Chapter 4 Community Facilities Element
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recent North Magnetic Pole Acceleration Towards Siberia Caused by flux Lobe Elongation
Recent north magnetic pole acceleration towards Siberia caused by flux lobe elongation Philip W. Livermore,1∗, Christopher C. Finlay 2, Matthew Bayliff 1 1School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK, 2DTU Space, Technical University of Denmark, 2800 Kgs. Lyngby, Copenhagen, Denmark ∗To whom correspondence should be addressed; E-mail: [email protected]. Abstract The wandering of Earth’s north magnetic pole, the location where the magnetic field points vertically downwards, has long been a topic of scien- tific fascination. Since the first in-situ measurements in 1831 of its location in the Canadian arctic, the pole has drifted inexorably towards Siberia, ac- celerating between 1990 and 2005 from its historic speed of 0-15 km/yr to its present speed of 50-60 km/yr. In late October 2017 the north magnetic pole crossed the international date line, passing within 390 km of the geo- graphic pole, and is now moving southwards. Here we show that over the last two decades the position of the north magnetic pole has been largely determined by two large-scale lobes of negative magnetic flux on the core- mantle-boundary under Canada and Siberia. Localised modelling shows that elongation of the Canadian lobe, likely caused by an alteration in the pattern of core-flow between 1970 and 1999, significantly weakened its signature on Earth’s surface causing the pole to accelerate towards Siberia. A range of simple models that capture this process indicate that over the next decade arXiv:2010.11033v1 [physics.geo-ph] 21 Oct 2020 the north magnetic pole will continue on its current trajectory travelling a further 390-660 km towards Siberia. -
MARYLAND LETTERS ABOUT LITERATURE FINALISTS 2015 Level One (Grades 4-6)
MARYLAND LETTERS ABOUT LITERATURE FINALISTS 2015 Level One (Grades 4-6) Boonsboro Middle School, Boonsboro Lake Elkhorn Middle School, Columbia Salma Hakam – Peanuts James Dorsey – Amulet Cassandra Woolverton – A Tale Dark and The Bryn Mawr School for Girls, Baltimore Grimm Tahra Khanuja – See You at Harry's Aamina Bora – Candy Bomber Chesapeake Public Charter School, Tilden Middle School, Rockville Lexington Park Declan Burros – Mockingbird Ariel Gill-Ehrenreich – Surviving Hitler Tome School, North East Cold Spring Elementary School, Potomac Elisabeth McDowell – Out of My Mind Dhruv Pai – A Series of Unfortunate Events Hektor Thompson – Peanuts Hebbville Elementary School, Baltimore West Towson, Towson Jordan Franklin – Gifted Hands Blake Bayer – Divergent Tatiana Greene – The Giving Tree Kate Carrera – Wonder Ben Chico – Small Steps Highland Park Elementary School, Ben England – May I Cross Your Golden Landover River Mikaela Lyons – The Fault in Our Stars Carson Glikin – A Long Walk to Water Jackson Graney – Brian's Winter Individual Entry, Silver Spring William Lehmann – Brian's Winter Adoniyah Ben-Tsalmiel – A Medal for Leroy Landon Katz – How They Choked Tatum McLaney – Wonder Key School, Annapolis Ryan Quinn – Land of Stories: A Grimm Lizzy Armstrong – The Witch's Boy Warning Amanda Shrader – Out of My Mind Benjamin Raufman – Prisoner B-3087 Nora Shive – Matilda Krieger Schecter Day School, Baltimore Ceci Wetzel – I Am Malala Gillian Blum – The Tortoise and the Hare MARYLAND LETTERS ABOUT LITERATURE FINALISTS 2015 Level Two (Grades -
Map and Compass
UE CG 039-089 2018_UE CG 039-089 2018 2018-08-29 9:57 AM Page 56 MAP The north magnetic pole is not the same as the geographic North Pole, also known as AND COMPASS true north, which is the northern end of the axis around which the earth spins. In fact, the north magnetic pole currently lies Background Information approximately 800 mi (1300 km) south of the geographic North Pole, in northern A compass is an instrument that people use Canada. And because the north magnetic to find a direction in relation to the earth as pole migrates at 6.6 mi (10 km) per year, its a whole. The magnetic needle in the location is constantly changing. compass, which is the freely moving needle in the compass that has a red end, points The meridians of longitude on maps and north. More specifically, this needle points globes are based upon the geographic to the north magnetic pole, the northern North Pole rather than the north magnetic end of the earth’s magnetic field, which pole. This means that magnetic north, the can be imagined as lines of magnetism that direction that a compass indicates as north, leave the south magnetic pole, flow north is not the same direction as maps indicate around the earth, and then enter the north for north. Magnetic declination, the magnetic pole. difference in the angle between magnetic north and true north must, therefore, be Any magnetized object, an object with two taken into account when navigating with a oppositely charged ends, such as a magnet map and a compass. -
CE-1529 Elk Neck State Park
CE-1529 Elk Neck State Park Architectural Survey File This is the architectural survey file for this MIHP record. The survey file is organized reverse- chronological (that is, with the latest material on top). It contains all MIHP inventory forms, National Register nomination forms, determinations of eligibility (DOE) forms, and accompanying documentation such as photographs and maps. Users should be aware that additional undigitized material about this property may be found in on-site architectural reports, copies of HABS/HAER or other documentation, drawings, and the “vertical files” at the MHT Library in Crownsville. The vertical files may include newspaper clippings, field notes, draft versions of forms and architectural reports, photographs, maps, and drawings. Researchers who need a thorough understanding of this property should plan to visit the MHT Library as part of their research project; look at the MHT web site (mht.maryland.gov) for details about how to make an appointment. All material is property of the Maryland Historical Trust. Last Updated: 11-26-2018 Addendum to Inventory No. CE-1529 Maryland Historical Trust Maryland Inventory of Historic Properties Form Page 1 of 1 Name of Property: Elk Neck State Park Location: Elk Neck Peninsula The following is an update to the "Table of Resources" inventoried at Elk Neck State Park in 2003: MIHP Number Name Condition as of April 2018 CE-1529 Elk Neck State Park, Wersen House Razed, date unknown CE-813 located within CE-1529 Bathon Stone House Razed, 2012 Bathon Barn Razed,2012 -
Camping Places (Campsites and Cabins) with Carderock Springs As
Camping places (campsites and cabins) With Carderock Springs as the center of the universe, here are a variety of camping locations in Maryland, Virginia, Pennsylvania, West Virginia and Delaware. A big round of applause to Carderock’s Eric Nothman for putting this list together, doing a lot of research so the rest of us can spend more time camping! CAMPING in Maryland 1) Marsden Tract - 5 mins - (National Park Service) - C&O canal Mile 11 (1/2 mile above Carderock) three beautiful group campsites on the Potomac. Reservations/permit required. Max 20 to 30 people each. C&O canal - hiker/biker campsites (no permit needed - all are free!) about every five miles starting from Swains Lock to Cumberland. Campsites all the way to Paw Paw, WV (about 23 sites) are within 2 hrs drive. Three private campgrounds (along the canal) have cabins. Some sections could be traveled by canoe on the Potomac (canoe camping). Closest: Swains Lock - 10 mins - 5 individual tent only sites (one isolated - take path up river) - all close to parking lot. First come/first serve only. Parking fills up on weekends by 8am. Group Campsites are located at McCoy's Ferry, Fifteen Mile Creek, Paw Paw Tunnel, and Spring Gap. They are $20 per site, per night with a maximum of 35 people. Six restored Lock-houses - (several within a few miles of Carderock) - C&O Canal Trust manages six restored Canal Lock-houses for nightly rental (some with heat, water, A/C). 2) Cabin John Regional Park - 10 mins - 7 primitive walk-in sites. Pit toilets, running water. -
Regional Fact Sheet – North and Central America
SIXTH ASSESSMENT REPORT Working Group I – The Physical Science Basis Regional fact sheet – North and Central America Common regional changes • North and Central America (and the Caribbean) are projected to experience climate changes across all regions, with some common changes and others showing distinctive regional patterns that lead to unique combinations of adaptation and risk-management challenges. These shifts in North and Central American climate become more prominent with increasing greenhouse gas emissions and higher global warming levels. • Temperate change (mean and extremes) in observations in most regions is larger than the global mean and is attributed to human influence. Under all future scenarios and global warming levels, temperatures and extreme high temperatures are expected to continue to increase (virtually certain) with larger warming in northern subregions. • Relative sea level rise is projected to increase along most coasts (high confidence), and are associated with increased coastal flooding and erosion (also in observations). Exceptions include regions with strong coastal land uplift along the south coast of Alaska and Hudson Bay. • Ocean acidification (along coasts) and marine heatwaves (intensity and duration) are projected to increase (virtually certain and high confidence, respectively). • Strong declines in glaciers, permafrost, snow cover are observed and will continue in a warming world (high confidence), with the exception of snow in northern Arctic (see overleaf). • Tropical cyclones (with higher precipitation), severe storms, and dust storms are expected to become more extreme (Caribbean, US Gulf Coast, East Coast, Northern and Southern Central America) (medium confidence). Projected changes in seasonal (Dec–Feb, DJF, and Jun–Aug, JJA) mean temperature and precipitation at 1.5°C, 2°C, and 4°C (in rows) global warming relative to 1850–1900. -
Equivalence of Current–Carrying Coils and Magnets; Magnetic Dipoles; - Law of Attraction and Repulsion, Definition of the Ampere
GEOPHYSICS (08/430/0012) THE EARTH'S MAGNETIC FIELD OUTLINE Magnetism Magnetic forces: - equivalence of current–carrying coils and magnets; magnetic dipoles; - law of attraction and repulsion, definition of the ampere. Magnetic fields: - magnetic fields from electrical currents and magnets; magnetic induction B and lines of magnetic induction. The geomagnetic field The magnetic elements: (N, E, V) vector components; declination (azimuth) and inclination (dip). The external field: diurnal variations, ionospheric currents, magnetic storms, sunspot activity. The internal field: the dipole and non–dipole fields, secular variations, the geocentric axial dipole hypothesis, geomagnetic reversals, seabed magnetic anomalies, The dynamo model Reasons against an origin in the crust or mantle and reasons suggesting an origin in the fluid outer core. Magnetohydrodynamic dynamo models: motion and eddy currents in the fluid core, mechanical analogues. Background reading: Fowler §3.1 & 7.9.2, Lowrie §5.2 & 5.4 GEOPHYSICS (08/430/0012) MAGNETIC FORCES Magnetic forces are forces associated with the motion of electric charges, either as electric currents in conductors or, in the case of magnetic materials, as the orbital and spin motions of electrons in atoms. Although the concept of a magnetic pole is sometimes useful, it is diácult to relate precisely to observation; for example, all attempts to find a magnetic monopole have failed, and the model of permanent magnets as magnetic dipoles with north and south poles is not particularly accurate. Consequently moving charges are normally regarded as fundamental in magnetism. Basic observations 1. Permanent magnets A magnet attracts iron and steel, the attraction being most marked close to its ends. -