Role of S-Palmitoylation by ZDHHC13 in Mitochondrial Function and Metabolism in Liver Received: 26 October 2016 Li-Fen Shen 1, Yi-Ju Chen 2, Kai-Ming Liu1, Amir N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ACAT) in Cholesterol Metabolism: from Its Discovery to Clinical Trials and the Genomics Era
H OH metabolites OH Review Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its Discovery to Clinical Trials and the Genomics Era Qimin Hai and Jonathan D. Smith * Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-216-444-2248 Abstract: The purification and cloning of the acyl-coenzyme A: cholesterol acyltransferase (ACAT) enzymes and the sterol O-acyltransferase (SOAT) genes has opened new areas of interest in cholesterol metabolism given their profound effects on foam cell biology and intestinal lipid absorption. The generation of mouse models deficient in Soat1 or Soat2 confirmed the importance of their gene products on cholesterol esterification and lipoprotein physiology. Although these studies supported clinical trials which used non-selective ACAT inhibitors, these trials did not report benefits, and one showed an increased risk. Early genetic studies have implicated common variants in both genes with human traits, including lipoprotein levels, coronary artery disease, and Alzheimer’s disease; however, modern genome-wide association studies have not replicated these associations. In contrast, the common SOAT1 variants are most reproducibly associated with testosterone levels. Keywords: cholesterol esterification; atherosclerosis; ACAT; SOAT; inhibitors; clinical trial Citation: Hai, Q.; Smith, J.D. Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its 1. Introduction Discovery to Clinical Trials and the The acyl-coenzyme A:cholesterol acyltransferase (ACAT; EC 2.3.1.26) enzyme family Genomics Era. Metabolites 2021, 11, consists of membrane-spanning proteins, which are primarily located in the endoplasmic 543. https://doi.org/10.3390/ reticulum [1]. -
High Throughput Computational Mouse Genetic Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278465; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. High Throughput Computational Mouse Genetic Analysis Ahmed Arslan1+, Yuan Guan1+, Zhuoqing Fang1, Xinyu Chen1, Robin Donaldson2&, Wan Zhu, Madeline Ford1, Manhong Wu, Ming Zheng1, David L. Dill2* and Gary Peltz1* 1Department of Anesthesia, Stanford University School of Medicine, Stanford, CA; and 2Department of Computer Science, Stanford University, Stanford, CA +These authors contributed equally to this paper & Current Address: Ecree Durham, NC 27701 *Address correspondence to: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278465; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Background: Genetic factors affecting multiple biomedical traits in mice have been identified when GWAS data that measured responses in panels of inbred mouse strains was analyzed using haplotype-based computational genetic mapping (HBCGM). Although this method was previously used to analyze one dataset at a time; but now, a vast amount of mouse phenotypic data is now publicly available, which could lead to many more genetic discoveries. Results: HBCGM and a whole genome SNP map covering 53 inbred strains was used to analyze 8462 publicly available datasets of biomedical responses (1.52M individual datapoints) measured in panels of inbred mouse strains. As proof of concept, causative genetic factors affecting susceptibility for eye, metabolic and infectious diseases were identified when structured automated methods were used to analyze the output. -
Thermal Manipulation of the Chicken Embryo Triggers Differential Gene
Loyau et al. BMC Genomics (2016) 17:329 DOI 10.1186/s12864-016-2661-y RESEARCH ARTICLE Open Access Thermal manipulation of the chicken embryo triggers differential gene expression in response to a later heat challenge Thomas Loyau1, Christelle Hennequet-Antier1, Vincent Coustham1, Cécile Berri1, Marie Leduc1, Sabine Crochet1, Mélanie Sannier1, Michel Jacques Duclos1, Sandrine Mignon-Grasteau1, Sophie Tesseraud1, Aurélien Brionne1, Sonia Métayer-Coustard1, Marco Moroldo2, Jérôme Lecardonnel2, Patrice Martin3, Sandrine Lagarrigue4, Shlomo Yahav5 and Anne Collin1* Abstract Background: Meat type chickens have limited capacities to cope with high environmental temperatures, this sometimes leading to mortality on farms and subsequent economic losses. A strategy to alleviate this problem is to enhance adaptive capacities to face heat exposure using thermal manipulation (TM) during embryogenesis. This strategy was shown to improve thermotolerance during their life span. The aim of this study was to determine the effects of TM (39.5 °C, 12 h/24 vs 37.8 °C from d7 to d16 of embryogenesis) and of a subsequent heat challenge (32 °C for 5 h) applied on d34 on gene expression in the Pectoralis major muscle (PM). A chicken gene expression microarray (8 × 60 K) was used to compare muscle gene expression profiles of Control (C characterized by relatively high body temperatures, Tb) and TM chickens (characterized by a relatively low Tb) reared at 21 °C and at 32 °C (CHC and TMHC, respectively) in a dye-swap design with four comparisons and 8 broilers per treatment. Real-time quantitative PCR (RT-qPCR) was subsequently performed to validate differential expression in each comparison. -
Network Pharmacology Interpretation of Fuzheng–Jiedu Decoction Against Colorectal Cancer
Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 4652492, 16 pages https://doi.org/10.1155/2021/4652492 Research Article Network Pharmacology Interpretation of Fuzheng–Jiedu Decoction against Colorectal Cancer Hongshuo Shi ,1 Sisheng Tian,2 and Hu Tian 3 1College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China 2School of Management, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China 3College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China Correspondence should be addressed to Hu Tian; [email protected] Received 7 April 2020; Revised 3 January 2021; Accepted 21 January 2021; Published 20 February 2021 Academic Editor: George B. Lenon Copyright © 2021 Hongshuo Shi et al. ,is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. Traditional Chinese medicine (TCM) believes that the pathogenic factors of colorectal cancer (CRC) are “deficiency, dampness, stasis, and toxin,” and Fuzheng–Jiedu Decoction (FJD) can resist these factors. In this study, we want to find out the potential targets and pathways of FJD in the treatment of CRC and also explain from a scientific point of view that FJD multidrug combination can resist “deficiency, dampness, stasis, and toxin.” Methods. We get the composition of FJD from the TCMSP database and get its potential target. We also get the potential target of colorectal cancer according to the OMIM Database, TTD Database, GeneCards Database, CTD Database, DrugBank Database, and DisGeNET Database. -
I STRUCTURE and FUNCTION of the PALMITOYLTRANSFERASE
STRUCTURE AND FUNCTION OF THE PALMITOYLTRANSFERASE DHHC20 AND THE ACYL COA HYDROLASE MBLAC2 A Dissertation Presented to the Faculty of the Graduate School Of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Martin Ian Paguio Malgapo December 2019 i © 2019 Martin Ian Paguio Malgapo ii STRUCTURE AND FUNCTION OF THE PALMITOYLTRANSFERASE DHHC20 AND THE ACYL COA HYDROLASE MBLAC2 Martin Ian Paguio Malgapo, Ph.D. Cornell University 2019 My graduate research has focused on the enzymology of protein S-palmitoylation, a reversible posttranslational modification catalyzed by DHHC palmitoyltransferases. When I started my thesis work, the structure of DHHC proteins was not known. I sought to purify and crystallize a DHHC protein, identifying DHHC20 as the best target. While working on this project, I came across a protein of unknown function called metallo-β-lactamase domain-containing protein 2 (MBLAC2). A proteomic screen utilizing affinity capture mass spectrometry suggested an interaction between MBLAC2 (bait) and DHHC20 (hit) in HEK-293 cells. This finding interested me initially from the perspective of finding an interactor that could help stabilize DHHC20 into forming better quality crystals as well as discovering a novel protein substrate for DHHC20. I was intrigued by MBLAC2 upon learning that this protein is predicted to be palmitoylated by multiple proteomic screens. Additionally, sequence analysis predicts MBLAC2 to have thioesterase activity. Taken together, studying a potential new thioesterase that is itself palmitoylated was deemed to be a worthwhile project. When the structure of DHHC20 was published in 2017, I decided to switch my efforts to characterizing MBLAC2. -
Nuclear Receptors Control Pro-Viral and Antiviral Metabolic Responses to Hepatitis C Virus Infection
ARTICLE PUBLISHED ONLINE: 10 OCTOBER 2016 | DOI: 10.1038/NCHEMBIO.2193 Nuclear receptors control pro-viral and antiviral metabolic responses to hepatitis C virus infection Gahl Levy1,2,11, Naomi Habib1–3,11, Maria Angela Guzzardi1,4,11, Daniel Kitsberg1,2, David Bomze1,2, Elishai Ezra1,5, Basak E Uygun6, Korkut Uygun6, Martin Trippler7, Joerg F Schlaak7, Oren Shibolet8, Ella H Sklan9, Merav Cohen1,2, Joerg Timm10, Nir Friedman1,2 & Yaakov Nahmias1,2* Viruses lack the basic machinery needed to replicate and therefore must hijack the host’s metabolism to propagate. Virus- induced metabolic changes have yet to be systematically studied in the context of host transcriptional regulation, and such studies shoul offer insight into host–pathogen metabolic interplay. In this work we identified hepatitis C virus (HCV)- responsive regulators by coupling system-wide metabolic-flux analysis with targeted perturbation of nuclear receptors in primary human hepatocytes. We found HCV-induced upregulation of glycolysis, ketogenesis and drug metabolism, with glycolysis controlled by activation of HNF4a, ketogenesis by PPARa and FXR, and drug metabolism by PXR. Pharmaceutical inhibition of HNF4a reversed HCV-induced glycolysis, blocking viral replication while increasing apoptosis in infected cells showing virus-induced dependence on glycolysis. In contrast, pharmaceutical inhibition of PPARa or FXR reversed HCV-induced ketogenesis but increased viral replication, demonstrating a novel host antiviral response. Our results show that virus-induced changes to a host’s metabolism can be detrimental to its life cycle, thus revealing a biologically complex relationship between virus and host. iral infection is one of the leading medical challenges of enzymes of oxidative phosphorylation as well6. -
Two Siblings with Beta-Ketothiolase Deficiency: One Genetic Defect Two
J Pediatr Res 2016;3(2):113-6 DO I: 10.4274/jpr.25338 Case Report / Olgu Sunumu Two Siblings with Beta-Ketothiolase Deficiency: One Genetic Defect Two Different Pictures Beta-Ketotiolaz Eksikliği Tanısı Alan İki Kardeş: Tek Genetik Defekt İki Farklı Tablo Melis Demir Köse1, Ebru Canda1, Mehtap Kağnıcı1, Rana İşgüder2, Aycan Ünalp3, Sema Kalkan Uçar1, Luzy Bahr4, Corinne Britschgi4, Jörn Oliver Sass4, Mahmut Çoker4 1Ege University Faculty of Medicine, Department of Pediatric Metabolism, İzmir, Turkey 2Behçet Uz Children Training and Research Hospital, Clinic of Pediatric Intensive Care, İzmir, Turkey 3Behçet Uz Children Training and Research Hospital, Clinic of Neurology, İzmir, Turkey 4Zürich University Children’s Hospital, Department of Clinical Chemistry and Biochemistry, Zürich, Switzerland ABS TRACT ÖZ Deficiency of mitochondrial acetoacetyl-coenzyme A thiolase T2 Mitokondriyal asetoasetil-koenzim A tiolaz T2 eksikliği (MAT- β-ketotiolaz) (methylacetoacetyl-coenzyme A thiolase, MAT) or β-ketothiolase is a rare ketoasidotik ataklarla karakterize nadir bir otozomal resesif hastalıktır. Klinik autosomal recessive disorder that is characterized by ketoacidosis episodes. gidişat tamamen normal gelişimsel süreçten ağır mental retardasyona hatta Outcomes vary from normal development to severe cognitive impairment or atak sonrası ölüme kadar değişebilir. Klasik T2 eksikliğinin idrar organik asit even death after an acute episode of ketoacidosis. The classical biochemical ve karnitin profiline yansıyan biyokimyasal özellikleri ACAT1 geninde her iki profile of T2 deficiency is a result of mutations in both alleles of the ACAT1 allelde de oluşacak mutasyonlar sonucu görülmektedir. Bu yazımızda oldukça gene and comprises characteristic abnormalities in urinary organic acids and farklı fenotipik özellikler gösteren ancak aynı mutasyonu paylaşan iki kardeşin blood or plasma acylcarnitine profiles. -
MCAT 293T Cell Transient Overexpression Lysate(Denatured)
MCAT 293T Cell Transient Overexpression Lysate(Denatured) Catalog # : H00027349-T01 規格 : [ 100 uL ] List All Specification Application Image Transfected 293T Western Blot Cell Line: Plasmid: pCMV-MCAT full-length Host: Human Theoretical MW 19.91 (kDa): Quality Control Transient overexpression cell lysate was tested with Anti-MCAT Testing: antibody (H00027349-B01) by Western Blots. SDS-PAGE Gel MCAT transfected lysate. Western Blot Lane 1: MCAT transfected lysate ( 19.91 KDa) Lane 2: Non-transfected lysate. Storage Buffer: 1X Sample Buffer (50 mM Tris-HCl, 2% SDS, 10% glycerol, 300 mM 2- mercaptoethanol, 0.01% Bromophenol blue) Storage Store at -80°C. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Applications Page 1 of 2 2016/5/23 Western Blot Gene Information Entrez GeneID: 27349 GeneBank NM_014507.2 Accession#: Protein NP_055322.1 Accession#: Gene Name: MCAT Gene Alias: FASN2C,MCT,MGC47838,MT,fabD Gene malonyl CoA:ACP acyltransferase (mitochondrial) Description: Gene Ontology: Hyperlink Gene Summary: The protein encoded by this gene is found exclusively in the mitochondrion, where it catalyzes the transfer of a malonyl group from malonyl-CoA to the mitochondrial acyl carrier protein. The encoded protein may be part of a fatty acid synthase complex that is more like the type II prokaryotic and plastid complexes rather than the type I human cytosolic complex. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq Other malonyl-CoA:acyl carrier protein transacylase, Designations: mitochondrial,mitochondrial malonyltransferase Gene Pathway Fatty acid biosynthesis Metabolic pathways Related Disease Disease Susceptibility Kidney Failure, Chronic Prostatic Neoplasms 服務條款 | 隱私權政策 | 著作及商標 | 網站地圖 ©2016 亞諾法生技股份有限公司 Abnova Corporation. -
Variation in Protein Coding Genes Identifies Information Flow
bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number. -
A Framework to Identify Contributing Genes in Patients with Phelan-Mcdermid Syndrome
www.nature.com/npjgenmed Corrected: Author Correction ARTICLE OPEN A framework to identify contributing genes in patients with Phelan-McDermid syndrome Anne-Claude Tabet 1,2,3,4, Thomas Rolland2,3,4, Marie Ducloy2,3,4, Jonathan Lévy1, Julien Buratti2,3,4, Alexandre Mathieu2,3,4, Damien Haye1, Laurence Perrin1, Céline Dupont 1, Sandrine Passemard1, Yline Capri1, Alain Verloes1, Séverine Drunat1, Boris Keren5, Cyril Mignot6, Isabelle Marey7, Aurélia Jacquette7, Sandra Whalen7, Eva Pipiras8, Brigitte Benzacken8, Sandra Chantot-Bastaraud9, Alexandra Afenjar10, Delphine Héron10, Cédric Le Caignec11, Claire Beneteau11, Olivier Pichon11, Bertrand Isidor11, Albert David11, Laila El Khattabi12, Stephan Kemeny13, Laetitia Gouas13, Philippe Vago13, Anne-Laure Mosca-Boidron14, Laurence Faivre15, Chantal Missirian16, Nicole Philip16, Damien Sanlaville17, Patrick Edery18, Véronique Satre19, Charles Coutton19, Françoise Devillard19, Klaus Dieterich20, Marie-Laure Vuillaume21, Caroline Rooryck21, Didier Lacombe21, Lucile Pinson22, Vincent Gatinois22, Jacques Puechberty22, Jean Chiesa23, James Lespinasse24, Christèle Dubourg25, Chloé Quelin25, Mélanie Fradin25, Hubert Journel26, Annick Toutain27, Dominique Martin28, Abdelamdjid Benmansour1, Claire S. Leblond2,3,4, Roberto Toro2,3,4, Frédérique Amsellem29, Richard Delorme2,3,4,29 and Thomas Bourgeron2,3,4 Phelan-McDermid syndrome (PMS) is characterized by a variety of clinical symptoms with heterogeneous degrees of severity, including intellectual disability (ID), absent or delayed speech, and autism spectrum disorders (ASD). It results from a deletion of the distal part of chromosome 22q13 that in most cases includes the SHANK3 gene. SHANK3 is considered a major gene for PMS, but the factors that modulate the severity of the syndrome remain largely unknown. In this study, we investigated 85 patients with different 22q13 rearrangements (78 deletions and 7 duplications). -
Two Libyan Siblings with Beta-Ketothiolase Deficiency: a Case
The Egyptian Journal of Medical Human Genetics 18 (2017) 199–203 Contents lists available at ScienceDirect The Egyptian Journal of Medical Human Genetics journal homepage: www.sciencedirect.com Case Report Two Libyan siblings with beta-ketothiolase deficiency: A case report and review of literature ⇑ Elsayed Abdelkreem a,b, , Hanna Alobaidy c, Yuka Aoyama d, Shaimaa Mahmoud b, Mohamed Abd El Aal b, Toshiyuki Fukao a a Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan b Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt c Department of Pediatrics, Faculty of Medicine, Tripoli University, Tripoli, Libya d Education and Training Center of Medical Technology, Chubu University, Aichi, Japan article info abstract Article history: Beta-ketothiolase (mitochondrial acetoacetyl-CoA thiolase, T2) deficiency is an autosomal recessive dis- Available online 4 January 2017 order characterized by impaired metabolism of ketones and isoleucine. In this study, we report on the first two siblings with T2 deficiency from Libya. Both siblings presented with ketoacidosis, but the sever- Keywords: ity and outcomes were quite distinctive. T2 deficiency in patient 1, the younger sister, manifested as T2 deficiency recurrent severe episodes of ketoacidosis during the first year of life. She unfortunately experienced neu- ACAT1 rodevelopmental complications, and died at 14 months old, after her 5th episode. In contrast, patient 2, Mutation the elder brother, experienced only one ketoacidotic episode at the age of 4 years. He recovered unevent- Transient expression analysis fully and has continued to achieve age-appropriate development to date. Upon analysis, the siblings’ Ketone bodies Metabolic encephalopathy blood acylcarnitine profiles had shown increased levels of C5:1 and C5-OH carnitine. -
Huntingtin-Interacting Protein 14 Is a Type 1 Diabetes Candidate Protein
Huntingtin-interacting protein 14 is a type 1 diabetes PNAS PLUS candidate protein regulating insulin secretion and β-cell apoptosis Lukas Adrian Berchtolda, Zenia Marian Størlingb, Fernanda Ortisc, Kasper Lageb,d, Claus Bang-Berthelsene, Regine Bergholdta, Jacob Halda, Caroline Anna Brorssone, Decio Laks Eizirikc, Flemming Pociota,e, Søren Brunakb,d, and Joachim Størlinga,e,1 aHagedorn Research Institute, 2820 Gentofte, Denmark; bCenter for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark; cLaboratory of Experimental Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; dCenter for Protein Research, Health Sciences Faculty, University of Copenhagen, 2200 Copenhagen, Denmark; and eGlostrup Research Institute, Glostrup University Hospital, 2600 Glostrup, Denmark Edited by Charles A. Dinarello, University of Colorado Denver, Aurora, CO, and approved May 26, 2011 (received for review March 27, 2011) Type 1 diabetes (T1D) is a complex disease characterized by the loss changed functionality of a protein network or pathway causing of insulin-secreting β-cells. Although the disease has a strong ge- a change in the biological and phenotypic outcome. These kinds netic component, and several loci are known to increase T1D of strategies have also been applied on T1D and T2D (14–16) but susceptibility risk, only few causal genes have currently been iden- without biological and functional evaluation of candidate genes. tified. To identify disease-causing genes in T1D, we performed an in We developed a unique in silico “phenome–interactome net- silico “phenome–interactome analysis” on a genome-wide linkage work analysis” for predicting proteins involved in disease (17). scan dataset. This method prioritizes candidates according to their Starting from high-confidence human protein–protein interaction physical interactions at the protein level with other proteins in- data, networks for proteins encoded by genes in associated loci volved in diabetes.