Self-Powered and Low Mass Autonomous Platform for Planetary Surface Exploration

Total Page:16

File Type:pdf, Size:1020Kb

Self-Powered and Low Mass Autonomous Platform for Planetary Surface Exploration UNIVERSIDAD CARLOS III DE MADRID TESIS DOCTORAL Self-powered and low mass autonomous platform for planetary surface exploration Autor: Francisco Javier Alvarez´ Fern´andez Director: Luis Enrique Moreno Lorente Codirector: Diego Fern´andez Infante DEPARTAMENTO DE INGENIER´IA DE SISTEMAS Y AUTOMATICA´ Legan´es, Febrero 2016 TESIS DOCTORAL (THESIS) Self-powered and low mass autonomous platform for planetary surface exploration Autor (Candidate): Francisco Javier Alvarez´ Fern´andez Director (Adviser): Luis Enrique Moreno Lorente Codirector (Co-Adviser): Diego Fern´andezInfante Tribunal (Review Committee) Javier G´omez-Elvira Rodr´ıguez.Presidente (Chair): Ernesto Gambao Galan. Vocal (Member): Mar´ıa Dolores Blanco Rojas. Secretario (Secretary): Calificaci´on(Qualification): T´ıtulo (Grade): Doctorado en Ingenier´ıaEl´ectrica,Electr´onicay Autom´atica Legan´es, de Febrero de 2016 Abstract Nowadays and during the following decades, planetary surface exploration of rocky bodies in our Solar System (especially the Moon, Mars and some asteroids), will be one of the main strategic goals for the different space agencies around the world. This thesis stablishes the technological basis for the implementation of a fixed scientific monitoring infrastructure over a planet surface. The concept proposed is aimed to provide a reliable and cost effective system for the continuous surface monitoring of the inner rocky planets of our Solar System. Traditionally these surface exploration missions have been led by progressively more and more complex and expensive systems with challenging scientific and technological objectives (i.e. NASA Mars rovers, ESA ExoMars program or the Chinese Chang’e 3 mission). This space exploration paradigm benefits from deploying highly ambitious and expensive platforms able to perform complex scientific experiments, but it is exposed to the risk of a complete mission loss in the case of a platform failure. Beyond the traditional rovers or landers, the concept proposed is based on an ad-hoc Wireless Sensor Network composed of small fixed platforms aimed to sense, process, share between them and finally transmit scientific data to a satellite orbiter for further transmission to Earth. The conceived system is able to operate autonomously during years, harvesting the required energy from the planet surface environment. Such a concept deployed over a planet surface would represent the first fixed infrastructure over an extraterrestrial rocky body. This work is focused in the platform overall design, including the ad-hoc scientific payload, and provides reliable technological solutions for the different critical aspects of the concept proposed. The platform conceived is a low mass dual body: (i) a tetrahedron body highly optimized both in mass (2000g) and volume (tetrahedron envelope of 200x200 mm of base and 200 mm of height) that will remain over the planet surface; (ii) a penetrator body (3260 g) of 300 mm in height, 100 mm in diameter and with the shape of a ballistic missile aimed to go between 0.3 and 1.2 meters below the subsurface of i the planet. The deployment method selected is penetration (hard-landing). This method drastically simplifies the descent system required, thus reducing the related costs. Specific solutions for the conceived platform are proposed with the objective of ensuring the platform operability after the landing impact. The scientific payload conceived is highly integrated with low power consumption requirements. The payload presented in this work comprises a dust deposition sensor, three surface temperature sensors, a radiation sensor and three multiespectral irradiance sensors. Day and night energy harvesting systems are proposed, which represents an innovation in this kind of platforms. Finally, a specific control architecture is presented aimed to provide the required autonomous behavior to the platform. This autonomous behavior in combination with a dynamic thermal regulation and the day and night energy harvesting systems allow the platform conceived to drastically increase its science return and life time. ii Resumen En la actualidad y durante las pr´oximas d´ecadas, la exploraci´onde las superficies planetarias de los cuerpos rocosos de nuestro Sistema Solar (especialmente de la Luna, Marte y la de algunos asteroides), ser´auno de los objetivos estrat´egicos de las diferentes agencias espaciales de todo el mundo. Esta tesis establece las bases tecnol´ogicaspara la implantaci´onde una infraestructura de monitorizaci´on cient´ıfica sobre la superficie de un planeta. El concepto propuesto est´aorientado a obtener un sistema fiable y econ´omicopara la monitorizaci´on continua de la superficie planetaria de los cuerpos rocosos internos de nuestro Sistema Solar. Tradicionalmente este tipo de exploraci´on de superficies planetarias ha sido llevada a cabo por sistemas cada vez m´asy m´ascomplejos y costosos (por ejemplo los veh´ıculos exploradores para Marte de la NASA, el programa ExoMars de la Agencia Espacial Europea o la misi´on china Chang’e 3). Este paradigma de exploraci´on espacial aprovecha la oportunidad de desplegar plataformas muy complejas y ambiciosas capaces de realizar complejos experimentos cient´ıficos,pero expuestas al riesgo de la p´erdida completa de la misi´on en caso de un fallo en la plataforma de exploraci´on. M´as all´a de los tradicionales veh´ıculos exploradores o sondas, el concepto propuesto se basa en peque˜nasplataformas capaces de medir, procesar, compartir entre ellas y finalmente enviar los datos medidos a un sat´elite enorbita ´ para una posterior transmisi´ona la Tierra, mediante el uso de redes de sensores inal´ambricos a medida. El sistema ideado es capaz de operar aut´onomamente durante a˜nos, recolectando la energ´ıarequerida en el propio ambiente de la superficie del planeta. Este tipo de concepto, desplegado sobre la superficie de un planeta, representar´ıa la primera infraestructura fija sobre la superficie de un cuerpo rocoso extraterrestre. El trabajo presentado se enfoca en el dise˜no global de la plataforma, incluyendo la instrumentaci´on cient´ıfica y aporta soluciones t´ecnicaspara los aspectos m´as cr´ıticos del concepto propuesto. La plataforma ideada est´abasada en dos cuerpos: (i) un cuerpo con forma tetra´edricamuy optimizado en peso (2000 gr) y en volumen (envolvente del tetraedro iii de 200x200 mm de base y 200 mm de altura) que permanecer´aen la superficie del planeta; (ii) el cuerpo del penetrador (3260 gr) de 300 mm de altura, 100 mm de di´ametro y con la forma de un misil bal´ıstico enfocado a enterrarse entre 0.3 y 1.2 metros por debajo de la superficie del planeta. El sistema de despliegue seleccionado es la inserci´on(aterrizaje durodel ingl´es hard-landing), simplificando dr´asticamente de esta forma el sistema de descenso requerido, y por lo tanto reduciendo los costes asociados. Se proponen igualmente soluciones espec´ıficaspara la plataforma ideada de forma que se asegure su integridad operacional despu´esdel impacto durante el aterrizaje. Se ha definido una instrumentaci´on cient´ıfica altamente integrada y con unos requisitos de consumo muy bajos. La instrumentaci´ondesarrollada consta de un sensor de polvo depositado, tres sensores de temperatura superficial, un sensor de radiaci´ony tres sensores de irradiaci´onmultiespectral. Se proponen asimismo sistemas de obtenci´onde energ´ıadurante el d´ıa y la noche, lo que representa una innovaci´onen este tipo de plataformas. Finalmente, se presenta una arquitectura de control espec´ıfica enfocada a proporcionar a la plataforma el comportamiento aut´onomoque se requiere. Este comportamiento aut´onomo en combinaci´oncon un sistema din´amicode regulaci´ont´ermicay de los sistemas de obtenci´onde energ´ıadurante el d´ıa y la noche permite a la plataforma concebida incrementar en gran medida la informaci´on cient´ıfica obtenida y la vidautil ´ de la misi´on en su conjunto. iv A mis padres. v Agradecimientos Es dif´ıcil incluir en una pocas l´ıneas la gran ayuda recibida, tanto personal como profesional, para la consecuci´onde este trabajo. Por ello, y sabiendo que inevitablemente no podr´emencionar a todos, haceros llegar mi gratitud m´assincera por vuestra ayuda. En primer lugar me gustar´ıa agradecer a mis tutores, Luis y Diego, que me apoyaron y acompa˜narondesde los inicios, y no me refiero s´oloa este trabajo, sino desdehaceyam´as de 10 a˜nosen los diferentes proyectos fin de carrera y tesinas que he ido realizando. Gracias por vuestra confianza. Quiero agradecer al equipo del Grupo Arquimea Ingenier´ıa, desde el primero hasta el ´ultimo,su gran ayuda en estos a˜nosen los que hemos ido creciendo juntos profesionalmente en el mundo del I+D. Especialmente me gustar´ıa agradecer a Cayetano sus inestimables aportaciones a este trabajo, no s´oloenel´ambito de los mecanismos dise˜nados,sino tambi´enpor todo su apoyo. No quiero olvidarme de Carlos y Jes´us,dise˜nadoresdel ASIC de radiaci´on y que perdieron alg´un que otro fin de semana por llegar a tiempo para la fabricaci´onde los mismos. Gracias Naiara, Marcelo, Paco y Dani por vuestras correcciones y comentarios en las diferentes publicaciones y en este mismo trabajo. Agradecer igualmente a David sus indicaciones para la electr´onicadel sensor de polvo. Aunque ya no est´aentre nosotros porque pas´o a una mejor vida (en las soleadas costas de Florida), agradecer a Lorenzo su ayuda y confianza durante los inicios de esta tesis. No puedo dejar de incluir aqu´ı mis agradecimientos al grupo de trabajo del proyecto europeo SWIPE: My most sincere gratitude to the SWIPE Project team:
Recommended publications
  • MOONLITE : the SCIENTIFIC CASE. IA Crawford1, AJ Ball2, L. Wilson3
    Lunar and Planetary Science XXXIX (2008) 1069.pdf * MOONLITE : THE SCIENTIFIC CASE. I.A. Crawford1, A.J. Ball2, L. Wilson3, A. Smith4, Y. Gao5 and the UK Pene- trator Consortium6. 1School of Earth Sciences, Birkbeck College, London, WC1E 7HX, UK. 2Planetary and Space Sciences Research Institute, Open University, Milton Keynes, UK. 3Department of Environmental Science, Lancaster University, UK. 4Mullard Space Science Laboratory, University College London, UK. 5Surrey Space Centre, University of Surrey, UK.6www.mssl.ucl.ac.uk/pages/general/news/UKLPC/UKLPC.pdf. *MoonLITE is a UK-led initiative which is currently the focus of a joint UK-NASA study. (Email: [email protected]). Introduction: The principal scientific importance the lunar crust and upper mantle [4,5]. However, the of the Moon is as a recorder of geological processes deep interior of the Moon was only very loosely con- active in the early history of terrestrial planets (e.g. strained by Apollo seismology due to the geographi- planetary differentiation, magma ocean formation and cally limited coverage of the network (essentially a evolution, etc), and of the near-Earth cosmic environ- triangle between the Apollo 12/14, 15 and 16 sites), so ment throughout Solar System history [1,2]. Although the information obtained on crustal thickness and man- the Clementine and Lunar Prospector missions have in tle structure may not be globally representative. There recent years greatly added to our knowledge of the is now a pressing need for a more widely-spaced net- geochemical and mineralogical makeup of the lunar work of lunar seismic stations, including stations at surface, and these observations will soon be supple- high latitudes and on the farside.
    [Show full text]
  • Moonlite: a UK-Led Mission to the Moon Downloaded from by Guest on 24 September 2021
    CRAWFORD, SMITH: MOONLITE MoonLITE: A UK-led mission to the Moon Downloaded from https://academic.oup.com/astrogeo/article/49/3/3.11/218588 by guest on 24 September 2021 Ian 1: Farside view of the Moon Crawford as seen by the and Alan Clementine spacecraft. Smith Penetrators discuss the launched by the MoonLITE orbiter scientific would allow surface objectives of investigations in areas not visited by Luna, the proposed Surveyor or Apollo missions. MoonLITE mission. (NASA/JPL/USGS) hile the surface missions to during the Apollo programme (see Wiec- the Moon of the 1960s and 1970s zorek et al. 2006, for a review). Moreover, the Wachieved a great deal, scientifically recent remote-sensing missions have themselves much was also left unresolved. The recent ABSTRACT raised questions that will require new surface plethora of lunar missions (flown or proposed) measurements for their resolution, of which reflects a resurgence in interest in the Moon, not MoonLITE is a proposal for a UK-led one of the most important is the circumstantial only in its own right, but also as a recorder of mission to the Moon that will place four evidence for water ice, and by implication other the early history of the Earth–Moon system and penetrators in the lunar surface in order volatiles, within permanently shaded craters at of the interplanetary environment 1 AU from the to make geochemical and geophysical the lunar poles (Feldman et al. 1998). Sun (e.g. Spudis 1996, Crawford 2004, Jolliff measurements that are impossible from In order to make significant further progress et al.
    [Show full text]
  • Mars Metnet Mission - Martian Atmospheric Observational Post Network and Payload Precursors
    Geophysical Research Abstracts Vol. 20, EGU2018-1927, 2018 EGU General Assembly 2018 © Author(s) 2017. CC Attribution 4.0 license. Mars MetNet Mission - Martian Atmospheric Observational Post Network and Payload Precursors Ari-Matti Harri (1), Harri Haukka (1), Sergey Aleksashkin (2), Ignacio Arruego (3), Walter Schmidt (1), Maria Genzer (1), Luis Vazquez (4), Timo Siikonen (5), and Matti Palin (5) (1) Finnish Meteorological Institute, Space Research and Observation Technologies, Helsinki, Finland (harri.haukka@fmi.fi), (2) Lavochkin Association, Moscow, Russia, (3) Institutio Nacional de Tecnica Aerospacial, Madrid, Spain, (4) Universidad Complutense de Madrid, Madrid, Spain, (5) Finflo Ltd., Helsinki, Finland Abstract A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA), The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. MetNet Lander Concept The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized.
    [Show full text]
  • Dr. Sergei Fedorovich Teselkin Lavochkin Association, Russian Federation, [email protected]
    69th International Astronautical Congress 2018 Paper ID: 44581 oral IAF SPACE EXPLORATION SYMPOSIUM (A3) Solar System Exploration (5) Author: Dr. Sergei Fedorovich Teselkin Lavochkin Association, Russian Federation, [email protected] \TO VENUS TOGETHER": RUSSIAN-AMERICAN JOINT ENCORE OF VENUS RESEARCHES WITH ORBITER, LANDER AND ATMOSPHERIC PROBES IN THE PROJECT \VENUS-D" Abstract S. Lemeshevskii, Candidate of Economics, [email protected] O. Grafodatskiy, Doctor of Engineering Sci- ence,[email protected] Kh.Karchaev, Candidate of Economics, [email protected] S. Teselkin, Candi- date of PhysicsMathematics,[email protected] V. Vorontsov, Doctor of Engineering Science, [email protected] Lavochkin Association, Russia Mission "Venera-D" by Lavochkin Association implies a long-term study of Venus. International pay- load is to be installed on orbiter, lander and long-living station on Venus surface. The project is a basis for further large-scale international missions to Venus, previously carried out in 1960-80s and early 1990s by Soviet and American spacecraft. A large amount of data on structure, soil composition, atmosphere, cloud layers, wind speed on the surface were accumulated. Soviet Venus research program was completed in 1986 by landing of \VEGA" (Venus-Halley's comet), one of the most successful projects in Lavochkin history. Since 1994 (mapping with the NASA Magellan mission) Venus was studied by two spacecraft: \Venus Express" (ESA, 2005-2014) and \Akatsuki" (JAXA, launch - 2010, start of operation - 2015). The first steps of \Venera-D" appeared in the early 2000s with the idea to provide operations on the planet's surface for several hours and possibly days. With the latest developments, unification of design solutions and new technical tools used in-house Lavochkin experts consider the mission \VEGA" as a prototype for the next automatic interplanetary station destined to Venus.
    [Show full text]
  • Mars Atmospheric Science and Recent Mars Missions Workshop 22-23 May 2019, El Escorial, Madrid, Spain
    Mars Atmospheric Science and Recent Mars Missions Workshop 22-23 May 2019, El Escorial, Madrid, Spain AGENDA: Tuesday 21st of May Arrival Day Wednesday 22nd of May Workshop Day 1 09:00 Gathering to the Conference Room. Opening statement and Workshop LOC statement Session 1 09:30 Luis Vazquez: The UCM Martian Studies Group: History and Achievements 10:00 Ari-Matti Harri: ExoMars 2020 mission objectives and payload 10:30 Fernando Lopez Martinez / Andres Russu: UC3M infrared sensors for Mars Atmospheric Science retrieval 11:00 Coffee break Session 2 11:30 José Antonio Rodríguez Manfredi: MEDA, the instrument onboard Mars2020 to characterize the dust cycle and the environment near the surface 12:00 M.P. Velasco: Dynamic of the Martian atmospheric dust through fractional diffusion models 12:30 Carlos Aguirre: Dust Devils analysis by means of non-commutative tomography 13:00 Manuel Dominguez: Advanced numerical modeling of thermal sensors for Mars Exploration and working under smart controls 13:30 Lunch break Session 3 15:00 Daniel Santos-Muñoz: Present and future of atmospheric numerical modelling 15:30 Eva Mateo: Planetary Atmosphere and Simulation Chamber 16:00 Coffee break 16:30 Simone Silvestro: Aeolian features on Mars 17:00 Felipe Gomez: Conditions for life to exits: determining environmental parameters on Mars 17:30 Juan Alday: Trace gas retrievals from ACS on board ExoMars TGO 18:00 Wrap-up of the Day 1 Thursday 23rd of May Workshop Day 2 09:00 Gathering to the Conference Room Session 4 09:30 Salvador Jimenez: Confinement of a charged
    [Show full text]
  • Annual Report
    The 2008 Annual Report of the International Space Exploration Coordination Group Released March 2009 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 THIS PAGE INTENTIONALLY BLANK 1 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 CONTENTS Introduction …………………………………………………………………………… 4 Part 1: The Role of the ISECG 1.1 Overview …………………………………………………………………………. 6 1.2 Working Groups of the ISECG …………………………………………………… 7 1.2.1 Enhancement of Public Engagement …………………………………………… 7 1.2.2 Establishment of Relationships with Existing International Working Groups …. 7 1.2.3 The International Space Exploration Coordination Tool (INTERSECT) ……. 8 1.2.4 The Space Exploration Interface Standards Working Group (ISWG) ………….. 8 1.2.5 Mapping the Space Exploration Journey ………………………………………... 8 Part 2: Current and Near-Term Activities of ISECG Members 2.1 Low Earth Orbit (LEO) …………………………………………………………… 10 2.1.1 The International Space Station (ISS) …………………………………………… 10 2.1.2 Emerging Government Capabilities …………………………………………….. 10 2.1.3 Emerging Commercial Providers ……………………………………………….. 11 2.2 Beyond LEO – The Moon and Mars ……………………………………………….. 11 2.2.1 Moon ……………………………………………………………………………… 11 2.2.2 Mars ………………………………………………………………………………. 12 Part 3: Progress in 2008 towards Opportunities for Integrated and Collaborative Space Exploration 3.1 Robotic Network Science – The International Lunar Network ……………………… 16 3.2 Joint Development for Robotic Exploration – Mars Sample Return ………………………… 17 3.3 Collaborative
    [Show full text]
  • Phd Projects at the Institute of Origins
    PhD projects at the Institute of Origins. A list of possible PhD projects at the Institute of Origins appear in the following pages. If you have any questions regarding any projects please contact the individual supervisors. Also if you have other suggestions for a project please contact us as well. The chemical composition of star forming regions near and far .................................... 3 ! Modelling the solubilities of organic solids in hydrocarbon liquids: application to the geology and astrobiology of Titan. .................................................................................... 4! Modeling turbulent flows in solar quiescent prominences ...............................................5! The zoo of exo-planets..................................................................................................8! Understanding the formation of heavy negative ions at Titan and Enceladus................9! Mapping anthropogenic versus natural sources of atmospheric CO2 ............................11! Probing Large Scale Structure with High Energy Neutrinos.........................................13! Future Moon Missions and High Energy Neutrinos ......................................................15! Measuring Cosmic Particles and the Upper Atmosphere with LOFAR.........................17! Mimicking planetary environments for assessing the survivability of bacterial organisms within an artificial environmental chamber. A combined planetary atmosphere and microbiological study for exploring panspermia................................
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • Moonlite Pendine Impact Trials
    Penetrators for Planetary Exploration and Science Professor Alan Smith University College London’s Mullard Space Science Laboratory [email protected] 1 Landers and Impactors NASA Viking, 600kg, 1975, $1b NASA Spirit, 174kg, 2004, $820m NASA LCROSS, 2009, $79m NASA Deep Impact, 370kg, 2005 Penetrators . Low mass projectiles (<15kg) Detachable . High impact speed Propulsion Stage ~ up to 400 ms-1 Point of . Very tough ~10-50kgee Separation Payload . Penetrate surface and Instruments imbed therein . Undertake science- PDS bases measurements (Penetrator Delivery System) . Transmit results Penetrator Penetrator delivery Spin-Down Release from Spin-up & Orbiter Decelerate Reorient Penetrator Separation Penetrator & PDS surface Impact Delivery sequence courtesy SSTL Operate from below surface Why penetrators ? Advantages: Limitations: • Simpler architecture • Low mass limits payload • Low mass options • Low cost • Impact survival limits payload • Explore multiple sites option • Natural redundancy • Limited lifetime • Direct contact with sub-regolith • Limited telemetry capacity (drill, sampling) • Protected from environment (wind, radiation) Complementary to Soft Landers for in situ studies Heritage Military Heritage in instrumented impact projectiles Numerous laboratories looking at high velocity impacts with gas guns QinetiQ 1996: Mars96 (Russia/Lavochkin), 2 off, 60-80 ms-1 impact, each 65kg incl braking system. Lost when Mars96 failed to leave Earth orbit. 1999: Deep Space-2 (NASA/JPL), 2 off, 140-210ms-1 impact, each 3.6kg with entry shell.
    [Show full text]
  • Time Travelers Camporee a Compilation of Resources
    1 Time Travelers Camporee A Compilation of Resources Scouts, Ventures, Leaders & Parents…. This is a rather large file (over 80 pages). We have included a “Table of Contents” page to let you know the page numbers of each topic for quick reference. The purpose of this resources to aid the patrols, crews (& adults) in their selection of “Patrol Time Period” Themes. There are numerous amounts of valuable information that can be used to pinpoint a period of time or a specific theme /subject matter (or individual).Of course, ideas are endless, but we just hope that your unit can benefit from the resources below…… This file also goes along with the “Time Traveler” theme as it gives you all a look into a wide variety of subjects, people throughout history. The Scouts & Ventures could possibly use some of this information while working on some of their Think Tank entries. There are more events/topics that are not covered than covered in this file. However, due to time constraints & well, we had to get busy on the actual Camporee planning itself, we weren’t able to cover every event during time. Who knows ? You might just learn a thing or two ! 2 TIME TRAVELERS CAMPOREE PATROL & VENTURE CREW TIME PERIOD SELECTION “RESOURCES” Page Contents 4 Chronological Timeline of A Short History of Earth 5-17 World Timeline (1492- Present) 18 Pre-Historic Times 18 Fall of the Roman Empire/ Fall of Rome 18 Middle Ages (5th-15th Century) 19 The Renaissance (14-17th Century) 19 Industrial Revolution (1760-1820/1840) 19 The American Revolutionary War (1775-1783) 19 Rocky Mountain Rendezvous (1825-1840) 20 American Civil War (1861-1865) 20 The Great Depression (1929-1939) 20 History of Scouting Timeline 20-23 World Scouting (Feb.
    [Show full text]
  • Radiation and Dust Sensor for MARS2020: Technical Design and Development Status Overview
    EPSC Abstracts Vol. 10, EPSC2015-813-2, 2015 European Planetary Science Congress 2015 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2015 Radiation and Dust Sensor for MARS2020: technical design and development status overview V. Apéstigue (1), I. Arruego, J. Martínez, J.J. Jiménez, J. Rivas, M. González, J. Álvarez, J. Azcue, A. Martín-Ortega, J.R. de Mingo, M. T. Álvarez, L. Bastide, A. Carretero, A. Santiago, I. Martín, B. Martín, M.A. Alcacera, J. Manzano, T. Belenger, R. López, D. Escribano, P. Manzano, J. Boland (2), E. Cordoba (2), A. Sánchez-Lavega (3), S. Pérez (3), A. Sainz López (4), M. Lemmon (5), M. Smith(6), C. E. Newman (5), J. Gómez Elvira(1,4), N. Bridges (6), P. Conrad (7), M. de la Torre Juarez (2), R. Urqui (1,4), J.A. Rodríguez Manfredi(1,4). (1) Instituto Nacional de Técnica Aeroespacial (INTA), Spain. (2) Jet Propulsion Laboratory (JPL), USA (3) Universidad Pais Vasco, Spain. (4) Consejo Superior de Investigaciones Científicas (CSIC), Spain (5) Ahsima Research, USA, (6) The John Hopkins University, USA, (7) Goddard Space Flight Center NASA, USA Abstract MEDA (Mars Environmental Dynamics Analyzer) REMS is a set of sensors aimed at the in-situ is a payload to be included in the rover of the characterization of meteorological and atmospheric MARS2020, NASA mission. The RDS (Radiation phenomena in the low atmosphere. It includes air and and Dust Sensor) is part of this set of instruments and ground temperature sensors, wind sensors, humidity and pressure sensors, and also a reduced photometer consists on a suite of photodetectors with different focused on UV radiation.
    [Show full text]
  • Apollo 17 Index
    Preparation, Scanning, Editing, and Conversion to Adobe Portable Document Format (PDF) by: Ronald A. Wells University of California Berkeley, CA 94720 May 2000 A P O L L O 1 7 I N D E X 7 0 m m, 3 5 m m, A N D 1 6 m m P H O T O G R A P H S M a p p i n g S c i e n c e s B r a n c h N a t i o n a l A e r o n a u t i c s a n d S p a c e A d m i n i s t r a t i o n J o h n s o n S p a c e C e n t e r H o u s t o n, T e x a s APPROVED: Michael C . McEwen Lunar Screening and Indexing Group May 1974 PREFACE Indexing of Apollo 17 photographs was performed at the Defense Mapping Agency Aerospace Center under the direction of Charles Miller, NASA Program Manager, Aerospace Charting Branch. Editing was performed by Lockheed Electronics Company, Houston Aerospace Division, Image Analysis and Cartography Section, under the direction of F. W. Solomon, Chief. iii APOLLO 17 INDEX 70 mm, 35 mm, AND 16 mm PHOTOGRAPHS TABLE OF CONTENTS Page INTRODUCTION ................................................................................................................... 1 SOURCES OF INFORMATION .......................................................................................... 13 INDEX OF 16 mm FILM STRIPS ........................................................................................ 15 INDEX OF 70 mm AND 35 mm PHOTOGRAPHS Listed by NASA Photograph Number Magazine J, AS17–133–20193 to 20375.........................................
    [Show full text]