55,5127 8,4456 1,00025 n/a Fotos und Beobachtungen der FG Kometen: Zeitpunkt Details zur Aufnahme 2017 November 12 10:57 UT 2x600s, 11" SCT f/6.4, STF-8300M, Mike Olason, Denver Colorado 2017 November 14 00:43 UT 11 x 120s, ISO3200, TSAPO100Q (100x580mm), Canon EOS 700Da mit Astronomik UV-IR-Blockfilter, Köditz Steffen Fritsche 2017 November 26 08:11 UT Planewave 510mm CDK f/4,5, FLI PL11002M, 300s, T 17,1 mag, N 18,1 mag (10"x10"-Box: 17,77 mag), Koma 20", Afroh 2255, Mayhill, New Mexico, Remote, Michael Hauss 2017 December 18 21:33 UT 144x15 sec, Newton 12", F/2.8, Pentax K-3, Seredino, Mikhail Maslov, Novosibirsk, Russia Helligkeitsmeldungen der FG Kometen im ICQ-Format: Zeitpunkt Beobachtungsdaten Bemerkungen YYYY MM DD.Dd M[mm.m:rfAAA.ATF/xxxx >dd.ddnDC >t.tt GGG: Beobachter Mag 2017 11 14.03 C 16.1 AQ 10.0R 6A680 1.9 FRIaa DSLR green Helligkeiten auf Basis fotografischer Beobachtungen: Datum (UT) m m Instr. 1/f Koma‘ Schweif PW° Afroh Kamera (t) Beobachter 10“x10“ 2017 11 26.341 17,1 T 17,77 20 L 4.5 20" 214 2095 FLI PL11002M 5m Michael Hauss Auf den Aufnahmen der FG Kometen zeigt sich der lichtschwache Komet mit einer leicht diffusen Koma. Die wenigen publizierten Beobachtungen des Kometen C/2010 U3 (Boattini) sind sehr uneinheitlich, deuten aber insgesamt eine unterdurchschnittliche Entwicklung an. In den kommenden drei Monaten sollte er eine konstante Helligkeit von lediglich 15,5-16,0m aufweisen. Er befindet sich im Sternbild Giraffe und kann somit mit großen Instrumenten die ganze Nacht über beobachtet werden. Die Erde kreuzt die Kometenbahnebene am 3. Mai. Komet C/2011 KP36 (Spacewatch) T. H. Bressi entdeckte auf Aufnahmen mit dem Spacewatch Teleskop vom 21.05.2011 ein asteroidales Objekt der Helligkeit 20,4 mag, welches die Bezeichnung 2011 KP36 bekam. R. Holmes bemerkte auf Aufnahmen vom 19.04.2012 kometare Eigenschaften. Der Komet gehört der Jupiter-Familie an. Siehe CBET 3109. Bahnelemente: T [UT] ω [°] Ω [°] i [°] q [AE] e [AE] P [a] 2016 05 26,5939 180,5598 173,3941 18,9845 4,88229 0,872996 238,35 Fotos und Beobachtungen der FG Kometen: 4 Zeitpunkt Details zur Aufnahme 2017 December 09 12:09 UT Planewave 431mm CDK f/6,8, FLI PL16803, 300s, N 17,5 mag (10"x10"-Box 17,30 mag), Afroh 1152, Siding Spring, Australia, Re- mote, Michael Hauss 2017 December 15 08:25 UT 2x600s, 11" SCT f/6.4, STF-8300M, Mike Olason, Denver Colorado Helligkeitsmeldungen der FG Kometen im ICQ-Format: Zeitpunkt Beobachtungsdaten Bemerkungen YYYY MM DD.Dd M[mm.m:rfAAA.ATF/xxxx >dd.ddnDC >t.tt GGG: Beobachter Mag 2017 11 23.88 C 15.5 AQ 20.0L 4A920 1.4 0.02 256 LEHaa 19.6 DSLR green Helligkeiten auf Basis fotografischer Beobachtungen: Datum (UT) m m Instr. 1/f Koma‘ Schweif PW° Afroh Kamera (t) Beobachter 10“x10“ 2017 11 22.814 17.1 44 L 4.6 1.0 SBIG ST9XE 6.7m Werner Hasubick 2017 12 09.507 16,5: T 17,3 17 L 6.8 1150: FLI PL16803 5m Michael Hauss Auch in den vergangenen Monaten erfolgte die Helligkeitsentwicklung des Kometen C/2011 KP36 m (Spacewatch) entsprechend den Parametern m0=7,0 /n=2. Er gibt für mitteleuropäische Beobachter mit großen Instrumenten nun seine visuelle Abschiedsvorstellung. Der 15,5m helle Komet kann noch bis Mitte März, im Grenzgebiet der Sternbilder Walfisch/Stier, am Abendhimmel beobachtet werden. Komet C/2013 US10 (Catalina) Der hyperbolische Komet wurde von R. A. Kowalski auf Aufnahmen vom 31.10.2013 im Rahmen des Catalina Sky Surveys zunächst als 18,6 mag helles asteroidales Objekt entdeckt. R. Wainscoat erkannte auf Aufnahmen mit dem PanSTARRS1-Teleskop vom 14.08.2013 ein kometares Erscheinungsbild. Siehe CBET 4688. Bahnelemente: T [UT] ω [°] Ω [°] i [°] q [AE] e [AE] P [a] 2015 11 15,7162 340,4182 186,1646 148,8731 0,824243 1,00038 n/a Fotos und Beobachtungen der FG Kometen: Zeitpunkt Details zur Aufnahme 2017 November 12 09:18 UT 4x900s, 11" SCT f/6.4, STF-8300M, Mike Olason, Denver Colorado Auf der Aufnahme von Mike Olason zeigt sich der Komet als schwaches Objekt mit einer Helligkeit von 19,1 mag. Komet C/2014 B1 (Schwartz) Der Komet wurde von Michael Schwartz auf Aufnahmen vom 28.01.2014 mit dem 0,41m-Astrographen des Tenagra Observatory als 19,9 mag helles Objekt entdeckt.
Recommended publications
  • Historical Earthquakes in Western Australia Kevin Mccue Australian Seismological Centre, Canberra ACT
    Historical Earthquakes in Western Australia Kevin McCue Australian Seismological Centre, Canberra ACT. Abstract This paper is a tabulation and description of some earthquakes and tsunamis in Western Australia that occurred before the first modern short-period seismograph installation at Watheroo in 1958. The purpose of investigating these historical earthquakes is to better assess the relative earthquake hazard facing the State than would be obtained using just data from the post–modern instrumental period. This study supplements the earlier extensive historical investigation of Everingham and Tilbury (1972). It was made possible by the Australian National library project, TROVE, to scan and make available on-line Australian newspapers published before 1954. The West Australian newspaper commenced publication in Perth in 1833. Western Australia is rather large with a sparsely distributed population, most of the people live along the coast. When an earthquake is felt in several places it would indicate a larger magnitude than one in say Victoria felt at a similar number of sites. Both large interplate and local intraplate earthquakes are felt in the north-west and sometimes it is difficult to identify the source because not all major historical earthquakes on the plate boundary are tabulated by the ISC or USGS. An earthquake on 29 April 1936 is a good example, local or distant source? An interesting feature of the large earthquakes in WA is their apparent spatial and temporal migration, the latter alluded to by Everingham and Tilbury (1972). One could deduce that the seismicity rate changed before the major earthquake in 1906 offshore the central west coast of WA.
    [Show full text]
  • STANDARD STARS for COMET PHOTOMETRY Wayne Osborn
    STANDARD STARS FOR COMET PHOTOMETRY Wayne Osborn Physics Department, Central Michigan University Mt. Pleasant, Michigan 48859, U.S.A. Peter Birch Perth Observatory Bickley, Western Australia 6076, Australia Michael Feierberg Astronomy Program, University of Maryland College Park, Maryland 20742, U.S.A. ABSTRACT. Photoelectric photometry of comets is a feasible and worth- while research program for small telescopes. Nine filters designed to isolate selected emission features and continuum regions in cometary spectra have been adopted by the IAU as those recommended for comet photometry. Magnitudes of standard stars for the IAU filter system have been derived. The results have been compared with previous observations and transformations to place all observations on a common system obtained. 1. INTRODUCTION A profitable research program for small telescopes is the photoelectric monitoring of comets. Because comets appear suddenly and most studies require measurements made over an extended period of time, observations with larger, heavily scheduled instruments are often impossible. Furthermore, comets are extended objects and for projects involving the comet's integrated brightness a small scale is preferable. We have established a system of photoelectric standards intended for comet photometry. 2. COMET PHOTOMETRY Comet photometry can be divided into two types: studies of the continuum and studies of emission lines. Continuum observations are directed toward understanding the dust component of the comet, and ideally only involve measures of reflectivity of the solar spectrum. The emission line studies are concerned with the production of the components of the 313 J. B. Hearnshaw and P. L. Cottrell (eds.), Instrumentation and Research Programmes for Small Telescopes, 313-314.
    [Show full text]
  • Colours of Minor Bodies in the Outer Solar System II - a Statistical Analysis, Revisited
    Astronomy & Astrophysics manuscript no. MBOSS2 c ESO 2012 April 26, 2012 Colours of Minor Bodies in the Outer Solar System II - A Statistical Analysis, Revisited O. R. Hainaut1, H. Boehnhardt2, and S. Protopapa3 1 European Southern Observatory (ESO), Karl Schwarzschild Straße, 85 748 Garching bei M¨unchen, Germany e-mail: [email protected] 2 Max-Planck-Institut f¨ur Sonnensystemforschung, Max-Planck Straße 2, 37 191 Katlenburg- Lindau, Germany 3 Department of Astronomy, University of Maryland, College Park, MD 20 742-2421, USA Received —; accepted — ABSTRACT We present an update of the visible and near-infrared colour database of Minor Bodies in the outer Solar System (MBOSSes), now including over 2000 measurement epochs of 555 objects, extracted from 100 articles. The list is fairly complete as of December 2011. The database is now large enough that dataset with a high dispersion can be safely identified and rejected from the analysis. The method used is safe for individual outliers. Most of the rejected papers were from the early days of MBOSS photometry. The individual measurements were combined so not to include possible rotational artefacts. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1, 1). The average colours, absolute magnitude, spectral gradient are listed for each object, as well as their physico-dynamical classes using a classification adapted from Gladman et al., 2008. Colour-colour diagrams, histograms and various other plots are presented to illustrate and in- vestigate class characteristics and trends with other parameters, whose significance are evaluated using standard statistical tests.
    [Show full text]
  • Ensemble Properties of Comets in the Sloan Digital Sky Survey ⇑ Michael Solontoi A, ,Zˇeljko Ivezic´ B, Mario Juric´ C, Andrew C
    Icarus 218 (2012) 571–584 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Ensemble properties of comets in the Sloan Digital Sky Survey ⇑ Michael Solontoi a, ,Zˇeljko Ivezic´ b, Mario Juric´ c, Andrew C. Becker b, Lynne Jones b, Andrew A. West e, Steve Kent f, Robert H. Lupton d, Mark Claire b, Gillian R. Knapp d, Tom Quinn b, James E. Gunn d, Donald P. Schneider g a Adler Planetarium, 1300 S. Lake Shore Drive, Chicago, IL 60605, USA b University of Washington, Dept. of Astronomy, Box 351580, Seattle, WA 98195, USA c Harvard College Observatory, Cambridge, MA 02138, USA d Princeton University Observatory, Princeton, NJ 08544, USA e Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215, USA f Fermi National Accelerator Laboratory, Batavia, IL 60510, USA g Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA article info abstract Article history: We present the ensemble properties of 31 comets (27 resolved and 4 unresolved) observed by the Sloan Received 17 May 2011 Digital Sky Survey (SDSS). This sample of comets represents about 1 comet per 10 million SDSS photo- Revised 25 September 2011 metric objects. Five-band (u,g,r,i,z) photometry is used to determine the comets’ colors, sizes, surface Accepted 17 October 2011 brightness profiles, and rates of dust production in terms of the Afq formalism. We find that the cumu- Available online 9 December 2011 lative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(<H) / 10(0.49±0.05)H for H < 18, with evidence of a much shallower fit N(<H) / 10(0.19±0.03)H for Keywords: the faint (14.5 < H < 18) comets.
    [Show full text]
  • Michael Philip Candy (1928-1994)
    Notes and News Obituary Michael Philip Candy (1928-1994) Michael Candy was born at Bath, Somerset, Cepheus. Although he spent many hours in the Organising Committee of the Inter­ on 1928 December 23, the eldest of six chil­ further searches, it was to be his only comet national Astronomical Union Commission dren. He joined HM Nautical Almanac discovery. 20 (Positions and Motions of Minor Planets, Office, then located in Bath, in 1947 During his term as Director of the Comet Comets and Satellites) (1979-1988), Vice- September. In 1949 the ΝΑΟ moved to the Section Candy greatly encouraged both President of IAU Commission 6 (Astro­ Royal Greenwich Observatory's new site at established Section members and newcom­ nomical Telegrams) (1979-1982) and its Herstmonceux Castle in Sussex. ers. He had a friendly manner and was President (1982-1985). He was appointed Mike Candy was elected to membership always approachable. He found time to Acting Government Astronomer (Acting of the Association on 1950 November 29 reply to letters and acknowledged observa­ Director of the Perth Observatory) in 1984 and was particularly interested in comput­ tions, usually by postcard in his own clear and later confirmed as Government Astron­ ing and the smaller bodies of the Solar hand, adding useful bits of information or an omer and Director. Asteroid 3015 Candy System, and put his skills to good use extended ephemeris. was named after him for his work on south­ computing orbits for recently discovered During this time Candy was also busy ern hemisphere astronomy. He also served comets. Dr Gerald Merton was Director of with his professional astronomical career, as Councillor of the Astronomical Society the Comet Section when comet Arend- moving to the Astronomer Royal's Depart­ of Australia (1988-1990), and Councillor Roland was discovered in 1956 November, ment in 1958, taking a Bachelor of Science (1988-1990) and President (1989) of the and Candy computed a series of orbits as degree at London in 1963 and a Master of Royal Society of Western Australia.
    [Show full text]
  • LARGE-GRAINED DUST in the COMA of 174P/ECHECLUS. J. M. Bauer1, Y-J
    Science of Solar System Ices (2008) 9061.pdf LARGE-GRAINED DUST IN THE COMA OF 174P/ECHECLUS. J. M. Bauer1, Y-J. Choi1,5, P. R. Weiss- man1, J. A. Stansberry2, Y. R. Fernández3, H. G. Roe4, B. J. Buratti1, and H-I. Sung5, 1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 183-501, Pasadena, CA, USA 91109 (correspon- dence: [email protected]), 2 University of Arizona, Steward Observatory, 933 N. Cherry Ave., Tuscon AZ 85721, 3 University of Central Florida, Dept. of Physics, P.O. Box 162385, Orlando, FL 32816-2385, 4 Lowell Ob- servatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001, 5Korea Astronomy and Space Science Institute 61-1 Hwaam-dong, Yuseong-gu, Daejon 305-348, South Korea. Introduction: On December 30, 2005, Choi and Advanced Technology Telescope, the Bohyunsan Op- Weissman[1] discovered that the formerly dormant tical Astronomy Observatory(BOAO) 1.8-m telescope, Centaur 2000 EC98 was in strong outburst. Previous and Table Mountain Observatory's 0.6-m telescope, observations spanning a 3-year period indicated a lack revealing a coma morphology nearly identical to the of coma down to the 27 mag/sq. arcsec level[2]. We mid-IR observations. Dust production estimates rang- present Spitzer Space Telescope MIPS observations of ing from 1.7-4.2 × 102 kg/s are on the order of 30 times this newly active Centaur - now known as that seen in other Centaurs, assuming grain densities 174P/Echeclus (2000 EC98) or 60558 Echeclus - taken onteh order of water-ice. in late February 2006, and the final results of their Discussion: Combined ground-based and SST pho- analyses[3].
    [Show full text]
  • 174P/Echeclus and Its Blue Coma Observed Post-Outburst
    174P/Echeclus and its Blue Coma Observed Post-Outburst Seccull, T., Fraser, W. C., Puzia, T. H., Fitzsimmons, A., & Cupani, G. (2019). 174P/Echeclus and its Blue Coma Observed Post-Outburst. Astronomical Journal, 157(2), [88]. https://doi.org/10.3847/1538-3881/aafbe4 Published in: Astronomical Journal Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2019 The Authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:02. Oct. 2021 The Astronomical Journal, 157:88 (11pp), 2019 February https://doi.org/10.3847/1538-3881/aafbe4 © 2019. The American Astronomical Society. 174P/Echeclus and Its Blue Coma Observed Post-outburst Tom Seccull1 , Wesley C.
    [Show full text]
  • Strategic Plan 2020-2030 Prepared By: Perth Observatory Volunteer Group Inc
    PERTH OBSERVATORY VOLUNTEER GROUP Strategic Plan 2020-2030 Prepared by: Perth Observatory Volunteer Group Inc. 337 Walnut Road Bickley, WA, 6076 ABN: 14 565 272 536 [email protected] +61 8 9293 8255 Approved by the Perth Observatory Volunteer Group Inc. Board of Directors at their March/April 2020 meeting Image Credit: Roger Groom Cover page and back cover image credit: Roger Groom | 3 Executive Summary The Perth Observatory is located on crown land and the Our vision is to be recognised as a leading astronomical and infrastructure is owned by the Western Australian State space experience in Australia. Government Department of Biodiversity, Conservation and Attractions. The Perth Observatory Volunteer Group has run Our Mission is to: the Observatory since 2015 through an agreement with the ,Department. ֑ Offer outstanding experiences in astronomy, education nature, culture and tourism run by knowledgeable volunteers This strategic plan presents the direction for the Perth Observatory Build upon our status as the oldest operating scientific ֑ Volunteer Group, in the operations and management of the Perth observatory in Australia through excellent research, Observatory for the coming decade to 2030. As a not-for-profit Science, Technology, Engineering and Mathematics (STEM) and registered charity organisation, our volunteers operate and educational programs, onsite and offsite tours and events manage all aspects of the historical, fully operational astronomical observatory located in Perth, Western Australia, by means of ֑ Conserve and provide access to Perth Observatory’s history donations and income from educational and tourism programs. and heritage collection In addition to providing educational and experiential tours, our volunteers continue to observe the night skies and carry out ֑ Manage and maintain an environmentally sustainable research in partnership with other academic organisations.
    [Show full text]
  • The Lowell Dome and Telescope at Perth Observatory
    1,000 Days to First Light Construction of the Perth-Lowell Telescope Facility, 1968-71 Robert G. Hunt 149 St Brigids Terrace, Scarborough, Western Australia, 6019, Australia [email protected] ABSTRACT NASA launched its Viking probes to Mars in late 1975 after establishing an International Planetary Patrol Network of telescopes for planetary observations. Network sites were spread across the globe, and negotiations for a facility at the existing Perth Observatory in Western Australia began in 1968. 1,000 days later the new telescope saw first light. The new facility is unique in design. Inside a dome, the telescope sits atop a 12.8 m pier with wrap-around concrete staircase and supporting legs. This investigation discovered how, at the risk of compromising performance, such a departure from standard observatory design arose, and what the drivers were for the decision- making process. The principal designer was a public servant architect, Mr Tadeusz Andrzejaczek who was said to have made opportunistic design changes, but it seemed improbable he would have had such influence over a scientific installation. Image quality and astronomical seeing was a new science in the 1960s, and structural vibration amelioration was met by designing in massive strength and rigidity. Thermal expansion and wind stresses on the facility were reduced by design features including shade fins and protective walls, and ground thermal disturbance was addressed by subjectively raising the height. Seeing measurements were not a design requirement. The initial design was by Government Astronomer Bertrand Harris, and requests for re-designs came from him, but in close negotiation with Andrzejaczek who desired a structure of futuristic shape and proportions.
    [Show full text]
  • Studies of the Relics of Solar System Formation & Evolution. Part 1
    Spitzer’s Solar System Science Legacy: Studies of the Relics of Solar System Formation & Evolution. Part 1 - Comets, Centaurs, & Kuiper Belt Objects (Nature Astronomy Manuscript NATASTRON19122828) Carey Lisse1, James Bauer2, Dale Cruikshank3, Josh Emery4, Yanga Fernández5, Estela Fernández-Valenzuela6, Michael Kelley2, Adam McKay7, William Reach8, Yvonne Pendleton4, Noemi Pinilla-Alonso5, John Stansberry9, Mark Sykes10, David TrillinG5, Diane Wooden3, David Harker11, Robert Gehrz12, Charles Woodward12 Pre-print Version 01-Jul-2020 revised for Nature Astronomy, ed. Paul Woods 1 Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 [email protected] 2 Department of Astronomy, University of Maryland ColleGe Park, ColleGe Park, MD [email protected], [email protected], [email protected] 3 Space Science and AstrobioloGy Division, NASA Ames Research Center, Moffett Field, CA, USA 94035 [email protected], [email protected], [email protected] 4 Department of Astronomy and Planetary Sciences, Northern Arizona University, FlaGstaff, AZ 8601 [email protected], [email protected] 5 Department of Physics & Florida Space Institute, University of Central Florida, Orlando, FL 32816 [email protected], [email protected] 6 Florida Space Institute, University of Central Florida, Orlando, FL, 32826 [email protected] 7 NASA Goddard SpacefliGht Center, Greenbelt , MD 20771 and American University [email protected] 8 Stratospheric Observatory for Infrared Astronomy, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035 [email protected] 9 Space Telescope Science Institute, 3700 San Martin Dr. Baltimore, MD 21218 [email protected] 10 Planetary Science Institute, Tucson, AZ 85719 [email protected] 11 University of California, San DieGo, Center for Astrophys.
    [Show full text]
  • Power, Politics and Personalities in Australian Astronomy: William Ernest Cooke and the Triangulation of the Pacific by Wireless Time Signals
    Journal of Astronomical History and Heritage, 22(1), 113Å131 (2019). POWER, POLITICS AND PERSONALITIES IN AUSTRALIAN ASTRONOMY: WILLIAM ERNEST COOKE AND THE TRIANGULATION OF THE PACIFIC BY WIRELESS TIME SIGNALS Ian Tasker University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia. [email protected] Abstract: In 1916 the New South Wales Government Astronomer, Professor Ernest Cooke, proposed the triangulation of the Pacific by wireless time signals, in order to improve mapping. The world was at war, and this scientific advancement was urgently required. The State Government gave Cooke authority to proceed, but later rescinded this decision. It also prevented Cooke from attending the first International Astronomical Union (IAU) General Assembly in Rome in 1919. Although Cooke became Chairman of the Longitude Committee of the Australian National Research Council in 1922, attended the Pan-Pacific Science Association Congress in 1923, MRLQHG WKH ,$8¶V Commission 18 (Longitude by Wireless) in 1925, and continued to promote triangulation of the Pacific by wireless, the Sydney Observatory Board of Visitors, bureaucrats and politicians all continued to block him. This paper examines the interplay between Federal and State politics in international astronomy, using &RRNH¶V triangulation of the Pacific project as a case study. Keywords: Sydney Observatory, W.E. Cooke, Board of Visitors, triangulation of the Pacific, wireless time signals, State-Federal politics 1 INTRODUCTION presented the same scientific proposal that he Power, politics and personalities often are in- had put forward in 1916, although on this occas- tricately intertwined in science, allowing some ion he gained the public support of visiting inter- scientists continuing success and others contin- national peers and favourable media attention.
    [Show full text]
  • Colors of Centaurs 105
    Tegler et al.: Colors of Centaurs 105 Colors of Centaurs Stephen C. Tegler Northern Arizona University James M. Bauer Jet Propulsion Laboratory William Romanishin University of Oklahoma Nuno Peixinho Grupo de Astrofisica da Universidade de Coimbra Minor planets on outer planet-crossing orbits, called Centaur objects, are important mem- bers of the solar system in that they dynamically link Kuiper belt objects to Jupiter-family comets. In addition, perhaps 6% of near-Earth objects have histories as Centaur objects. The total mass of Centaurs (10–4 M ) is significant, about one-tenth of the mass of the asteroid belt. Centaur objects exhibit a physical property not seen among any other objects in the solar system, their B–R colors divide into two distinct populations: a gray and a red population. Application of the dip test to B–R colors in the literature indicates there is a 99.5% probability that Centaurs exhibit a bimodal color distribution. Although there are hints that gray and red Centaurs exhibit different orbital elements, application of the Wilcoxon rank sum test finds no statistically significant difference between the orbital elements of the two color groups. On the other hand, gray and red Centaurs exhibit a statistically significant difference in albedo, with the gray Centaurs having a lower median albedo than the red Centaurs. Further observational and dynamical work is necessary to determine whether the two color populations are the result of (1) evolutionary processes such as radiation-reddening, collisions, and sublimation or (2) a pri- mordial, temperature-induced, composition gradient. 1. INTRODUCTION dynamical classes (e.g., Plutinos, classical objects, scattered disk objects) that are the sources of Centaurs are unknown.
    [Show full text]