Beta-Ketothiolase Deficiency
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ACAT) in Cholesterol Metabolism: from Its Discovery to Clinical Trials and the Genomics Era
H OH metabolites OH Review Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its Discovery to Clinical Trials and the Genomics Era Qimin Hai and Jonathan D. Smith * Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-216-444-2248 Abstract: The purification and cloning of the acyl-coenzyme A: cholesterol acyltransferase (ACAT) enzymes and the sterol O-acyltransferase (SOAT) genes has opened new areas of interest in cholesterol metabolism given their profound effects on foam cell biology and intestinal lipid absorption. The generation of mouse models deficient in Soat1 or Soat2 confirmed the importance of their gene products on cholesterol esterification and lipoprotein physiology. Although these studies supported clinical trials which used non-selective ACAT inhibitors, these trials did not report benefits, and one showed an increased risk. Early genetic studies have implicated common variants in both genes with human traits, including lipoprotein levels, coronary artery disease, and Alzheimer’s disease; however, modern genome-wide association studies have not replicated these associations. In contrast, the common SOAT1 variants are most reproducibly associated with testosterone levels. Keywords: cholesterol esterification; atherosclerosis; ACAT; SOAT; inhibitors; clinical trial Citation: Hai, Q.; Smith, J.D. Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its 1. Introduction Discovery to Clinical Trials and the The acyl-coenzyme A:cholesterol acyltransferase (ACAT; EC 2.3.1.26) enzyme family Genomics Era. Metabolites 2021, 11, consists of membrane-spanning proteins, which are primarily located in the endoplasmic 543. https://doi.org/10.3390/ reticulum [1]. -
ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
A Polyketoacyl-Coa Thiolase-Dependent Pathway for the Synthesis of Polyketide Backbones
ARTICLES https://doi.org/10.1038/s41929-020-0471-8 A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones Zaigao Tan1,3, James M. Clomburg1,2, Seokjung Cheong1, Shuai Qian1 and Ramon Gonzalez 1,2 ✉ Polyketides found in nature originate from backbones synthesized through iterative decarboxylative Claisen condensations catalysed by polyketide synthases (PKSs). However, PKSs suffer from complicated architecture, energy inefficiencies, complex regulation, and competition with essential metabolic pathways for extender unit malonyl-CoA, all combining to limit the flux of polyketide biosynthesis. Here we show that certain thiolases, which we term polyketoacyl-CoA thiolases (PKTs), catalyse polyketide backbone formation via iterative non-decarboxylative Claisen condensations, hence offering a synthetic and effi- cient alternative to PKSs. We show that PKTs can synthesize polyketide backbones for representative lactone, alkylresorcinolic acid, alkylresorcinol, hydroxybenzoic acid and alkylphenol polyketide families, and elucidate the basic catalytic mechanism and structural features enabling this previously unknown activity. PKT-catalysed reactions offer a route to polyketide formation that leverages the simple architecture of thiolases to achieve higher ATP efficiencies and reduced competition with essential metabolic pathways, all of which circumvent intrinsic inefficiencies of PKSs for polyketide product synthesis. olyketides represent a large class of secondary metabolites that Here we show that enzymes other -
WO 2013/180584 Al 5 December 2013 (05.12.2013) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/180584 Al 5 December 2013 (05.12.2013) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/21 (2006.01) C12N 15/74 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/52 (2006.01) C12P 5/02 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C12N 15/63 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/NZ20 13/000095 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 4 June 2013 (04.06.2013) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 61/654,412 1 June 2012 (01 .06.2012) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (71) Applicant: LANZATECH NEW ZEALAND LIMITED MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, [NZ/NZ]; 24 Balfour Road, Parnell, Auckland, 1052 (NZ). -
Hydroxy–Methyl Butyrate (HMB) As an Epigenetic Regulator in Muscle
H OH metabolites OH Communication The Leucine Catabolite and Dietary Supplement β-Hydroxy-β-Methyl Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells Virve Cavallucci 1,2,* and Giovambattista Pani 1,2,* 1 Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy 2 Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy * Correspondence: [email protected] (V.C.); [email protected] (G.P.) Abstract: β-Hydroxy-β-Methyl Butyrate (HMB) is a natural catabolite of leucine deemed to play a role in amino acid signaling and the maintenance of lean muscle mass. Accordingly, HMB is used as a dietary supplement by sportsmen and has shown some clinical effectiveness in preventing muscle wasting in cancer and chronic lung disease, as well as in age-dependent sarcopenia. However, the molecular cascades underlying these beneficial effects are largely unknown. HMB bears a significant structural similarity with Butyrate and β-Hydroxybutyrate (βHB), two compounds recognized for important epigenetic and histone-marking activities in multiple cell types including muscle cells. We asked whether similar chromatin-modifying actions could be assigned to HMB as well. Exposure of murine C2C12 myoblasts to millimolar concentrations of HMB led to an increase in global histone acetylation, as monitored by anti-acetylated lysine immunoblotting, while preventing myotube differentiation. In these effects, HMB resembled, although with less potency, the histone Citation: Cavallucci, V.; Pani, G. deacetylase (HDAC) inhibitor Sodium Butyrate. However, initial studies did not confirm a direct The Leucine Catabolite and Dietary inhibitory effect of HMB on HDACs in vitro. β-Hydroxybutyrate, a ketone body produced by the Supplement β-Hydroxy-β-Methyl liver during starvation or intense exercise, has a modest effect on histone acetylation of C2C12 Butyrate (HMB) as an Epigenetic Regulator in Muscle Progenitor Cells. -
There Are Three Major Biological Molecules Classified As Ketone Bodies
There are three major biological molecules classified as ketone bodies: These ketone bodies are water soluble and do not need specific transporters to cross membranes. Synthesis of acetoacetate 1. React two acetyl-CoA molecules with each other using thiolase. This is called acetoacetyl-CoA. What is the second product? 2. React a third acetyl-CoA molecule with acetoacetyl-CoA. This step is catalyzed by hydroxymethylglutaryl-CoA synthase (HMG-CoA synthase). a. Deprotonate C2 of acetyl-CoA. You have created a great nucleophile. b. React your newly formed carbanion nucleophile with the electrophilic carbonyl C3 of acetoacetyl-CoA. c. Protonate the oxyanion. d. Use water as a nucleophile to react with the electrophilic carbonyl of the thioester of the newly added acetyl-CoA unit. This results in a carboxylate functional group. e. Your product should contain a 5-carbon chain, which starts with a thioester to CoA, ends with a carboxylate, and has a hydroxyl and a methyl group attached to C3. This is β-hydroxy-β- methylglutaryl-CoA (HMG-CoA). 3. An acetyl-CoA group is eliminated. This step is catalyzed by hydroxymethylglutaryl-CoA lyase (HMG- CoA lyase). a. A base deprotonates the hydroxyl group of β-hydroxy-β-methylglutaryl-CoA. b. A pair of electrons from the oxyanion moves to form a carbonyl. C2 leaves as a carbanion [which delocalizes into the adjacent thioester carbonyl]. c. The first product is acetoacetate. d. The carbanion picks up the proton and leaves as acetyl-CoA. Formation of acetone from acetoacetate This occurs in a non-enzymatic fashion because of the arrangement of the ketone in the β position from the carboxylate in acetoacetate and causes problems since acetone builds up. -
Test Catalog for Pharma
Test Catalog for Pharma Newborn Screening ………………………………………………………………………….. 2 Biochemical Genetic Testing ……………………………………………….. 2 Molecular Genetic Testing ……………………………………………………. 4 Genetic Testing …………………………………………………………………………………… 6 Molecular Genetic Testing ……………………………………………….….. 6 Biochemical Genetic Testing ……………………………………………….. 10 How to order? ………………………………………………………………………………..….. 11 1 Newborn Screening > Biochemical Genetic Testing StepOne® (Comprehensive with SCID) Fatty Acid Oxidation Disorders Organic Acid Disorders Amino Acid Disorders Carnitine/Acylcarnitine Translocase Deficiency 3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency Argininemia Carnitine Palmitoyl Transferase Deficiency Type I1 Glutaric Acidemia Type I Argininosuccinic Aciduria 3-Hydroxy Long Chain Acyl-CoA Dehydrogenase Deficiency Isobutyryl-CoA Dehydrogenase Deficiency 5-Oxoprolinuria1 2,4-Dienoyl-CoA Reductase Deficiency1 Isovaleric Acidemia Carbamoyl Phosphate Synthetase Deficiency1 Medium Chain Acyl-CoA Dehydrogenase Deficiency 2-Methylbutyryl-CoA Dehydrogenase Deficiency Citrullinemia Multiple Acyl-CoA Dehydrogenase Deficiency 3-Methylcrotonyl-CoA Carboxylase Deficiency Homocystinuria Neonatal Carnitine Palmitoyl Transferase Deficiency Type II 3-Methylglutaconyl-CoA Hydratase Deficiency Hypermethioninemia Short Chain Acyl-CoA Dehydrogenase Deficiency Methylmalonic Acidemias Hyperammonemia, Hyperornithinemia, Homocitrullinuria Short Chain Hydroxy Acyl-CoA Dehydrogenase Deficiency Methylmalonyl-CoA Mutase Deficiency Syndrome1 Trifunctional Protein Deficiency Some Adenosylcobalamin -
High Throughput Computational Mouse Genetic Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278465; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. High Throughput Computational Mouse Genetic Analysis Ahmed Arslan1+, Yuan Guan1+, Zhuoqing Fang1, Xinyu Chen1, Robin Donaldson2&, Wan Zhu, Madeline Ford1, Manhong Wu, Ming Zheng1, David L. Dill2* and Gary Peltz1* 1Department of Anesthesia, Stanford University School of Medicine, Stanford, CA; and 2Department of Computer Science, Stanford University, Stanford, CA +These authors contributed equally to this paper & Current Address: Ecree Durham, NC 27701 *Address correspondence to: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.278465; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Background: Genetic factors affecting multiple biomedical traits in mice have been identified when GWAS data that measured responses in panels of inbred mouse strains was analyzed using haplotype-based computational genetic mapping (HBCGM). Although this method was previously used to analyze one dataset at a time; but now, a vast amount of mouse phenotypic data is now publicly available, which could lead to many more genetic discoveries. Results: HBCGM and a whole genome SNP map covering 53 inbred strains was used to analyze 8462 publicly available datasets of biomedical responses (1.52M individual datapoints) measured in panels of inbred mouse strains. As proof of concept, causative genetic factors affecting susceptibility for eye, metabolic and infectious diseases were identified when structured automated methods were used to analyze the output. -
Two-Week Exclusive Supplementation of Modified Ketogenic Nutrition Drink Reserves Lean Body Mass and Improves Blood Lipid Profile in Obese Adults: a Randomized Clinical Trial
nutrients Article Two-Week Exclusive Supplementation of Modified Ketogenic Nutrition Drink Reserves Lean Body Mass and Improves Blood Lipid Profile in Obese Adults: A Randomized Clinical Trial Hae-Ryeon Choi 1 , Jinmin Kim 2, Hyojung Lim 3 and Yoo Kyoung Park 1,* 1 Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do 17104, Korea; [email protected] 2 Nutritional Product R&D team, Maeil Innovation Center, Maeil Dairies Co., Ltd., Pyeongtaek, Gyeonggi-do 17714, Korea; [email protected] 3 MDwell Inc., Seoul 06170, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-10-6231-1931 Received: 6 October 2018; Accepted: 21 November 2018; Published: 3 December 2018 Abstract: The ketogenic diet has long been recommended in patients with neurological disorders, and its protective effects on the cardiovascular system are of growing research interest. This study aimed to investigate the effects of two-week of low-calorie ketogenic nutrition drinks in obese adults. Subjects were randomized to consume drinks either a ketone-to-non-ketone ratio of 4:1 (KD 4:1), a drink partially complemented with protein at 1.7:1 (KD 1.7:1), or a balanced nutrition drink (BD). Changes in body weight, body composition, blood lipid profile, and blood ketone bodies were investigated. Blood ketone bodies were induced and maintained in the group that consumed both 4:1 and 1.7:1 ketogenic drinks (p < 0.001). Body weight and body fat mass significantly declined in all groups between 0 and 1 week and between 1 and 2 weeks (p < 0.05), while skeletal muscle mass remained unchanged only in the KD 1.7:1 group (p > 0.05). -
Practitioner's Manual
Hawai`i Practitioner’s Manual Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual The Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual Hawai`i Department of Health Gwen Palmer, RN Janice Y. Kong, MT Oregon Health & Science University Cary Harding, MD Stephen L. LaFranchi, MD Gregory Thomas, MD Michael Wall, MD Oregon Health Authority Public Health Michael R. Skeels, PhD, MPH Cheryl A. Hermerath, MBA, DLM (ASCP), RM (NRM) Lindsey Caudle, RN, BSN Becky J. Whittemore, MN, MPH, FNP 9th Edition, 2011 ii Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual Table of contents Hawai`i medical program and follow-up team . 1 Medical program consultants . 2. Oregon State Public Health Laboratory and follow-up team . 3. Introduction . 4. Newborn screening essentials . 6. Conditions included in the screening panel . 7. Table I: Summary of conditions on the screening panel . .8 Table II: Normal values and criteria for requesting follow-up specimens . 11 Screening practices . 13 Definition . 13. Who is responsible for ensuring that the screening test is performed? . 13. Parent refusal to have the infant screened . 13. Screening before discharge . 13. Proper time for specimen collection . 13. Table III - Validity of 1st and 2nd NBS tests........................................ 13 Table IV - Age of infant at specimen collection*................................... 14 Diagnostic laboratories for screening older children and/or adults . 15. Specimen collection before transfer of infant to another facility . 15. Patient demographic information . 15. Specimen transport . 15. Newborn screening for preterm, low birth weight or sick infants . 16 Table V: Maternal conditions affecting the newborn screening results ............... 16 Table VI: Treatments used in special care baby unit and effects on newborn screening results ................................................... -
Effects of Ketone Bodies on Brain Metabolism and Function In
International Journal of Molecular Sciences Review Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases Nicole Jacqueline Jensen 1,* , Helena Zander Wodschow 1, Malin Nilsson 1 and Jørgen Rungby 1,2 1 Department of Endocrinology, Bispebjerg University Hospital, 2400 Copenhagen, Denmark; [email protected] (H.Z.W.); malin.sofi[email protected] (M.N.); [email protected] (J.R.) 2 Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark * Correspondence: [email protected] Received: 4 November 2020; Accepted: 18 November 2020; Published: 20 November 2020 Abstract: Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions. -
The Effects of Low-Carbohydrate Diets on the Metabolic Response to Androgen- Deprivation Therapy in Prostate Cancer
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.304360; this version posted September 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The effects of low-carbohydrate diets on the metabolic response to androgen- deprivation therapy in prostate cancer Jen-Tsan Chi1*, Pao-Hwa Lin2, Vladimir Tolstikov3, Taofik Oyekunle4, Gloria Cecilia Galván Alvarado5, Adela Ramirez-Torres5, Emily Y. Chen3, Valerie Bussberg3, Bo Chi1, Bennett Greenwood3, Rangaprasad Sarangarajan3, Niven R. Narain3, Michael A. Kiebish3, Stephen J. Freedland5* 1Department of Molecular Genetics and Microbiology, Center for Genomics and Computational Biology, 2Department of Medicine, Division of Nephrology, Duke University Medical Center, Durham, NC USA 3BERG, Framingham, MA USA 4Duke Cancer Institute, Duke University Medical Center, Durham, NC USA 5Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai, Los Angeles, CA 6Durham VA Medical Center, Durham, NC, USA Corresponding Authors*: Jen-Tsan Chi: [email protected], 1-919-6684759, 101 Science Drive, DUMC 3382, CIEMAS 2177A, Durham, NC 27708 Stephen J. Freedland: [email protected], 1-310-423-0333 8631, W. Third St. Fourth Floor, Suite 430E, Los Angeles, CA 90048 Running Title: Low Carb Diet effects on the Metabolomic effects of ADT Keywords: ADT, Prostate Cancer, low carbohydrate diet, ketogenesis, metabolomics, androgen sulfate, 3-hydroxybutyric acid, 3-formyl indole, indole-3-carboxaldehyde Funding and Acknowledgement: American Urological Association Foundation, BERG, NIH, and Robert C. and Veronica Atkins Foundation Conflict of interest statement: No conflict of Interest. Author contributions statement: JTC: data analysis, manuscript writing – original draft, review and editing.