Dielectric Breakdown Weathering of the Moon's Polar Regolith
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Time Travelers Camporee a Compilation of Resources
1 Time Travelers Camporee A Compilation of Resources Scouts, Ventures, Leaders & Parents…. This is a rather large file (over 80 pages). We have included a “Table of Contents” page to let you know the page numbers of each topic for quick reference. The purpose of this resources to aid the patrols, crews (& adults) in their selection of “Patrol Time Period” Themes. There are numerous amounts of valuable information that can be used to pinpoint a period of time or a specific theme /subject matter (or individual).Of course, ideas are endless, but we just hope that your unit can benefit from the resources below…… This file also goes along with the “Time Traveler” theme as it gives you all a look into a wide variety of subjects, people throughout history. The Scouts & Ventures could possibly use some of this information while working on some of their Think Tank entries. There are more events/topics that are not covered than covered in this file. However, due to time constraints & well, we had to get busy on the actual Camporee planning itself, we weren’t able to cover every event during time. Who knows ? You might just learn a thing or two ! 2 TIME TRAVELERS CAMPOREE PATROL & VENTURE CREW TIME PERIOD SELECTION “RESOURCES” Page Contents 4 Chronological Timeline of A Short History of Earth 5-17 World Timeline (1492- Present) 18 Pre-Historic Times 18 Fall of the Roman Empire/ Fall of Rome 18 Middle Ages (5th-15th Century) 19 The Renaissance (14-17th Century) 19 Industrial Revolution (1760-1820/1840) 19 The American Revolutionary War (1775-1783) 19 Rocky Mountain Rendezvous (1825-1840) 20 American Civil War (1861-1865) 20 The Great Depression (1929-1939) 20 History of Scouting Timeline 20-23 World Scouting (Feb. -
Apollo 17 Index
Preparation, Scanning, Editing, and Conversion to Adobe Portable Document Format (PDF) by: Ronald A. Wells University of California Berkeley, CA 94720 May 2000 A P O L L O 1 7 I N D E X 7 0 m m, 3 5 m m, A N D 1 6 m m P H O T O G R A P H S M a p p i n g S c i e n c e s B r a n c h N a t i o n a l A e r o n a u t i c s a n d S p a c e A d m i n i s t r a t i o n J o h n s o n S p a c e C e n t e r H o u s t o n, T e x a s APPROVED: Michael C . McEwen Lunar Screening and Indexing Group May 1974 PREFACE Indexing of Apollo 17 photographs was performed at the Defense Mapping Agency Aerospace Center under the direction of Charles Miller, NASA Program Manager, Aerospace Charting Branch. Editing was performed by Lockheed Electronics Company, Houston Aerospace Division, Image Analysis and Cartography Section, under the direction of F. W. Solomon, Chief. iii APOLLO 17 INDEX 70 mm, 35 mm, AND 16 mm PHOTOGRAPHS TABLE OF CONTENTS Page INTRODUCTION ................................................................................................................... 1 SOURCES OF INFORMATION .......................................................................................... 13 INDEX OF 16 mm FILM STRIPS ........................................................................................ 15 INDEX OF 70 mm AND 35 mm PHOTOGRAPHS Listed by NASA Photograph Number Magazine J, AS17–133–20193 to 20375......................................... -
The Length of Lunar Crater Rays Explained Using Secondary Crater Scaling
Icarus 312 (2018) 231–246 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The length of lunar crater rays explained using secondary crater scaling ∗ Jacob R. Elliott , Ya-Huei Huang, David A. Minton, Andrew M. Freed Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA a r t i c l e i n f o a b s t r a c t Article history: The relationship between the length of crater rays and primary crater radius is still poorly understood. Received 26 September 2017 In this study we mapped the ray systems of 27 lunar craters, ranging from 10 m to 84 km in diameter. Revised 4 April 2018 For each ray system, we measured the number, length, and optical maturity index (OMAT) of the rays. Accepted 16 April 2018 Our mapping effort shows that ray length scales to primary crater radius (R) with a power-law of R 1.22 , Available online 18 April 2018 except for the smallest and freshest rays ( < 10 m diameter craters, less than ∼40 years old), which were Keywords: ∼10 radii longer than expected. We also undertook an analytical modeling exercise in an attempt to Cratering better understand the physical processes that control ray length. The model suggests that the empirical Impact processes relationship (R 1.22 ) can be explained as resulting from the combination of 1) the relationship between Moon, Surface ejecta fragment size and ejected distance, and 2) the scaling of secondary crater diameters, which create rays by excavating bright material from below the dark space-weathered layer, as a function of ejected velocity. -
National Aeronautics and Space Administration) 111 P HC AO,6/MF A01 Unclas CSCL 03B G3/91 49797
https://ntrs.nasa.gov/search.jsp?R=19780004017 2020-03-22T06:42:54+00:00Z NASA TECHNICAL MEMORANDUM NASA TM-75035 THE LUNAR NOMENCLATURE: THE REVERSE SIDE OF THE MOON (1961-1973) (NASA-TM-75035) THE LUNAR NOMENCLATURE: N78-11960 THE REVERSE SIDE OF TEE MOON (1961-1973) (National Aeronautics and Space Administration) 111 p HC AO,6/MF A01 Unclas CSCL 03B G3/91 49797 K. Shingareva, G. Burba Translation of "Lunnaya Nomenklatura; Obratnaya storona luny 1961-1973", Academy of Sciences USSR, Institute of Space Research, Moscow, "Nauka" Press, 1977, pp. 1-56 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION M19-rz" WASHINGTON, D. C. 20546 AUGUST 1977 A % STANDARD TITLE PAGE -A R.,ott No0... r 2. Government Accession No. 31 Recipient's Caafog No. NASA TIM-75O35 4.-"irl. and Subtitie 5. Repo;t Dote THE LUNAR NOMENCLATURE: THE REVERSE SIDE OF THE August 1977 MOON (1961-1973) 6. Performing Organization Code 7. Author(s) 8. Performing Organizotion Report No. K,.Shingareva, G'. .Burba o 10. Coit Un t No. 9. Perlform:ng Organization Nome and Address ]I. Contract or Grant .SCITRAN NASw-92791 No. Box 5456 13. T yp of Report end Period Coered Santa Barbara, CA 93108 Translation 12. Sponsoring Agiicy Noms ond Address' Natidnal Aeronautics and Space Administration 34. Sponsoring Agency Code Washington,'.D.C. 20546 15. Supplamortary No9 Translation of "Lunnaya Nomenklatura; Obratnaya storona luny 1961-1973"; Academy of Sciences USSR, Institute of Space Research, Moscow, "Nauka" Press, 1977, pp. Pp- 1-56 16. Abstroct The history of naming the details' of the relief on.the near and reverse sides 6f . -
Self-Powered and Low Mass Autonomous Platform for Planetary Surface Exploration
UNIVERSIDAD CARLOS III DE MADRID TESIS DOCTORAL Self-powered and low mass autonomous platform for planetary surface exploration Autor: Francisco Javier Alvarez´ Fern´andez Director: Luis Enrique Moreno Lorente Codirector: Diego Fern´andez Infante DEPARTAMENTO DE INGENIER´IA DE SISTEMAS Y AUTOMATICA´ Legan´es, Febrero 2016 TESIS DOCTORAL (THESIS) Self-powered and low mass autonomous platform for planetary surface exploration Autor (Candidate): Francisco Javier Alvarez´ Fern´andez Director (Adviser): Luis Enrique Moreno Lorente Codirector (Co-Adviser): Diego Fern´andezInfante Tribunal (Review Committee) Javier G´omez-Elvira Rodr´ıguez.Presidente (Chair): Ernesto Gambao Galan. Vocal (Member): Mar´ıa Dolores Blanco Rojas. Secretario (Secretary): Calificaci´on(Qualification): T´ıtulo (Grade): Doctorado en Ingenier´ıaEl´ectrica,Electr´onicay Autom´atica Legan´es, de Febrero de 2016 Abstract Nowadays and during the following decades, planetary surface exploration of rocky bodies in our Solar System (especially the Moon, Mars and some asteroids), will be one of the main strategic goals for the different space agencies around the world. This thesis stablishes the technological basis for the implementation of a fixed scientific monitoring infrastructure over a planet surface. The concept proposed is aimed to provide a reliable and cost effective system for the continuous surface monitoring of the inner rocky planets of our Solar System. Traditionally these surface exploration missions have been led by progressively more and more complex and expensive systems with challenging scientific and technological objectives (i.e. NASA Mars rovers, ESA ExoMars program or the Chinese Chang’e 3 mission). This space exploration paradigm benefits from deploying highly ambitious and expensive platforms able to perform complex scientific experiments, but it is exposed to the risk of a complete mission loss in the case of a platform failure. -
Atomic Power in Space II Chapter 14
Atomic Power in Space II Chapter 14 NASA’s Spitzer Space Telescope observed a fledgling solar system, like the one depicted in this artist’s concept, and discovered deep within it enough water vapor to fill the oceans on Earth five times. (Photo: NASA/JPL-Caltech) 183 Appendix A United States Space Nuclear Power Systems A Launched into Space (as of January 2014) Initial Average Total Initial Power Launch RTG Spacecraft Sourcea Spacecraft Mission Type Date Statusb Power (We)b Power (We)b RTGs SNAP-3(1) TRANSIT-4A Navigational 29-Jun-61 Succesfully operated for over 15 years. Currently 2.7 2.7 in Earth orbit. SNAP-3(1) TRANSIT-4B Navigational 15-Nov-61 Succesfully operated for over 9 years. Currently in 2.7 2.7 Earth orbit. SNAP-9(1) TRANSIT-5BN-1 Navigational 28-Sep-63 RTG succesfully operated as planned. Non- 25.2 25.2 electrical problems caused satelite to fail after 9 months. Currently in Earth orbit. SNAP-9(1) TRANSIT-5BN-2 Navigational 5-Dec-63 Sucessfully operated for over 6 years. 26.8 26.8 Currently in Earth orbit. SNAP-9(1) TRANSIT-5BN-3 Navigational 21-Apr-64 Spacecraft failed to achieve orbit, RTG burned 25 25 and dispered on re-ntry as designed. SNAP-19(2) NIMBUS-B-1 Meteorologocial 18-May-68 Mission aborted; power source retrieved intact 28 56 and fuel source reused on later mission. SNAP19-(2) NIMBUS III Meteorologocial 14-Apr-69 Sucessfully operated for over 2.5 years. 28.2 56.4 Currently in Earth orbit. -
Deep Dielectric Charging of Regolith Within the Moon's Permanently Shadowed Regions Andrew P
University of New Hampshire University of New Hampshire Scholars' Repository Physics Scholarship Physics 8-2014 Deep dielectric charging of regolith within the Moon's permanently shadowed regions Andrew P. Jordan University of New Hampshire, [email protected] T. J. Stubbs Goddard Space Flight Center Jody K. Wilson University of New Hampshire, [email protected] Nathan A. Schwadron University of New Hampshire, [email protected] Harlan E. Spence University of New Hampshire, [email protected] See next page for additional authors Follow this and additional works at: https://scholars.unh.edu/physics_facpub Part of the Physics Commons Recommended Citation Jordan, A.P., Stubbs, T.J., Wilson, J.K., Schwadron, N.A., Spence, H.E., Joyce, C.J. Deep dielectric charging of regolith within the Moon's permanently shadowed regions. (2014) Journal of Geophysical Research E: Planets, 119 (8), pp. 1806-1821. doi:10.1002/ 2014JE004648 This Article is brought to you for free and open access by the Physics at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Physics Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Authors Andrew P. Jordan, T. J. Stubbs, Jody K. Wilson, Nathan A. Schwadron, Harlan E. Spence, and Colin J. Joyce This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/physics_facpub/306 JournalofGeophysicalResearch: Planets RESEARCH ARTICLE Deep dielectric charging of regolith within the Moon’s 10.1002/2014JE004648 permanently shadowed regions Key Points: A. P.Jordan1, T. -
Prepared on Behalf of the National Aeronautics and Space Administration GEOMETRIC INTERPRETATION of LUNAR CRATERS G23QIJQ8
Prepared on behalf of the National Aeronautics and Space Administration GEOMETRIC INTERPRETATION OF LUNAR CRATERS G23QIJQ8 MONIES ALPES MONIES ARISTILLUS SPITZBERGENSIS • < PALUS PUTREDINIS ;i Impact craters and other features on the Moon, photographed by Apollo 15 crew while in orbit 106 km above surface on July 31, 1971. Oblique view is north across eastern Mare Imbrium. The horizon lies about 500 km from the lava-flooded 80-km-diameter crater Archimedes. Out-of- focus object in lower right corner is part of Command Service Module. Sun is to right. Apollo 15 mapping-camera photograph 1540. Geometric Interpretation of Lunar Craters By RICHARD J. PIKE APOLLO 15-17 ORBITAL INVESTIGATIONS GEOLOGICAL SURVEY PROFESSIONAL PAPER 1046-C Prepared on behalf of the National Aeronautics and Space Administration UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Pike, Richard J. Geometric interpretation of lunar craters. (Apollo 15-17 orbital investigation) (Geological Survey professional paper : 1046-C) Bibliography: p. C60-C65. Supt.ofDocs.no.: I 19.16:1046-C 1. Lunar craters-Data processing. 2. Lunar craters- Statistical methods. I. Title. II. Series. III. Series: United States. Geological Survey. Professional paper ; 1046-C. QB591.P73 559.9*1 79-607927 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Abstract ________________________________ -
American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program - 1993
NASA Contractor Report 188271 National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program - 1993 Volume 1 William A. Hyman, Editor Texas A&M University College Station, Texas Stanley H. Goldstein, Editor University Programs Office Lyndon B. Johnson Space Center Houston, Texas Grant NGT 44-001-800 National Aeronautics and Space Administration Lyndon B. Johnson Space Center 1993 Preface The 1993 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The program at JSC, as well as the programs as other NASA centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are , To further the professional knowledge of qualified engineering and science faculty members 2. To stimulate an exchange of ideas between participants and NASA , To enrich and refresh the research and teaching activities of participants' institutions 4. To contribute to the research objectives of the NASA centers Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1993. Volume 1 contains reports 1 through 18 and Volume 2 contains reports 19 through 35. iii p_CliOING PACE BLANK NOT FILMED Contents Andrews, G. A.: "Data Analysis and Interpretation of Lunar Dust Exosphere" ....